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Abstract: The Wulonggou Au district in the East Kunlun Orogen is one of the most important Au
producing regions in China. The Yanjingou Au deposit occurs within a shear zone in the northeastern
Wulonggou Au district. Based on detailed field investigations, geochemical data for the primary
halo, and in situ thermoelectric data for pyrite, the following key results were obtained: (1) the
Yanjingou Au deposit has the fractured-altered-rock type gold mineralization that is arsenopyrite-
rich; (2) elemental correlations and cluster analysis show that Au and As are the most diagnostic
elements; (3) geochemical data for the primary halo indicate the deposit is a shallow supra-ore halo
ore body; and (4) in situ pyrite thermoelectric data show that the proportion of P-type pyrite is >80%
and the detachment rate is 50%, which can be inferred that the location of the ore body is shallow.
Based on our data, we present a mineralization prediction model for the ore body. The Yanjingou Au
deposit has a good mineralization and high prospecting potential, with at least half of the ore body
being concealed at depth, which has important scientific guiding significance for the breakthrough of
prospecting and exploration.

Keywords: Yanjingou Au deposit; primary halo geochemistry; in situ pyrite thermoelectric data;
prospecting potential; East Kunlun Orogen

1. Introduction

Orogenic Au deposits account for one third of global Au resources and are the most
important Au source [1]. Such deposits are spatially and temporally related to igneous
and/or greenschist- to amphibolite-facies metamorphic rocks [2] and are thought to be
formed from fluids that exsolve from coeval intrusive magmas or by metamorphic de-
volatilization of volcanic–sedimentary rocks [3–5]. Studies of orogenic Au deposits can
help guide prospecting and exploration for such Au resources.

The East Kunlun Orogen (EKO) is an important poly-metallogenic belt. Two Au
districts are located in this orogenic belt (Figure 1), which are the Gouli Au district (>110 t
Au; [6]) and Wulonggou Au district (>70 t Au; [7]). The Au deposits in these districts are
similar to orogenic Au deposits and consist of fracture-hosted pervasive alteration-type
and quartz–sulfide vein-type mineralization [6,8,9]. The focus of this study is the Yanjingou
Au deposit, located near the northern margin of the Wulonggou Au district. The Yanjingou
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Au deposit contains a medium-large amount of proven and inferred resources and records
favorable mineralization conditions [10].
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Figure 1. (a) Tectonic map of the study area, (b) Geological map of the East Kunlun Orogen, and (c)
Geological map of the Wulonggou Au district (modified after [9]).

Previous studies have been conducted on the general geology of the Yanjingou Au
deposit. The Yanjingou gold deposit is generally considered to have been formed in middle
Triassic, which has a zircon fission-track (FT) age of ca. 235–216 Ma [11] and a Rb–Sr
age of 237 Ma for quartz-hosted fluid inclusions [12], and pyrite and arsenopyrite were
the main Au-bearing minerals in the deposit [10]. Some studies have proposed that the
mineralization history of the deposit is complex and was characterized by multi-stage
hydrothermal activity and superimposed mineralization [13,14].

The Yanjingou Au deposit is the northernmost deposit in the Wulonggou Au district.
After many years of mining, the Au reserves in this district have been declining, and
there is an urgent need to explore for peripheral and deep deposits in this district. In this
study, we conducted detailed field, mineralogical, and petrological investigations, along
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with in situ pyrite thermoelectric and primary halo geochemical analysis of the Yanjingou
Au deposit. We use these data to constrain mineralization mechanisms and establish a
prospecting prediction model for the deposit to guide subsequent exploration.

2. Regional Geology

The EKO is located in the western Central China Orogenic Belt in China (Figure 1a)
and is bounded by the Bayan Har Terrane to the south, Qaidam Basin to the north, the
Qinling Orogen to the east, and Altyn Tagh Fault to the west [9,15]. The EKO can be divided
into three tectonic units from south to north (Figure 1b): Southern East Kunlun Belt (SEKB),
Central East Kunlun Belt (CEKB), and Northern Qimantagh Belt (NQB). Three ophiolitic
mélange zones separate these belts, which are the Muztagh–Buqingshan–Anemaqen ophi-
olitic mélange zone (MBAM) in the south, Aqikekulehu–Kunzhong ophiolitic mélange
zone (AKM) in the center, and Qimantagh–Xiangride ophiolitic mélange zone (QXM) in
the north. The QXM and NQB formed in the Qimantagh back-arc basin during the early
Palaeozoic northward subduction of Proto-Tethyan oceanic lithosphere. The CEKB formed
in a late Palaeozoic to Triassic active continental margin arc and early Palaeozoic island arc.
The SEKB, MBAM, and AKM represent a long-lived and extensive accretionary subduction
complex [16,17]. These tectonic units and ophiolitic mélange zones have been correlated to
the evolution of the Proterozoic–early Palaeozoic Proto-Tethys Ocean (537–436 Ma) and
late Palaeozoic–Mesozoic Palaeo-Tethys Ocean (345–243 Ma), based mainly on the ages of
the ophiolites [16–18].

The Proterozoic basement is dominated by granitic gneisses and amphibolites, with
minor migmatites and granitoids, which are overlain by Palaeozoic volcanic rocks and
metamorphosed sedimentary rocks [19,20]. The igneous age of the Proterozoic granitic
gneiss is 920 Ma, and it has a metamorphic age of 500–400 Ma [21]. The SEKB contains
Mesozoic–Cainozoic volcanic rocks and sedimentary. Early Palaeozoic–Mesozoic gran-
itoids (466–390 and 257–200 Ma) are widespread in the EKO [22–24]. These granitoids
mainly include granodiorites, syenogranites, and monzogranites [25,26] that were formed
during the subduction of the Proto- and Palaeo-Tethyan oceanic plates [17,25]. Minor
Cambrian-Ordovician mafic-ultramafic rocks (537–467 Ma) occur along the CEKB [27], and
the SEKB that have the ages of Carboniferous and Cambrian-Ordovician are 345–332 Ma
and 555–516 Ma, respectively [18,28].

The Wulonggou Au district is located in the central CEKB (Figure 1c). The older strata
in this region consist mainly of three units [20,21]. The Palaeoproterozoic rocks are mainly
felsic gneiss, with minor marble, plagioclase schist, quartz schist, and felsic schist. The
Mesoproterozoic rocks are mainly marble, amphibolitic gneiss, and quartz schist. The
Neoproterozoic rocks are mainly metaconglomerate and phyllite, which are interbedded
with marble. The Ordovician rocks are mainly metatuff and volcanic breccia. There are
also extensive granitic rocks of Cambrian, Silurian, Permian, and Triassic age [23,29]. The
most prominent structural feature of the Wulonggou Au district is three large ductile shear
zones (Figure 1c). All the Au deposits are distributed along shear zones. The three shear
zones are NW–SE-trending and associated with small N–S-, NNE–SSW-, and E–W-trending
secondary faults. There are more than 50 known deposits in the ore district, which are
mainly Au deposits, along with some Cu, Pb, Zn, Sb, and Mo mineralization. The ages
of magmatic activity and mineralization in the Middle Triassic are basically the same, so
gold mineralization is closely related to the magmatism of the same period [7,10–14,23,29].
The Yanjingou Au deposit is one of the most important deposits in the northern part of the
Wulonggou Au district [11].

3. Ore Deposit Geology

The Yanjingou Au deposit have the fractured-altered-rock type gold mineralization
(Figure 2). The older strata in the deposit include Palaeoproterozoic felsic gneiss, plagio-
clase schist, and biotite–plagioclase gneiss, which are mainly distributed in the central
to northeast part of the deposit [10,11]. The intrusive rocks in the Yanjingou deposit are
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mainly Triassic diorites and granites [10], including diorite and biotite diorite in the south,
hornblende granodiorite with mafic microgranular enclaves in the center and north, and
biotite granodiorite in the center of the deposit. Marble occurs locally in the central part of
the mine.
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The Yanjingou Au deposit is controlled by the northernmost ductile shear zone of the
Wulonggou Au district and cut by many secondary faults. The faults are mostly NW–SE-
trending and dip towards the northeast. A small number of nearly E–W- and N–S-trending
faults are also developed. These faults controlled the formation and distribution of the
Yanjingou Au deposit.

The Yanjingou Au deposit contains six mineralized zones (I, II, III, IV, V, and VI).
The Au ore bodies are veins, lenses, and long irregular bands distributed in NW–SE-
trending fractured alteration zones, which are often branching, anastomosing, discontin-
uous, and variable in thickness. Among them, zones III and IV (Figure 2; Figure 3) are
the main mineralized alteration zones, which have the large thickness (length > 3 km and
width = 0.5–1.0 km) and are high-grade and strongly altered. The ore body is NW–SE
trending and dips 35–75◦ NE. The occurrence of the ore bodies is almost the same as the
faults. The ore bodies occur in the faults. Most of the faults are ore-conducting struc-
tures and ore-hosting structures, and some ore bodies are cut through by later faults. The
mineralization was obviously controlled by the fracture zone.
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Figure 3. Horizontal projection of the III and IV mineralized belts in the Yanjingou ore body (modified after [10]).

Hand specimens of the ore generally have a massive texture and contain disseminated
sulfides, although there are also abundant quartz sulfide veins. The sulfides exhibit solid
solution exsolution and replacement textures. Pyrite and arsenopyrite are the main ore
minerals in the Yanjingou Au deposit and show a close spatial relationship. The pyrite
and arsenopyrite are often fractured and have a shape-preferred oriented (Figure 4e).
Pyrite is an important Au-bearing mineral. A large amount of arsenopyrite surrounds
pyrite and some Ag-bearing minerals, such as polybasite, reflecting a low mineralization
temperature (Figure 4f,k). Some arsenopyrite has intergrown with pyrite, indicating their
coeval formation (Figure 4g,l). Galena and sphalerite are rare in the Yanjinggou gold
deposit, but they are found in other gold deposits in the Wulonggou gold district, such
as Hongqigou gold deposit and Huanglonggou gold deposit. Therefore, Yanjinggou gold
deposit is different from other deposits in the region to some extent. The accessory minerals
include monazite and rutile.

The wall rocks of the deposit are highly altered, and the main alteration types are: sili-
cification, chloritization, sericitization, carbonatization, and with pyrite mineralization and
arsenopyrite mineralization. The silicification, sericitization with pyrite mineralization, and
arsenopyrite mineralization were closely related to Au mineralization, and the ore grade is
relatively high in the areas with strong silicification and arsenopyrite mineralization.
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electron images. Py = pyrite; Apy = arsenopyrite; Pbe = polybasite.

4. Sample Descriptions and Analytical Methods

We carried out detailed field geological surveys and laboratory analyses of the Yanjin-
gou Au deposit. The sampling locations are shown in Figure 5 and representative samples
were collected from different elevations. We used optical and scanning electron microscopy
to examine the samples. The scanning electron microscope (TM4000plus) is equipped with
Bruker Quantax 75 energy dispersive spectrometers and was used to identify minerals at
the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS), Beijing,
China. Back-scattered electron images were acquired with an accelerating voltage of 20 kV.
After detailed observations of the samples, elemental and in situ pyrite thermoelectric
analyses were carried out.
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4.1. Petrography

Samples of the ore body at 3384 m are shown in Figure 6a–c. This part of the ore
body is shallow, and the extent of ore body fracturing is high. The ore body comprises
soft carbonaceous material and contains quartz–pyrite veins. The main ore minerals are
pyrite and arsenopyrite. The surrounding rock is dominated by amphibole gneiss with a
pronounced lineation. Pyrite at this elevation is low in abundance and is deformed with
an elongate morphology. The pyrite has a hypautomorphic to xenomorphic texture, with
single mineral grains being 20–200 µm in size. Arsenopyrite is more abundant than pyrite,
and the former is more broken than the pyrite, with grain sizes of 10–210 µm.

The ore body at 3340 m elevation is characterized by silicification, chloritization, and
quartz veins. The surrounding rocks are gneiss and diorite (Figure 6d–f). The main ore
minerals are arsenopyrite (10–200 µm) and pyrite (100–500 µm), which are slightly larger
at this elevation than at 3384 m. The deformation is weaker than at 3384 m elevation. The
ore body contains carbonaceous material.

Samples of the ore body at 3284 m are shown in Figure 6g–i. The ore body rocks vary
from soft to hard and are relatively fractured. Sulfides are evenly distributed in carbona-
ceous and quartz veinlets, and pyrite veinlets are common. The arsenopyrite content at
this elevation is lower than that at higher elevations. The sulfides have hypautomorphic
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to automorphic textures and are 10–150 µm in size. The pyrite veinlets are sub-parallel to
each other and contain pyrite of variable grain size.

The ore body at 3090 m elevation is deformed and fractured (Figure 6j–l), exhibits silici-
fication, and contains grey quartz veins. The main ore minerals are pyrite and arsenopyrite.
Accessory minerals include some rutile. The pyrite grains are large (100–500 µm) and
hypautomorphic to automorphic in texture. The arsenopyrite content is abundant, and it is
hypautomorphic to automorphic in texture, with a grain size of 20–200 µm.
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4.2. Primary Halo Geochemistry

The samples for primary halo geochemistry were collected from the ore bodies at
different elevations. Two to three ore body samples are collected at different elevations, and
the average value is calculated after analysis to obtain the primary halo characteristics of
the elevations. Ore samples from various elevations were geochemically analyzed at ALS
Chemex, Guangzhou, China. The Au content was determined by fire assay inductively
coupled plasma emission spectrometry (AU-ICP21) and fire assay gravimetry (AU-GRA21),
with detection ranges of 0.001–10 and 0.05–10,000 g/t, respectively. The Hg content
was determined by inductively coupled plasma mass spectrometry (HG-MS42) with a
detection range of 0.005–100 µg/g. The contents of ultra-trace elements were determined
by inductively coupled plasma mass spectrometry (ME-MS61) after tetracic acid digestion.

Correlation and cluster analyses were carried out on the measured elemental data,
using the software of IBM SPSS Statistics 22 [30–32]. Instead of clustering for each element,
we perform a cluster analysis on the degree of anomaly of each element, which means
that the measured element value is divided by the background value of the mining area
before cluster analysis. Data processing was carried out following previously published
methods [30–32]. The basic equation is as follows:

clr(x) = { ln
x1

g(x)
, ln

x2

g(x)
, . . . , ln

xD

g(x)
}. g(x) = [x1·x2. . . xD]

1/D (1)

where clr is the centered–logratio transformation and g(x) is the geometric mean.
Element zoning was quantified based on Li et al. (2016), Li et al. (2019), Li et al.

(2020b), Beus and Gregorian (1977), and Harraz and Hamdy (2015) [33–36] as follows:
(1) The survey line metal concentration Ml was defined, and each element anomaly in

the ore body was calculated as follows:

Ml = ∑∆x [Cx − C0] (2)

where ∆x is the point spacing on the survey line, C0 is the mean background concentration,
and Cx is the element concentration at a point in the anomaly.

(2) Ml was standardized for each element anomaly as follows:

Bi = 10aMi (3)

where a and i are positive integers.
(3) The zoning index is defined as follows:

Di =
Bi

∑m
i=1 Bi

(4)

(4) The spatial variation of each zoning index was defined to obtain the maximum
zoning index value for the survey line as follows:

G =
n

∑
i=1

Dmax

Di
(5)

where G is the variation index, D is the zoning index and Dmax is its upper limit, and N
does not contain the level number referred to by Dmax.

(5) The position of the sequence was first preliminarily identified according to the
variation index. For example, when G is large, the limiting variation index of most elements
in the sequence would be in the upper part of the level, which indicates the upward
migration of elements. In contrast, when G is small, the limiting variation index of most
elements in the sequence is in the lower part of the level, which indicates downward
migration of elements.
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(6) The ladder difference of the variation index was calculated used to compare and test
the position of the zoning. This was conducted to ensure the reliability of the determination
of the initial variation position. The specific test indexes are as follows: if the initial zoning
position is >0, it is estimated to be above the level; in contrast, a sequence of elements is
judged to be below the level.

4.3. In Situ Pyrite Thermoelectric Analyses

The thermoelectric properties of pyrite were obtained using the thinsection in situ
method [37]. The relative error of thermoelectric coefficient obtained by thinsection in situ
test is less than 5%, and the data quality is obviously better than that of traditional single
mineral particle test method. In addition, the wafer method can improve the accuracy,
reduce the cost, and improve the efficiency of the target mineral testing [37]. Pyrite of each
elevation sample was tested. The specific test quantity is shown in the Supplementary
Table S1. The thermoelectric property of pyrite is the electrical potential difference between
the two ends of the mineral when there is a temperature difference between the two ends
of a single pyrite grain. The internal performance of the mineral is the thermoelectric
coefficient (α) and the external performance is the thermoelectric electromotive force (E).
Various factors affect the thermoelectric properties of pyrite, including temperature, depth,
and trace element content. Thermoelectricity includes three parameters: the thermoelectric
coefficient, thermoconductivity type, and the thermoelectromotive force. Thermoconduc-
tivity type can be classified into hole type (P-type) and electronic type (N-type) [38]. The
thermoelectric coefficient α = ∆E/∆t (where α is the thermoelectric coefficient (mV/◦C),
∆E is the thermoelectromotive force (mV), and ∆t is the temperature difference (◦C) [39,40].

The sampling was conducted from top to bottom elevations, and fresh and representa-
tive samples were selected and cut into Cu sheets (Figure 7) with a thickness of 0.1–0.7 mm
for in situ thermoelectric analysis. Pyrite grains were exposed at both ends of the sheets. A
parallel-moving pen was used for the in situ contact test and an image was used to observe
the pyrite relationships. The thermoelectric data were collected by computer software. The
analyses were undertaken with a BHTE-08 instrument at the Mineral Typing Laboratory of
the China University of Geosciences, Beijing, China. The hot and cold end-temperatures
were set to 125 ◦C and 29 ◦C, respectively, and the activation temperature was 95 ◦C.

The thermoelectric coefficient of pyrite was first measured, and then the degree of
denudation was calculated as follows. Firstly, the thermoelectric parameter (XNP) was
calculated as follows:

XNP = (2fI + fII) − (fIV + 2fV), (6)

where f is the percentage of the thermoelectric coefficient of the corresponding pyrite
sample, I is the thermoelectric coefficient at >400 µV/°C, II is the thermoelectric coefficient
from 400 to 200 µV/°C, IV is the thermoelectric coefficient from 0 to −200 µV/°C, and V
is the thermoelectric coefficient at <−200 µV/°C. The denudation rate (γ) of the ore body
was calculated as follows [41–43]:

γ = 50 − XNP/4. (7)



Minerals 2021, 11, 1117 11 of 25
Minerals 2021, 11, x  11 of 25 
 

 

 

Figure 7. Copper coatings used for the pyrite thermoelectric tests. a and b: euhedral pyrite; c and d: subhedral to anhedral 
pyrite. Py = pyrite. 

5. Results 
5.1. Primary Halo Geochemistry 
5.1.1. Elemental Correlation Analysis 

Based on the previous experience and the theory of primary halo research [33,34,44], 
this paper analyses the input correlation of 21 kinds of elements related to gold deposits 
and uses the correlation coefficient to understand the affinity of each element, and then 
reflects the correlation of variable elements. The elements for correlation analysis are Au, 
Ag, Cu, Pb, Zn, Cd, Sb, W, Sn, As, Hg, Ba, Sc, Bi, Mo, Mn, Co, V, Ni, Ti, and Cr. The 
correlation coefficient matrix of trace elements obtained by analysis is listed in Table 1. 
The elements that are positively correlated with Au are As > Cu > Co > Ti > Cd > Zn > Ag 
> Ba > Hg > Ni > Sb > Mo > Bi > W > Pb. The elements negatively correlated with Au are 
Sc < Mn < Cr < Sn.

Figure 7. Copper coatings used for the pyrite thermoelectric tests. (a,b): euhedral pyrite; (c,d): subhedral to anhedral pyrite.
Py = pyrite.

5. Results
5.1. Primary Halo Geochemistry
5.1.1. Elemental Correlation Analysis

Based on the previous experience and the theory of primary halo research [33,34,44],
this paper analyses the input correlation of 21 kinds of elements related to gold deposits
and uses the correlation coefficient to understand the affinity of each element, and then
reflects the correlation of variable elements. The elements for correlation analysis are Au,
Ag, Cu, Pb, Zn, Cd, Sb, W, Sn, As, Hg, Ba, Sc, Bi, Mo, Mn, Co, V, Ni, Ti, and Cr. The
correlation coefficient matrix of trace elements obtained by analysis is listed in Table 1. The
elements that are positively correlated with Au are As > Cu > Co > Ti > Cd > Zn > Ag > Ba
> Hg > Ni > Sb > Mo > Bi > W > Pb. The elements negatively correlated with Au are Sc <
Mn < Cr < Sn.
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Table 1. Correlation coefficient matrix for trace elements.

Element Au Ag Cu Pb Zn Cd Sb W Sn As Hg Ba Sc Bi Mo Mn Co V Ni Ti Cr
Au 1 0.333 0.619 0.024 0.405 0.419 0.167 0.048 −0.366 0.685 0.245 0.31 −0.048 0.049 0.095 −0.048 0.524 0.524 0.214 0.476 −0.143
Ag 1 0.833 0.690 0.667 0.719 0.738 −0.167 −0.122 0.507 0.600 0.405 −0.310 0.683 0.643 −0.333 0.381 0.571 0.810 0.048 0.595
Cu 1 0.429 0.857 0.874 0.381 −0.119 −0.268 0.482 0.709 0.452 −0.095 0.488 0.429 −0.095 0.500 0.667 0.667 0.167 0.333
Pb 1 0.476 0.539 0.595 −0.048 0.317 0.507 0.300 0.048 −0.071 0.854 0.310 −0.762 0.143 0.262 0.548 0.167 0.119
Zn 1 0.994 0.286 0 −0.098 0.482 0.846 0.405 0.286 0.683 0.524 0.480 0.619 0.690 0.571 0.286 0.238
Cd 1 0.335 0.048 −0.037 0.542 0.851 0.443 0.275 0.724 0.539 −0.036 0.647 0.731 0.635 0.335 0.252
Sb 1 −0.333 −0.244 0.52 0.136 0.381 −0.286 0.512 0.619 −0.262 0.310 0.405 0.381 0.024 0.429
W 1 0.805 0.368 0.327 0.333 0.619 0.146 0.048 −0.119 0.524 0.429 0.357 0.786 −0.095
Sn 1 0.156 0.140 0.073 0.488 0.325 −0.098 −0.488 0.146 0.122 0.317 0.512 −0.146
As 1 0.407 0.457 0.241 0.585 0.444 −0.355 0.774 0.736 0.495 0.786 −0.013
Hg 1 0.382 0.273 0.671 0.709 0.164 0.655 0.682 0.791 0.327 0.546
Ba 1 0.452 0.098 0.310 0.143 0.786 0.881 0.357 0.548 0.119
Sc 1 0.122 −0.048 0.214 0.595 0.476 −0.595 −0.385 −0.675
Bi 1 0.659 −0.415 0.415 0.439 0.708 0.293 0.366

Mo 1 0.214 0.548 0.524 0.667 0.119 0.810
Mn 1 0.167 0.048 −0.310 −0.19 0.214
Co 1 0.952 0.476 0.810 0.119
V 1 0.595 0.714 0.190
Ni 1 0.286 0.667
Ti 1 −0.310
Cr 1
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5.1.2. Cluster Analysis of the Element Anomalies

In order to further understand the element combination characteristics of the Yanjin-
gou gold deposit, we conducted cluster analysis on the data, which can effectively reflect
the characteristics of elements, including which elements are common and which occur at
anomalously high concentration. The principle is to divide the multivariate data set into
some meaningful multivariate isomorphic groups [30]. Because we do not perform cluster
analysis on each element, but analyze its abnormality, our results show the classification
characteristics of different element abnormalities. As shown in Figure 8, each element
is obviously divided into three groups: the first type of anomalous clustering is Au, the
second type comprises As, and the third type comprises other elements (Ba, Ti, Cu, Mo,
Hg, Zn, Co, Bi, Sb, W, Ni, Pb, Cd, Ag). It can be seen that Au and As are two kinds of
obvious anomalies, which are the key elements of the Yanjingou gold deposit. They have
great particularity in the mineralization process and element migration and distribution.
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5.1.3. Element Zoning

The zoning index and concentration center methods [35,45] were used to determine
the zoning sequence of some elements that are closely related to Au. The zoning from 3384
to 3090 m elevations in the ore body is now described.

The zoning index method uses the data in Table 2 to calculate the amount of line metal
of each section element and normalize it to the same order of magnitude to obtain the
zoning index. The elemental concentrations of each elevation and background are listed in
Table 3. The elevation of the maximum value of the zoning index for each element is the
position of the element in the zoning sequence summary. When the maximum value of
the zoning index of more than two elements is at the middle position of an elevation, the
variability index is used to determine their relative position in a straight step. The zoning
sequence is Mo–Au–Ni–W–Sb–Ag–As–Hg from high to low relative to the wall-rock, and
Mo–Au–Sb–Ag–Ni–As–Hg–W relative to the Wulonggou Au district.
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Table 2. Axial zoning results for the Yanjingou ore body.

Element As Hg Sb Ag Au W Mo Ni

Zoning index
method/
wall-rock

3384 m 0.3318 0.0552 0.0351 0.0901 0.0737 0.1138 0.1888 0.1115
3340 m 0.3553 0.0009 0.0141 0.0770 0.0814 0.3051 0.0249 0.1413
3284 m 0.3047 0.0499 0.0783 0.1925 0.0134 0.0999 0.1355 0.1257
3090 m 0.3984 0.0801 0.0014 0.0448 0.0430 0.2983 0.0578 0.0763

Variation index
(gradient difference)

Au W Ni Sb Ag As Hg
−6.8691 −1.3960 −1.7096 −48.7073 0.3446 3.6291 88.3508

Zoning index
method/

Wulonggou
Au district

3384 m 0.3494 0.0694 0.0579 0.0932 0.0774 0.0547 0.2434 0.0547
3340 m 0.4013 0.0278 0.0667 0.0830 0.0913 0.1850 0.1377 0.0074
3284 m 0.3177 0.0610 0.0981 0.1989 0.0139 0.0523 0.1770 0.0810
3090 m 0.4186 0.0949 0.0217 0.0457 0.0451 0.2499 0.1044 0.0197

Variation index
(gradient difference)

Sb Ag Ni As Hg W
−1.349 0.1774 8.3743 8.4496 6.3448 10.7024

Concentration
center method/

3384 m 0.2594 0.2753 0.2507 0.2199 0.4319 0.1672 0.4411 0.2728
3340 m 0.1225 0.0021 0.0445 0.0829 0.2102 0.1976 0.0256 0.1523

wall-rock
3284 m 0.2961 0.3097 0.6946 0.5840 0.0975 0.1824 0.3936 0.3821
3090 m 0.3220 0.4129 0.0102 0.1132 0.2604 0.4529 0.1397 0.1928

Variation index
(gradient difference)

As Hg W Au Mo Sb Ag Ni
4.9572 202.8333 7.4847 8.1441 21.4915 −49.5108 4.5435 1.9274

Concentration
center method/

3384 m 0.2594 0.2712 0.2505 0.2196 0.4317 0.1201 0.3861 0.3043
3340 m 0.1230 0.0448 0.1192 0.0807 0.2103 0.1678 0.0902 0.0169

Wulonggou
Au district

3284 m 0.2959 0.2995 0.5330 0.5883 0.0977 0.1439 0.3522 0.5652
3090 m 0.3217 0.3844 0.0974 0.1114 0.2603 0.5682 0.1715 0.1135

Variation index
(gradient difference)

As Hg W Au Mo Sb Ag Ni
4.9427 11.2766 12.0635 8.1316 7.6277 1.1266 4.6866 30.3070

Table 3. Elemental concentrations of each elevation and background.

(ppm) 3384 m 3340 m 3284 m 3090 m Wulonggou Wall-Rock Whole Ore Body

As 8066.7 3835 9200 10000 18.4 49.5 7533.75
Hg 0.023 0.01 0.025 0.03 0.00736 0.01 0.021
Sb 134.2 64.3 284.5 52.7 0.89 49.235 144.1
Ba 270 240 280 240 553 965 261.25
Pb 6.5 6.4 360.8 9.7 33 17.8 95.45
Ag 2.2 0.86 5.82 1.16 0.071 0.04 2.65
Au 17.8 8.68 4.04 10.75 0.0039 0.016 11.21
Zn 202.7 45.5 277 177 91 84 178.75
Cu 23.3 6.8 27.3 7.7 33 8.45 18.24
W 3.2 3.7 3.45 7.9 1.94 0.45 3.98
Bi 0.053 0.03 0.21 0.15 0.35 0.06 0.099

Mo 6.5 2.17 5.98 3.35 0.86 1.905 4.88
Ni 31 19.1 41.8 23.1 18.4 4.05 29.74
Cd 0.5 0.11 1.31 0.61 0.13 0.05 0.61
Co 13.8 5.8 12.25 14.3 10.7 7.55 11.48
Ti 2370 1570 1940 3860 3502 3650 2250

Wulonggou Au district and wall-rock data are from [46]. The whole ore body data are the averages of the data from the four elevations.

The concentration center method is an empirical method that uses the zoning index
method and employs the basic program of its calculation method for reference to calculate
the concentration center of each element. The zoning sequence is Mo–Au–Sb–Ni–Ag–As–
W–Hg (from high to low elevations) relative to the wall-rock, and Au–Mo–Sb–Ag–Ni–As–
Hg–W relative to the Wulonggou Au district.
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5.2. Pyrite Thermoelectric Properties

The test results of in-situ pyrite thermoelectric property are shown in Supplementary
Table S1 and Figure 9. Ore deposit models have been widely developed from pyrite ther-
moelectric data analysis [39,47–49], and such data have been improved by the development
of the in situ method [39].
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The thermoelectric properties of pyrite at various elevations in the Yanjingou Au
deposit are as follows (Figure 9): −165.71 to 30.9 µV/◦C at 3384 m, with a P-type ratio of
81.6%; 34.16 to 58.59 µV/◦C at 3340 m, with a P-type ratio of 97.5%; 50.68 to 106.19 µV/◦C
at 3284 m, with a P-type ratio of 89.6%; 9.18 to 27.28 µV/◦C at 3090 m, with a P-type ratio of
98.9%; 8.52 to 32.68 µV/◦C at 2863 m, with a P-type ratio of 97.8%. The P-type ratio of the
Yanjingou Au deposit is high (>80%). The thermoelectric parameter calculated according
to the above formula is XNP = −0.08742, and the calculated denudation rate is γ = 50.02%.

6. Discussion
6.1. Implications for Prospecting from Primary Halo Geochemistry
6.1.1. Calculation and Analysis of Primary Halo Geochemistry

Element concentrations with a high correlation with Au are As > Cu > Co > Ti > Cd
> Zn > Ag > Ba > Hg > Ni > Sb > Mo > Bi > W > Pb, and cluster analysis showed that
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Au and As were the most evident elemental anomalies. In the analysis of mineralogy, we
found that pyrite and arsenopyrite are most closely related, and polybasite or tetrahedrite
often appear around it, which corresponds to the result that Au has a good correlation with
As and Cu. Two methods were used to determine the zoning sequence of some elements
that are closely related to Au and yielded similar results. Arsenic and Hg are relatively
constant, with little change from 3384 to 3090 m elevation and slightly lower enrichment,
while W element tends to exhibit lower enrichment. Antimony and Ag are enriched in the
middle and lower part, while Au exhibits little overall change, showing a slight upward
enrichment. The supra-ore halo element As, which has the highest correlation with Au,
is relatively lower, which shows that the 3384–3090 m part of the ore body is shallow to
moderate depth superimposed multiple ore bodies. The Au grade in the whole deposit
may decrease gradually downward (i.e., 30%–50% of the ore is located at depth).

6.1.2. Characteristic of Element Variation

Previous studies of primary halo zoning [50–52] of Au deposits in China have revealed
clear and similar axial zoning. In this study, we examined the primary halo ore zoning of
the analyzed elements. The outer and upper parts of the ore body are generally rich in
B–As–Hg–F–Sb–Ba, the central part of the ore body is generally rich in Pb–Ag–Au–Zn–Cu,
and the lower part of the ore body and sub-ore halo are generally rich in W–Bi–Mo–Mn–
Ni–Cd–Co–Ti [33,34,44,49–51]. Elements deposited during the medium–low-temperature
stage (50–200 ◦C) generally include Ba, Sr, Hg, Sb, As, and Au, and elements deposited
during the high–medium-temperature stage (200–350 ◦C) generally include Pb, W, Ag,
Cd, Zn, and Cu. The elements deposited during the vapor-rich high-temperature stage
(500–350 ◦C) generally include Au, As, Bi, Co, Re, Mo, In, Ca, Zn, W, Fe, and Sn [50–52].

The elemental contents of the ore body at elevations of 3384 to 3090 m vary vertically
(Figure 10; Tables 3 and 4). The contents of low-temperature elements that exhibit a high
degree of correlation with Au do not significantly change with depth but exhibit a slight
increase. The Au content decreases from 3384 to 3284 m and thereafter increases to 3090 m.
The As content decreases from 3384 to 3340 m and thereafter increases to 3090 m. The Hg
contents follows that of As, while the Sb content first decreases, then increases, and then
decreases with increasing depth.

Table 4. Element anomaly for the four elevations in the Yanjingou Au deposit.

Relative to Wall-Rock Relative to the Wulonggou Au District

3384 m 3340 m 3284 m 3090 m Whole Ore Body 3384 m 3340 m 3284 m 3090 m Whole Ore Body

As 162.96 77.47 185.86 202.02 152.20 438.41 208.42 500.00 543.48 409.44
Hg 2.30 1.00 2.50 3.00 2.10 3.13 1.36 3.40 4.08 2.85
Sb 2.73 1.31 5.78 1.07 2.93 150.79 72.25 319.66 59.21 161.91
Ba 0.28 0.25 0.29 0.25 0.27 0.49 0.43 0.51 0.43 0.47
Pb 0.37 0.36 20.27 0.54 5.36 0.20 0.19 10.93 0.29 2.89
Ag 55.00 21.50 145.50 29.00 66.25 30.99 12.11 81.97 16.34 37.32
Au 1112.50 542.50 252.50 671.88 700.63 4564.10 2225.64 1035.90 2756.41 2874.36
Zn 2.41 0.54 3.30 2.11 2.13 2.23 0.50 3.04 1.95 1.96
Cu 2.76 0.80 3.23 0.91 2.16 0.71 0.21 0.83 0.23 0.55
W 7.11 8.22 7.67 17.56 8.84 1.65 1.91 1.78 4.07 2.05
Bi 0.88 0.50 3.50 2.50 1.65 0.15 0.09 0.60 0.43 0.28

Mo 3.41 1.14 3.14 1.76 2.56 7.56 2.52 6.95 3.90 5.67
Ni 7.65 4.72 10.32 5.70 7.34 1.68 1.04 2.27 1.26 1.62
Cd 10.00 2.20 26.20 12.20 12.20 3.85 0.85 10.08 4.69 4.69
Co 1.83 0.77 1.62 1.89 1.52 1.29 0.54 1.14 1.34 1.07
Ti 0.65 0.43 0.53 1.06 0.62 0.68 0.45 0.55 1.10 0.64

The Abnormal degree are the elemental concentration of a section of the ore body divided by the wall-rock or Wulonggou Au district
concentrations.
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Figure 10. Changes in elemental concentrations in the supra-ore halo with height.

Differences in the contents of supra-ore halo elements (As, Hg, Sb, and Ba), near-ore
halo elements (Pb, Ag, Au, Zn, and Cu), and sub-ore halo elements (W, Bi, Mo, Ni, Cd, Co,
and Ti) were examined by comparison with the wall-rocks of the Yanjingou Au deposit
and average for the Wulonggou Au district (Table 4). This analysis showed high contents
of As, Hg, and other elements in the supra-ore halo; Ag, Au, and other elements in the
near-ore halo are high; and W, Mo, and other elements in the sub-ore halo.

The enrichments of elements in the supra-ore, near-ore, and sub-ore haloes are plotted
with respect to elevation, and exhibit similar trends relative to the wall-rocks (Figure 11a,c,e)
and the Wulonggou Au district (Figure 11b,d,e). Based on the observation of each elevation,
the element contents are low at 3340 m, while all the halo elements show anomalously
high contents at 3284 m. The Au grade in the near-ore halo gradually decreases from 3384
to 3284 m, and then an increase to 3090 m. This reflects the dilution and enrichment of
elements caused by the superposition of other ore bodies on the primary halo. Therefore,
we conclude that 3284 m is a location where small ore bodies are superimposed (Figure 12).

For the studied part of the ore body (elevations of 3384–3090 m), we assessed which
elements are most enriched. If the ore body were to be enriched in supra-ore halo elements,
this means that the ore body is shallow at present. If the ore body is enriched in sub-ore
halo elements, this means that the ore body is the deep tail of the deposit, and most of the
ore bodies may have been eroded and there is no deep ore potential. Figure 13a,b study
on element enrichment intensity relative to wall-rock and the Wulonggou gold district,
respectively, founding that supra-ore to near-ore element enrichment intensity is relatively
high, indicating the overall 3384–3090 m section of ore body is shallow to central orebodies,
relatively complete gold ore deposit is at least one third to half in the deeper parts, so the
Yanjingou gold deposit has great ore-forming potential.



Minerals 2021, 11, 1117 18 of 25

Minerals 2021, 11, x  18 of 25 
 

 

Co 1.83  0.77  1.62  1.89  1.52  1.29  0.54  1.14  1.34  1.07  
Ti 0.65  0.43  0.53  1.06  0.62  0.68  0.45  0.55  1.10  0.64  

The Abnormal degree are the elemental concentration of a section of the ore body divided by the wall-rock or Wulonggou 
Au district concentrations. 

The enrichments of elements in the supra-ore, near-ore, and sub-ore haloes are plot-
ted with respect to elevation, and exhibit similar trends relative to the wall-rocks (Figure 
11a,c,e) and the Wulonggou Au district (Figure 11b,d,e). Based on the observation of each 
elevation, the element contents are low at 3340 m, while all the halo elements show anom-
alously high contents at 3284 m. The Au grade in the near-ore halo gradually decreases 
from 3384 to 3284 m, and then an increase to 3090 m. This reflects the dilution and enrich-
ment of elements caused by the superposition of other ore bodies on the primary halo. 
Therefore, we conclude that 3284 m is a location where small ore bodies are superimposed 
(Figure 12). 

 

Figure 11. Variation characteristics and trends with different elevation of supra-, near-, and sub-ore halo elements. (a), (c), 
and (e) are relative to wall-rock. (b), (d), and (f) are relative to the Wulonggou gold district. 
Figure 11. Variation characteristics and trends with different elevation of supra-, near-, and sub-ore halo elements. (a,c,e)
are relative to wall-rock. (b,d,f) are relative to the Wulonggou gold district.



Minerals 2021, 11, 1117 19 of 25
Minerals 2021, 11, x  19 of 25 
 

 

 

Figure 12. Schematic vertical section of the Yanjingou gold deposit. (a) The ore body were studied vertically from top to 
bottom and were divided into two small ore bodies; (b) Each independent small orebody conforms to the zoning criterion 
of primary halo, and for the whole orebody, it shows the characteristics of supra-ore hale. 

For the studied part of the ore body (elevations of 3384–3090 m), we assessed which 
elements are most enriched. If the ore body were to be enriched in supra-ore halo ele-
ments, this means that the ore body is shallow at present. If the ore body is enriched in 
sub-ore halo elements, this means that the ore body is the deep tail of the deposit, and 
most of the ore bodies may have been eroded and there is no deep ore potential. Figure 
13a,b study on element enrichment intensity relative to wall-rock and the Wulonggou 
gold district, respectively, founding that supra-ore to near-ore element enrichment inten-
sity is relatively high, indicating the overall 3384–3090 m section of ore body is shallow to 
central orebodies, relatively complete gold ore deposit is at least one third to half in the 
deeper parts, so the Yanjingou gold deposit has great ore-forming potential. 

Figure 12. Schematic vertical section of the Yanjingou gold deposit. (a) The ore body were studied vertically from top to
bottom and were divided into two small ore bodies; (b) Each independent small orebody conforms to the zoning criterion
of primary halo, and for the whole orebody, it shows the characteristics of supra-ore hale.

Minerals 2021, 11, x  20 of 26 
 

 

 
Figure 13. Elemental enrichment in the Yanjingou ore body relative to the wall-rocks and Wulonggou Au district. a: 
elemental enrichment relative to the wall-rocks; b: elemental enrichment relative to the Wulonggou Au district. 

6.2. Implications for Prospecting from in situ Pyrite Thermoelectricity 
Pyrite is a semiconductor mineral with a band gap of 0.95 eV, which usually has two 

semiconductor properties: P-type (hole conduction) and N-type (electron conduction) 
[40,53]. The thermoelectric coefficient α value and conduction type of pyrite are affected 
by homogeneously distributed impurities in the pyrite, defects in the crystal structure, 
density, and external excitation conditions (i.e., temperature and pressure gradients). 
Since these factors are affected by mineralization depth, the thermoelectric properties of 
pyrite can be used as an indicator of depth [40,41,48,54]. Pridmore and Shuey (1976) 
showed that the lattice of As-containing pyrite is larger than that of free pyrite, and that 
P-type conductive pyrite can more readily adsorb Au [38]. The presence of As and Sb can 

Figure 13. Cont.



Minerals 2021, 11, 1117 20 of 25

Minerals 2021, 11, x  20 of 26 
 

 

 
Figure 13. Elemental enrichment in the Yanjingou ore body relative to the wall-rocks and Wulonggou Au district. a: 
elemental enrichment relative to the wall-rocks; b: elemental enrichment relative to the Wulonggou Au district. 

6.2. Implications for Prospecting from in situ Pyrite Thermoelectricity 
Pyrite is a semiconductor mineral with a band gap of 0.95 eV, which usually has two 

semiconductor properties: P-type (hole conduction) and N-type (electron conduction) 
[40,53]. The thermoelectric coefficient α value and conduction type of pyrite are affected 
by homogeneously distributed impurities in the pyrite, defects in the crystal structure, 
density, and external excitation conditions (i.e., temperature and pressure gradients). 
Since these factors are affected by mineralization depth, the thermoelectric properties of 
pyrite can be used as an indicator of depth [40,41,48,54]. Pridmore and Shuey (1976) 
showed that the lattice of As-containing pyrite is larger than that of free pyrite, and that 
P-type conductive pyrite can more readily adsorb Au [38]. The presence of As and Sb can 

Figure 13. Elemental enrichment in the Yanjingou ore body relative to the wall-rocks and Wulonggou Au district. (a): ele-
mental enrichment relative to the wall-rocks; (b): elemental enrichment relative to the Wulonggou Au district.

6.2. Implications for Prospecting from In Situ Pyrite Thermoelectricity

Pyrite is a semiconductor mineral with a band gap of 0.95 eV, which usually has
two semiconductor properties: P-type (hole conduction) and N-type (electron conduc-
tion) [40,53]. The thermoelectric coefficient α value and conduction type of pyrite are
affected by homogeneously distributed impurities in the pyrite, defects in the crystal struc-
ture, density, and external excitation conditions (i.e., temperature and pressure gradients).
Since these factors are affected by mineralization depth, the thermoelectric properties
of pyrite can be used as an indicator of depth [40,41,48,54]. Pridmore and Shuey (1976)
showed that the lattice of As-containing pyrite is larger than that of free pyrite, and that
P-type conductive pyrite can more readily adsorb Au [38]. The presence of As and Sb can
lead to the formation of P-type pyrite. The lattice distortion of P-type pyrite reduces the
Au+ content of the pyrite, leading to the precipitation of Au [55,56]. The sample of the
Yanjingou gold deposits in the different level from high to low shows certain similarity and
the law of carrier contains additional electronic N-pyrite and lose the outermost electron
P-type of pyrite in the process of Au deposits have different meaning, pyrite P-type rate to
different depth of orebody location for instructions. In simple terms, P-type multiple ore
bodies are shallow (top) and N-type multiple ore bodies are deep (bottom).

The high ratio of P-type pyrite in the Yanjingou Au deposit performance indicates
the studied ore bodies are shallow and from near the top of the deposit (Figure 14). An
increasing proportion of N-type pyrite can reflect ore body location down, and we study the
elevation of pyrite P-type rate assumes the wave of change, suggests that the mineralization
is superposed, because P-type pyrite should be reduced from top to bottom, and N-type
pyrite should be increased in general. From the denudation rate (γ = 50.02%), it also can be
roughly inferred that the observed orebody is located in more than half of the ore body,
and half of the deep orebody has not been found. The in situ thermoelectric properties of
pyrite are basically the same as those of primary halo geochemistry, which all reflect that
the exposed ore body is in a shallow state and there is still a good prospecting potential in
the deep.
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6.3. Mineralization Prediction Model and Prospecting Potential

The use of primary halo geochemical methods to predict blind ore is mainly achieved
through the commonality of the best indicator element combination, the zoning sequence,
and the coexistence criterion of superimposed halo [33,34,44,51,57–59]. Gold is the most
important indicator element, and Ag is one of the important associated elements. In case
of an Au anomaly, a large As, Hg, and Sb anomaly indicates the presence of a deep-level
concealed ore body. In addition, a large Cu, Pb, and Zn anomaly may indicate the presence
of a relatively rich ore body. Sub-ore halo indicator elements, such as Bi and Mo, usually
mark the tail of an ore body. If supra-ore halo elements, such as As, Hg, and Sb, have large
anomalies along with sub-ore halo indicator elements, such as Bi and Mo, a concealed
or large extension ore body can be inferred. These geochemical constraints and pyrite
thermoelectric properties of the primary halo can be used to construct an ore deposit model.

We established a mineralization prediction model for the Yanjingou Au deposit
(Figure 15). In fact, each ore deposit consists of many ore bodies. During mineralization,
hydrothermal fluids migrated along cracks and other channels (i.e., ore guiding structures),
and the ores formed under suitable physical and chemical conditions. In the case of a large
deposit, the area of hydrothermal alteration is extensive. Overall, it is satisfactory that the
primary halos metallogenic theory can show the supra-ore halo, near-ore halo, and sub-ore
halo enrichment characteristics for each element. From the point of view of each small ore
body, it also has this characteristic. There are obvious indicator elements in the head and
tail of each small ore body, thus our model is established. Large enrichments in As, Hg, Sb,
and Ba are typical feature of the Yanjingou Au deposit at elevations of 3384–3090 m. The
elemental features at the surface (3500 m) indicate that a small amount of the ore body has
been eroded. The borehole data at 2820 m indicates that there is a deep ore deposit, which
further confirms our speculation. The high ratio of P-type can also reflect our study belongs
to shallow ore body, namely partial deposit at the top of the position. At the same time,
calculated denudation rate was about 50% and can also be used to speculate that at least
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half of concealed for the exploration of ore body deep still exist, in general, the Yanjingou
Au deposit ore-forming prospect is very good. The study has important scientific guiding
significance for the breakthrough of prospecting and exploration.

Minerals 2021, 11, x  22 of 25 
 

 

have large anomalies along with sub-ore halo indicator elements, such as Bi and Mo, a 
concealed or large extension ore body can be inferred. These geochemical constraints and 
pyrite thermoelectric properties of the primary halo can be used to construct an ore de-
posit model. 

We established a mineralization prediction model for the Yanjingou Au deposit (Fig-
ure 15). In fact, each ore deposit consists of many ore bodies. During mineralization, hy-
drothermal fluids migrated along cracks and other channels (i.e., ore guiding structures), 
and the ores formed under suitable physical and chemical conditions. In the case of a large 
deposit, the area of hydrothermal alteration is extensive. Overall, it is satisfactory that the 
primary halos metallogenic theory can show the supra-ore halo, near-ore halo, and sub-
ore halo enrichment characteristics for each element. From the point of view of each small 
ore body, it also has this characteristic. There are obvious indicator elements in the head 
and tail of each small ore body, thus our model is established. Large enrichments in As, 
Hg, Sb, and Ba are typical feature of the Yanjingou Au deposit at elevations of 3384–3090 
m. The elemental features at the surface (3500 m) indicate that a small amount of the ore 
body has been eroded. The borehole data at 2820 m indicates that there is a deep ore de-
posit, which further confirms our speculation. The high ratio of P-type can also reflect our 
study belongs to shallow ore body, namely partial deposit at the top of the position. At 
the same time, calculated denudation rate was about 50% and can also be used to specu-
late that at least half of concealed for the exploration of ore body deep still exist, in general, 
the Yanjingou Au deposit ore-forming prospect is very good. The study has important 
scientific guiding significance for the breakthrough of prospecting and exploration. 

 

Figure 15. Mineralization prediction model for the Yanjingou ore body. (a): high to low temperature elemental zoning, 
(b): vertical diagram, and (c) metallogenic prediction profile. 
Figure 15. Mineralization prediction model for the Yanjingou ore body. (a): high to low temperature elemental zoning,
(b): vertical diagram, and (c) metallogenic prediction profile.

7. Conclusions

1. The Yanjingou Au deposit is a fractured- and altered-type Au deposit that is rich in
arsenopyrite.

2. Element concentrations with a high correlation with Au are As > Cu > Co > Ti > Cd >
Zn > Ag > Ba > Hg > Ni > Sb > Mo > Bi > W > Pb. Cluster analysis showed that Au
and As were the most evident elemental anomalies.

3. Axial element zoning determined with the concentration center and zoning index
methods is consistent, and As, Hg, Ag, and Sb contents tend to cluster downward,
suggesting good prospects for further deep mineralization.

4. Primary halo geochemistry showed the characteristics of supra-ore halo elements (As,
Hg, Sb, Ag and Au), which indicate that the studied ore body is a supra-ore halo and
represents the shallow part of the overall deposit.

5. In situ pyrite thermoelectric analysis showed that the observed ore body are domi-
nated by P-type pyrite (>80%), and the amount of denudation is 50%, which again
indicates that the ore body presents the shallow part of the deposit.

6. A mineralization prediction model shows that the Yanjingou Au deposit has good
mineralization and a high prospecting potential.
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