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Abstract: In the last few years, jargon, such as machine learning (ML) and artificial intelligence
(AI), have been ubiquitous in both popular science media as well as the academic literature. Many
industries have tried the current suite of ML and AI algorithms with various degrees of success.
Mineral processing, as an industry, is looking at AI for two reasons. First of all, as with other
industries, it is pertinent to know if AI algorithms can be used to enhance productivity. The second
reason is specific to the mining industry. Of late, the grade of ores is reducing, and the demand for
ethical mining (with as little effect on ecology as possible) is increasing. Thus, mineral processing
industries also want to explore the possible use of AI in solving these challenges. In this review
paper, first, the challenges in mineral processing that can potentially be solved by AI are presented.
Then, some of the most pertinent developments in the domain of ML and AI (applied in the domain
of mineral processing) are discussed. Lastly, a top-level modus operandi is presented for a mineral
processing industry that might want to explore the possibilities of using AI in its processes. Following
are some of the new paradigms added by this review. This review presents a holistic view of the
domain of mineral processing with an AI lens. It is also one of the first reviews in this domain
to thoroughly discuss the use of AI in ethical, green, and sustainable mineral processing. The AI
process proposed in this paper is a comprehensive one. To ensure the relevance to industry, the flow
was made agile with the spiral system engineering flow. This is expected to drive rapid and agile
investigation of the potential of applying ML and AI in different mineral processing industries.

Keywords: artificial intelligence; machine learning; mineral processing; sustainable mining; ethical
mining; zero footprint

1. Introduction: Pain-Points in Mineral Processing

Mineral processing is the art of converting ores (rocks) in which the concentration of
mineral might be low and boosting the concentration methodically (to be high enough to
produce revenue).

Mineral processing usually follows four stages [1,2].

1. Ore preparation, which consists of steps, including selective mining (for various
reasons), ore blending, and other pre-concentration techniques.

2. Comminution, where the size of the ore is reduced.
3. Sizing, where particles of certain sizes are passed on to the next stage.
4. Concentration, where particles with higher concentration are filtered out in stages so

that the mineral concentration in the overall material goes up.
5. Dewatering, where the water from the particles is removed.

In addition to the above four conventional processes, mineral processing plants also
need to take care of environmental issues. Ethical mining and metallurgy are witnessing
active regulatory initiatives [3]. Taking care of the environmental implications of mineral
processing is becoming an integral part of the operations [3]. Hence, Ethical Processing can
be added as the fifth stage.
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1.1. Some of the Current Challenges in Mineral Processing

With the depletion of quality ores, mineral processing engineers have to deal with
complex ores where either one or more of the following challenges exist [4,5].

• There is a need to extract multiple minerals (complex composition) from the same ore.
Or, there is a need to extract minerals of various concentrations from the same ore.

• The quality of the deposit is high but the size or accumulation is low.
• The quality of the deposit is low but the accumulation is high.
• Lastly, due to the recent interest in green and sustainable development, there is

increasing importance on ethical and green mining with minimized climate and
material footprint of the whole process chain [6]. This has also created a scarcity
in ores.

The implication is often that the particle size needed for mineral liberation, at times,
is as small as 1 µm. This makes mineral processing challenging and also increases the
environmental footprint of mines.

How can ML and AI be of help? There are two implications of the current challenges
in mineral processing.

1. No One Size Fits All: Traditionally, mineral processing techniques and machines have
been uniform across operations. Even if there is fine-tuning involved for each site, the
process parameters are not often changed. Ores were more or less consistent in their
properties. When we are (figuratively) scraping the bottom of our deposit barrels, the
properties of the ores are no longer consistent. This requires the real-time fine-tuning
of process parameters. This is a domain where the application of ML and AI has
shown considerable success in many domains [7–9]. This is expected to be one of the
major applications of ML and AI in mineral processing shortly. These applications of
AI would mostly not require major installation changes.

2. Reducing Human Error: Mineral processing plants are well-oiled processes. A small
mistake can stop the process, and each hour costs an exorbitant amount of losses.
Often, these mistakes are human-errors. There has always been a need to automate
systems to avoid these. The need, now, is more acute. With the quality of ore dimin-
ishing, mineral processing plants are becoming more sophisticated. They come with
numerous sensors whose values should be interpreted in real-time. These sensors
are not human-perceivable. This means that these are not pictures or sounds for
which humans have well-established sensory facilities. Interpreting data from these
sensors requires a great deal of training and experience. This increases the chances of
human error.
This is where ML and AI can really make a difference. Current generation deep
learning (DL) algorithms are extremely good correlation extractors [10]. In terms
of extracting correlations, they are better than humans [11,12], especially for non-
optical and non-audio types of sensory data. With a human in the loop (to make the
executive decisions) and AI algorithms to interpret the sensory data, the chances of
human-error can be reduced substantially. Sensors and AI are integral parts of most
AI solutions. Hence, sensor and AI (SensAI) developments should always be done in
a co-development model.

1.2. Ever Expanding Meaning of Mineral Processing

If we generalize the definition of mineral processing to encompass the processes
needed to supply metals and materials to different applications, then we cannot ignore the
following emerging branches of mineral processing.

• Mineral Processing for Urban Mining: Recycling and the circular economy (CE) have
been taking an increasingly central position in the world order. Extracting metals and
materials from urban waste can be called urban mining. The processing needed for
this new kind of mining can also be called mineral processing. For example, harvesting
Lithium from Lithium ion batteries, which is a prominent e-waste. Another interesting
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example is the use of living organisms to harvest metals from waste [13] (like the use
of microorganisms to recover metal from discarded printed circuit boards [14]).
Recycling, especially in the case of certain metals, such as aluminium, is a well
established business. The mineral processing needed for this traditional recycling is
mostly simple. However, shortly, we will need to extract metals that are in very low
concentrations from waste. This will require sophisticated mineral processing. AI has
a major role to play in this. New companies, like Zen Robotics, are already pushing
the boundaries in terms of sophisticated waste sorting using AI [15].
Secondly, in a circular economy, where there is no real beginning and end of materials,
it will be difficult to exactly pinpoint the processes that can be called mineral process-
ing. The preparation of ores for comminution is an integral part of mineral processing.
In a circular economy, tracing the possible materials that will become a resource for
the next slot of mining would also be a part of mineral processing. The role of SensAI
is pivotal in tracing metals in circulation. For example, a group from Sweden has
done made interesting innovations on the use of embedded sensors to trace metals in
circulation [16].

• Renewable Mining: Renewables providing fuels and raw materials will become more
common soon. If we can term the process of extracting materials and fuels from
renewables as renewable mining then the preprocessing involved in these plants can
also be termed as mineral processing. For example, work towards the use of biomass
to produce polymeric materials, organic chemicals, and fuel [17,18] has been going on
since the 1970s. Bio-diesel [19] is one of the many materials, currently being produced
from renewables.
The process chain of renewables (refer Figure 1 [20]) mostly involves steps that are
the same as some of the steps followed in traditional mineral processing. SensAI will,
again, play a pivotal role in these processes. AI can also be useful in recommending
refined process chains for new kinds of renewable materials [16].

Figure 1. The typical process chain for renewables [20]. Many of the steps in this process chain are
similar to the steps in conventional mineral processing.

The current review looks into the potential of machine learning (ML) and artificial in-
telligence (AI) in abetting the major challenges faced by mineral processing in all the above
five stages. There are a few interesting reviews of a similar nature in the open literature
[21,22]. The value proposition of the current review is both complementary and supple-
mentary to the existing reviews. For example, Fu and Aldrich [21] gave a thorough review
of the application of deep learning algorithms in mining. In this review, algorithms other
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than deep learning are also considered. In [22], McCoy and Auret presented a methodical
review of the applications of ML in mineral processing.

The current review supplements their work with a discussion on the potential of AI
in mineral processing. The applications of AI in alleviating the environmental impacts of
mineral processing are also discussed. Lastly, the above reviews were written by domain
experts working in the mineral processing industries. The author of this review is primarily
an AI researcher. Hence, the presentation and flavour of the review will be different. In
summary, it is recommended that readers refer to these reviews ([21,22] and the current
review) together.

The rest of the paper is organized as follows. In the next section, some of the major
approaches in ML and AI are discussed. In Section 3, some of the existing works that have
explored the application of ML and AI algorithms in mineral processing are discussed. In
Section 4, I discuss some of the futuristic applications of ML and AI in mineral processing
(MP). Section 5 concludes the review. In this section, I also present a modus operandi for
engineers and researchers who are planning to investigate the potential use of ML and AI
in their work related to MP.

2. A Review of AI and ML Algorithms

To start, let us take a quick look at the machine learning (ML) and artificial intelligence
(AI) algorithms and processes at our disposal. This is, by no means, a review of all the
ML and AI algorithms and processes. The discussion is kept brief and pertinent to the
application domain (viz. mineral processing).

Let us try to understand the meanings of three things (often used synonymously in
popular literature), AI, ML, and Deep Learning (DL).

• Artificial Intelligence (AI): The wish to create something intelligent is as old as human
intelligence itself. The endeavours were formalized by Turing in his elegant work [23]
that gave us the famous Turing Test. I strongly suggest this work to anyone inter-
ested in AI. However, the Turing test is based on the concept of a universal Turing
machine [24].
The meaning of “intelligence” itself is a hot field of research [25–27]. If and when
intelligence can be defined analytically, implementing it using a Turing machine will
be an easy follow-up step. Hence, some in the AI field are trying to approach the
challenge from another angle. What if there is no mathematical framework to capture
intelligence? The machine to implement AI need not be a Turing machine [28].
With this extremely short historical summary of the domain of AI, I note that AI is
the super-set of all the pertinent endeavours. I, now, discuss ML and DL, which are
subsets of AI.

• Machine Learning (ML): Machine learning, as a domain, involves algorithms that
can use experiences and learn from them. Experiences, are mostly in the form of
data that the ML algorithm uses to build models. These models are, in turn, used
to perform a range of actions, such as pattern classification, recognition, anomaly
detection, prediction, and regression. Arthur Samuel was the person who first used
the phrase machine learning in his interesting work on modelling checkers [29].

• Deep Learning (DL): Deep learning is a subset of artificial neural networks (ANN),
which is a subset of ML. ANNs have been around for more than seven decades.
Hebbian networks [30] were one of the initial ANNs to be studied. Cybenko’s work
on the universal approximation capabilities of a sigmoid-based ANN [31] gave strong
mathematical reason to expect a great deal from ANNs. However, there have been
many brick walls that did not give traditional ANNs as many successes. With a few
interesting innovations, deeper ANNs became more practical. One of the biggest
advantages of deeper ANN was the fact that they can learn features on their own
from data. Readers are suggested to refer to an excellent introduction to deep learning
written by some of its founding fathers [10].
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Soon, DL started to show amazing results in a range of domains. Due to the generous
efforts from Facebook [32] and Google [33] in making their DL libraries free for
all, the barrier to entry was reduced substantially as well. Lastly, DL has a strong
brain-inspired narrative as well [34].

Now, let us discuss some of the major classes of ML algorithms. This shall, in no way,
be a thorough review of ML algorithms. This will be a conceptual overview of some of the
successful ML algorithms that might have the most potential in mineral processing. If the
readers are interested in a good review of the domain of AI and ML, they are recommended
to some of the recent reviews, such as the Turin Lecture by Bengio, LeCun, and Hinton [35].

Machine learning algorithms can be grouped into two major categories based on their
philosophy of development.

1. Generative ML: This is the more traditional approach to ML. The underlying hypothesis
is that measured data is always noisy. Hence, we cannot trust data! A model was
needed that could describe the data and noise together. Traditionally, statistical
models fit the requirements. Hence, in Generative ML, it is assumed that there is an
underlying model that is generating the data. The more we understand this model,
the more we know about the data. Statistical models are characterized by model
parameters. Hence, statistical ML focuses on estimating these parameters and is also
called Parametric ML. There are excellent textbooks on this subject [36,37].
The second revolution of generative ML came after the invention of the generative
adversarial network (GAN) [38], which is a semi-parametric generative ML algorithm.
The reason it is semi-parametric is that, even though it does not intend to build
a statistical model, it still uses parametric statistics in comparing the generative and
adversarial branches.

2. Discriminative ML: In discriminative ML the data is trusted! The data is used to build ML
models. The reason these algorithms are called discriminative is that in this the boundary
that discriminates two classes or a class-limits is directly learned using the data.
Some of the oldest ML algorithms, like kNN [36], are discriminative in nature. Most
ANN-based algorithms are discriminative in nature. One of the classic non-ANN
discriminative ML algorithm is a support vector machine [37].
Some of the most successful discriminative ML algorithms include convolutional
neural network (CNN) and recurrent neural network (RNN). The readers are referred
to one of the classic reviews in DNN to learn more about these algorithms [10].

In addition to the above ML algorithms, I must also mention the Reinforcement
Learning (RL) algorithms, which are one of the major contenders for AI systems that
can learn from their own experience. These algorithms have shown excellent results in
robotics [39] and also in some industrial control [40]. For industries, such as mineral
processing where continuity of the process is of paramount importance, RL algorithms may
not be very well suited. However, the trick is to find a sub-process in mineral processing
that can be used as a process-in-loop for offline training of an RL model [41]. Offline RL
algorithms hold a great deal of promise for industries, such as mineral processing.

2.1. A Thumb-Rule to Choose AI/ML Algorithms

New and exciting ML and AI algorithms are being proposed every month. To investi-
gate the application of ML and AI solutions for a particular problem in mineral processing,
one needs some algorithms to start with. From my experience, the following can be a safe
chain of experiments.

1. The classic kNN algorithm can always be taken as a starting point. It is easy to
implement and can be used as a standard to compare other algorithms against.

2. Support Vector Machines (SVMs) are very powerful. Unlike most ANN-based algo-
rithms, SVMs are analytically well-founded. In other words, they are not black-box
solutions. Many times, when one does not have a sufficient amount of representative
data for a problem, SVMs outperform DNNs. SVMs are also often faster than DNNs.
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In using SVMs, it is advisable to use as much domain knowledge as possible to extract
useful features from the data. Feature engineering is not a forte of SVM.

3. In exploring DNNs, it is advisable to start with a CNN with a small number of
convolutional units (CUs). This helps in analysing the filters learned by the CUs. This
builds some amount of explainability into the solution.

4. If the problem at hand is time-based (e.g., predicting the output of a flotation cell)
then recurrent networks, such as Long Short-term Memory (LSTM) networks, could
be useful.

5. CNNs are very effective in feature learning. Hence, often, the architecture may have
a CNN followed by an LSTM. A CNN followed by an SVM is also a potential solution.

6. If the amount of data is a major issue, then generative models can be used to augment
data [42,43]. However, this is an area of active research. The design of a proper data
augmentation system depends greatly on the domain knowledge.

2.2. Future Tends

In this subsection, I briefly discuss some of the potential innovations in the AI and ML
research that will have large implications for mineral processing.

• eAI: AI algorithms need to be explainable, ethical, and empathetic. Explainable AI
(xAI) is a major stream of development in the AI fraternity. One of the greatest
developments in this direction has been the recent work toward bridging the gap
between discriminative and generative AI. The development of generative AI models
(GAN [38] being one of the most popular and powerful versions of it) started using
neural networks not only to predict the discriminative boundaries of a given data-
point but also to generate the data itself. Thus far, this has been the forte of statistical
machine learning. This, for me, is the starting point of xAI. The readers can refer to
one of my informal articles [44] on interpretable AI for some further light discussion
around xAI.

• Perception in the Loop: The importance of human perception is receiving a great deal of
attention of late. Any real-life AI system will need to take this into account. I am not
talking about making AI systems perceive things, such as humans [45]. That is a great
goal for hard-AI scientists. I am talking about quantifying human perception and
using it in training neural network models. Such perception-centric AI [46] systems
will be crucial towards the adoption of AI in complex systems, such as industries and
smart cities.

• Intuition-Based AI: The lack of a sufficient amount of data and the lack of generalized
transferability are two challenges that I discussed above. Bio-inspired computational
approaches have always given us new ways to look at problems. One brain-inspired
approach that may enable AI algorithms to solve both the data and the transferability
challenges is “intuition”. Intuition-centered AI models [47] can use less amount of
“right kind” of data to build robust models. It can also give directions to have an archi-
tecture that can leverage fusing symbolic and non-symbolic AI [48] to have a modus
operandi to enable better transferability of models in the industrial ecosystem.

3. Existing Research, Development & Innovation (RDI) on the Use of ML and AI in
Mineral Processing

In this section, I discuss the recent trends in the use of ML and AI in mineral processing.
It can be mentioned, as a disclaimer, that I am not able to discuss every work in the open
literature in this section. However, it will be an endeavour to cover as many of the
interesting applications as possible.

Ore preparation and geometallurgy is an integrated preceding step to mineral pro-
cessing. In principle, an optimized geometallurgy process will optimize the mineral
processing step. Physically, mineral processing often takes place in the mining site. Hence,
ore-preparation and geometallurgy are integrated parts of mineral processing. Of late there
has been much development in the use of ML and AI algorithms in ore preparation and
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geometallurgy. The reference [49] is a good review of the application of ML algorithms in
ore preparation. The use of ML algorithms in ore-preparation has been an active field for
more than a decade [50]. For further discussion on the application of ML and data science
methods in geometallurgy can be found in [51,52].

3.1. ML and AI in Comminution and Sizing

Mineral distribution in ores is nonuniform. Hence, breaking them into smaller particles
increases their concentration in some of the particles while reducing them in others. This
process of comminution is often the first step in mineral processing. This is followed by the
sizing step where particles are separated based on their sizes.

A common use of ML and AI in these two steps is in smart and automated control of
the steps by monitoring of the size and mineral content in the particles [53–55].

This is a classic field where sensors and AI (SensAI) go closely together. The aim is
to optimize the performance of the comminution step. For this, the sensor, usually, needs
to sense either the size of the particles or the mineral signature of the particles both at the
input and output of this step. Sensors with ML algorithms can be used to make sure that
the size of rocks entering a mill and on the conveyor belt is not too big to cause failure [56].
ML-based monitoring of sizes [57–60] and quality (in terms of concentration of economic
mineral) [61] of particles are some of the existing works in this domain.

The speed of execution or the computational complexity of these algorithms is crucially
important as the decisions mostly need to be made real-time while the ores are moving on
a conveyor belt. If the features are selected carefully then simple ML algorithms can also
give very good results. For example, the researchers [57] designed two easy-to-compute
features (viz. range and variance operators), which could be computed from the optical
images of the ores. These, in turn, were used to give good classification performance in
various classification exercises, such as separating different rock types to predicting the
quality of the ore.

SensAI can also be used to monitor wear and tear in the comminution and sizing
equipment [62,63]. As an extrapolation, the complete cycle of blasting, crushing, grinding
and sizing can be optimized using ML tools [64,65]. This will be crucial shortly when the
comminution unit might be required to operate underground as a mobile unit.

3.2. ML and AI in Concentration and Dewatering

In the concentration step, the overall percentage of minerals is enhanced further.
This is usually done by using the physical and chemical properties of the minerals the
particles. Common methods in this step include froth flotation, gravity concentration,
and electromagnetic property-based separation. Like in comminution and sizing, the
methodology involves the use of sensors (sometimes existing and sometimes new) to
generate data about the process, which then is used by the ML algorithm to optimize the
process and diagnose the process (for existing or possible (future) faults).

Froth flotation, being the most used method, has also witnessed several types of
research in the application of ML algorithms. In froth flotation, the process parameters
are, conventionally, controlled by human experts by looking at the texture of the froth.
Automation of this step was difficult because of the poor performance of image-based ML
algorithms in varying lighting conditions. Convolutional neural networks (CNN) have
been shown to alleviate this pain point [66]. Of late, many other kinds of research have
been published using ML algorithms in flotation monitoring and in the prediction (of yield
quality) [67–69].

SensAI methods are also showing promising results in other areas of the concentration
stage [70–72]. Dewatering is used to reduce the water content in the outputs from the
concentration stage. ML-based algorithms are also showing potential in improving the
efficiency of this stage [73,74].
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3.3. ML and AI in Operations

Mineral processing is a complex process chain involving multiple systems in addition
to the ones mentioned above. Automation and optimization of the overall operation and
the sub-systems is a field where AI and ML algorithms play a major role. For example,
in [75] the authors discuss an AI approach to automate the operation of dump trucks.
References [7,76] provide nice reviews of the use of ML and AI algorithms in the automation
of various processes in the mining industry.

Like most industrial processes, the effective operation of a mineral processing plant
is a complicated optimization task. The work described in [77] is a good overview of
the integrated optimization needed to enhance the operations’ parameters. Each step in
a mineral-processing operation chain has multiple control parameters (operational indices)
and multiple outputs (production indices). One of the most important production indices
is the properties of the ore. For example, the size distribution of the ore at the end of each
grinding step can be measured to control the grinders. The use of sensors, well-designed
features, and ML/AI algorithms are methodologies increasingly used for this [78,79].

Clearly, the more often the properties of the ore in the process chain are measured,
the more optimized the process is. However, using sensors at the output of each stage
can sometimes be challenging. Hence, the better the process is modelled, the higher the
possibility to use soft-sensor-based measurement to estimate the ore properties at each stage.
The use of ML and AI algorithms have been promising in both modelling the stages [80–82]
in mineral processing as well as the design of soft-sensors [83,84].

3.4. ML and AI in Ethical and Green Mineral Processing

Regulations around zero-footprint mining are under constant development. Mineral
processes have various numbers of health, safety, and ecological implications. Mineral
processing operations will be obliged by existing or upcoming regulations and standards to
take care of the environmental and ecological footprints of the operations. Hence, these are
becoming integral parts of mineral processing. The readers can refer to reviews, like [85,86],
for a review of the application of ML and AI algorithms in the holistic mining domain with
a focus on ethical mineral processing.

Some of these issues are listed below.

• Tailing: Tailing is a major harmful effect of mineral processing that can severely affect
the safety of the local community, the local water resources, vegetation, and biodiver-
sity. They can also affect the rainwater flow and hence affect the courses of the nearby
rivers. A recent standard [87] by by the United Nations Environment Programme
(UNEP), the Principles for Responsible Investment (PRI) and the International Council
on Mining and Metals (ICMM) sets strict standards in terms of tailing management.
This has resulted in the acceleration of research in this domain [88].
The use of specialized sensors, remote sensing and co-innovated AI models (SensAI)
would be important parts of solutions to manage tailing [89,90].
In addition to mining industries, regulatory bodies will also be using SensAI solutions
to monitor the effects of tailing of mines [91,92]. In this endeavour, remote sensing
would play a major role [93,94].

• Wastewater Management: Most mineral processing operations are severely water-
intensive. This affects the local water resources in two ways. It stresses the limited
water resources. Wastewater from the plant can detrimentally affect the local reserves
in detrimental way. Measurement is the key. The use of Internet of Things (IoT) based
sensor-network as well as remote sensing would help in making sure that the both the
water usage of the plant as well as quality (and quantity) of wastewater disposed of
by the plant is strictly monitored.
It is encouraging to note that, of late, multiple earth-observing satellites have been launched
with specialized sensors, such as multi-band synthetic aperture radar (SAR) [95,96], soil-
moisture mapping (SMAP) sensors [97] and hyperspectral sensors [98]. For mineral
processing, hyperspectral sensors with AI hold tremendous possibilities [99].
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• Hazardous Gas and Dust Emissions: Gases emitted by mineral processing can be danger-
ous when the concentration goes beyond a certain limit. For the safety of the workers
and of the people living in the immediate vicinity, close monitoring of the levels of gas
and dust would be highly advisable. Recent pieces of work have shown the potential
of using SensAI for dust level monitoring [100–102]. Similarly, research in the domain
of the use of SensAI for hazardous gas detection is growing rapidly [103–105]. The
use of SensAI for gas and dust monitoring in a mineral processing plant is deemed to
bear good results.

4. The Futuristic Use-Cases

Predicting the future is always a risky business. However, in a domain, such as ML and
AI, where exciting algorithms are being invented almost every quarter and out-performing
the previous ones, we must try. I briefly discuss a few potential new uses of ML and AI in
mineral processing industries.

4.1. Chemical Discovery

The discovery of new compounds with interesting properties has been an active field
of research in health-science. There are two reasons for this. The time and effort taken
in testing each medical compound are huge. Secondly, the range of different properties
that are exhibited by organic compounds slightly different in structure from each other is
often numerous. Drug discovery or drug design using machine learning has been active
for more than two decades [106–108]!

As the ores become more complex, the chemical additives required in each stage of
mineral processing need to be more matched to the exact contents of the ore. This is a rich
potential field for innovation using AI-enabled chemical discovery. In addition to this, if
we expand the context of mineral processing to renewables as well, then that will require
the use of organic compounds for which AI has already been proved to be efficient in
designing the right catalysts.

4.2. Process Diagnosis, Recommendation and Modification

Most of the steps in mineral processing are difficult-to-model physiochemical pro-
cesses. For example, froth flotation, used often in many mineral processing plants, is a very
complicated process. Researchers have spent decades in trying to model it as well as
possible [109] so that the right process-parameter fine-tuning can be applied to increase
the efficiency. Due to the range of physical and chemical interactions in frothing, the
mathematical models can often be complicated and still heuristic.

Can AI be used to bolster the modelling efficiency of mineral processing steps? Simu-
lation and modelling based on machine learning has already proved effective in many do-
mains [110]. There are two major types of process-modelling endeavours using machine learning.

1. End to End Modelling: In this approach, the complete process is modelled as a black-
box. Depending on how well sampled the data-space is (depending on strategically
placed sensors and sensing-timing), deep learning networks can learn a process quite
well. Especially in industrial processes where the chances of abrupt changes are lower,
deep learning can be a powerful solution.

2. Latent Parameter Modelling: In this approach, the machine learning algorithm endeav-
ours to model not only the end-to-end characteristics of a process but also its latent
causes. The Bayesian mixture model has been particularly successful in modelling
latent factors (which may or may not have phenomenological interpretation) [111,112].
The second set of algorithms capable of modelling latent factors are the encoder–
decoder family of DL algorithms. Due to their ability to extract latent factors, they are
used more often in process-modelling [113,114].

To end this subsection, an interesting success story of deep learning (DL)-based ML
can be mentioned. The use-case is the domain of speech recognition. Speech recognition is
one of the oldest and classic domains of machine learning. Over the decades, this domain
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experienced a great deal of meticulous and methodical development. In terms of modelling,
conventional speech processing has been very close to physiology in its approach [115–117].
However, since 2012 (when Google demonstrated the performance of deep learning in large
vocabulary speech recognition (LVSR) [118]), most speech recognition systems have slowly
started using deep learning instead of the conventional statistical approaches. This does
not mean that the domain knowledge gathered over decades was useless. That knowledge
helped immensely in designing these DL models.

ML and AI models can, potentially, complement and supplement existing process
models in mineral processing. As these models are quicker to develop and easier to refine,
they can prove valuable in the ever-changing landscape of mineral processing. Along with
the interesting algorithms mentioned above, researchers can also work on the designing of
a novel sensor suite, and together the SensAI system can be used to create digital twins of
the process plants [119,120].

Lastly, such models can be used not only to control a process. They can be used to
diagnose faults, suggest modifications, and also to recommend newer (potentially more
efficient) designs.

5. Suggested Modus Operandi to Investigate AI for a Specific Mineral Processing Challenge

In the current section, I discuss some of the steps that are highly recommended when
working on a new project around the use of AI in mineral processing. Most of these
steps hold true for other industries (in addition to mineral processing industries) as well.
Secondly, every new application is different in its own right. Technology is maturing at
a rapid pace. The time constant for the knowledge doubling curve [121] is becoming shorter.

Hence, the reader is recommended to fine-tune these recommendations if needed.
Lastly, AI is not a panacea. It can alleviate many challenges, but not all. The more well
defined our challenge is and the more domain knowledge brought into the project, the
better and more reliable the performance of the solution will be. Figure 2 shows the steps
in a flow-chart representation.

Figure 2. The suggested process to implement AI-based solutions for a mineral processing-related
challenge. The modus operandi follows an agile approach and a spiral design flow. This is why there
are multiple loops in the flow.

1. Immersion in the Problem Space (data): Design thinking [122] methodologies strongly
suggest one to spend as much time as one can in the problem space. This is of
particular importance in industrial AI innovation projects. The following are some of
the important steps one can take in this phase.
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Figures of Merit: The famous theorem of “no free lunch” [123,124] roughly tells us
that there is no universal algorithm that can solve all the problems. An algorithm can
be good at a certain task but will not perform as well in other problems. The corollary
of this is that, to find an algorithm that performs very well, the problem needs to be
defined very well.
Defining the problem, invariably, means finding the best set of figures of merits.
A classic example is target detection algorithm design in radar systems [125]. For
a radar systems, the probability of a false alarm is more important than the probability
of detection.
Given an AI-challenge in mineral processing, we need, first of all, to list how the
decision of the proposed AI system will affect the operations.
In ML, it is relatively easy to take care of a set of figures of merit each of which has
different importance. One of the ways to achieve this is by using a weighted sum of
loss function [126–129].
The Data Space: Exploratory data analysis [130,131] is always recommended as
a step to spend some time in. Irrespective of the problem at hand, some data can
always be obtained from the process plant. Analysis of the statistics of the data
and the clustering of the data from different sources are some of the recommended
steps. First of all, most ML algorithms work the best with Gaussian data. Hence,
it is always useful to know if the data distribution is going to deviate substantially
from a normal distribution [132]. Secondly, even using simple principal component
analysis (PCA) [133] to visualize the data in three dimensions can lead to interesting
data models [134].
At this stage, it is also advisable to endeavour to find out as much as possible about
pertinent statistical bounds [135], viz. Cramér–Rao bound (CRB) [136], Fisher Infor-
mation [137] etc.
The Physical Space: While investigating the feasibility of AI for any industrial appli-
cation it is highly recommended to visit the physical space. The more we know about
the actual physical space and operation, the better equipped we will be to take care
of interesting bugs that may arise later. An infamous case study is the mysterious
signal detected by radio astronomers in Australia, which was later identified as radio
frequency interference coming from an old microwave oven [138]!
The end of this phase should also give a list of detailed specifications that have to be
met by the AI-solution.

2. AI or SensAI?: After having a deep dive into the problem space, one needs to decide
on the next important choice. AI systems can be implemented either using existing
sensory data or by using new sensors. The first case where we already have the
sensors in place will involve innovations in the algorithm space only and can be
called AI-only development. In the second case where the most informative data is
not available, we can go for the installation of new sensors. In this case, the sensors
and AI algorithms are co-innovated and co-developed. For example, hyperspectral
imaging [139] and high-energy ultrasound sensors [140] have shown good potential
in ore quality analysis. Combined with ML, hyperspectral imaging can be used in
many stages of mineral processing to customize the process parameters depending
on the ore quality [141].
However, in most heavy industries, any change to the existing setup is extremely
costly (especially as it can lead to down time). Hence, the engineers are highly
encouraged to thoroughly investigate what can be achieved by using the existing
sensory-data. The use of AI can also, in some cases, aid us in generating secondary
data that correlates well to a non-existing sensor using data from existing sensors.
This is sometimes called soft-sensors [142].
At other times, it might be possible to design a SensAI system that uses data from
low-fidelity sensors to give direct-decisions with high-fidelity. This paradigm can be
called application-specific instrumentation (ASIN) [143,144].
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3. Development, Debug and Deployment: This last step is not common to any engineering
development. Depending on the route chosen in the previous step the development
would either be algorithm development or a co-development of a SensAI system.
If the performance of the solution meets the specifications, then it can be taken to
commissioning. However, this rarely happens in the first iteration. In the debug
process, the insights gathered in the deep-dive phase can be used effectively. At
times, there might be statistical limits preventing us from achieving the specifications.
In that case, we would need to change the sensors or the setup or need to adjust
the specifications.

6. Conclusions

Mineral processing is experiencing exciting research initiatives to answer the ever-
increasing expectations from users and policymakers and the ever-decreasing quality
of ores. In addition, we are also experiencing exciting times when newer and stricter
regulations and policies are being enacted to encourage and enforce ethical mining and
reduced material footprint. At the same time, the new wave of circular economy is pushing
the boundaries of the conventional definition of ores and mineral processing.

Machine learning and AI-based solutions will be an integral part of innovations to
progress the domain of mineral processing in the milieu described above. This review paper
strives to present a modern review of the applications of ML and AI in the ever-changing
landscape of mineral processing.

The landscape of ML and AI is overwhelming due to the accelerating growth in the
amount of research happening recently. Section 2 of this paper strives to alleviate this by
giving a holistic review of ML and AI algorithms without using heavy mathematics. This
review should be a good starting point for any engineer planning to start working in an
applied ML project. The review leaves the reader with a decent number of good references
in case they want to dive deeper.

The domain of mineral processing is broad. There are a number of good investiga-
tions happening trying to apply ML and AI in all the sub-domains of mineral processing.
Consolidating them all was a challenge. Section 3 endeavours to do this by grouping some
of the major recent developments involving the application of ML and AI in the different
sub-processes of mineral processing. ML and AI are areas of intense research initiatives and
an accelerating number of solutions coming out every quarter. Hence, instead of discussing
particular algorithms, the focus was on the discussion of the trends and methodologies.

As mentioned above, the milieu of mineral processing is changing. This is creating
a range of futuristic challenges. Section 4 discusses the potential use of ML and AI in
solving some of these futuristic challenges in mineral processing.

Lastly, in Section 5, an agile and spiral modus operandi is presented consolidating the
application of ML and AI in any challenges in the mineral processing industry. To keep
it pertinent to both industry and academic researchers, the process covers the full flow
of investigation starting from the initial pre-study to data investigation to suggestions to
smoothen the deployment of an ML or AI solution.
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Nomenclature
AI Artificial Intelligence
ML Machine Learning
CE Circular Economy
SensAI Sensing and AI
DL Deep Learning
ANN Artificial Neural Network
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CNN Convolutional Neural Network
GAN Generative Adversarial Network
RNN Recursive Neural Network
SVM Support Vector Machine
CU Convolutional Unit
LSTM Long Short-Term Memory
RDI Research, Development and Innovation
UNEP United Nations Environment Programme
ICMM International Council on Mining and Metals
PRI Principles for Responsible Investment
SAR Synthetic Aperture Radar
SMAP Soil-Moisture Mapping
LVSR Large Vocabulary Speech Recognition
PCA Principal Component Analysis
CRB Cramèr–Rao bound
ASIN Application-Specific Instrumentation
IoT Internet of Things
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