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Abstract: Random noise is unavoidable in seismic data acquisition due to anthropogenic impacts
or environmental influences. Therefore, random noise suppression is a fundamental procedure in
seismic signal processing. Herein, a deep denoising convolutional autoencoder network based on self-
supervised learning was developed herein to attenuate seismic random noise. Unlike conventional
methods, our approach did not use synthetic clean data or denoising results as a training label to
build the training and test sets. We directly used patches of raw noise data to establish the training
set. Subsequently, we designed a robust deep convolutional neural network (CNN), which only
depended on the input noise dataset to learn hidden features. The mean square error was then
evaluated to establish the cost function. Additionally, tied weights were used to reduce the risk of
over-fitting and improve the training speed to tune the network parameters. Finally, we denoised the
target work area signals using the trained CNN network. The final denoising result was obtained
after patch recombination and inverse operation. Results based on synthetic and real data indicated
that the proposed method performs better than other novel denoising methods without loss of signal
quality loss.

Keywords: autoencoder convolutional neural network; noise suppression; seismic data; tied weights;
self-supervised learning

1. Introduction

Seismic signals are often disturbed by noise, and consequently, the signal-to-noise ratio
(SNR) of seismic signals is typically low. A low SNR indicates poor signal quality, which
affects downstream signal processing, such as deconvolution [1], seismic in-version [2],
and seismic attribute analysis [3]. Therefore, seismic signals must be pre-processed to
obtain clear and high-resolution seismic profiles [4,5], and effective noise removal methods
are critical for seismic signal pre-processing [6,7]. The relationship between noise and
signals is typically classified as coherent and incoherent. Unlike incoherent noise, which is
randomly mixed with the effective signal, affects signal recognition, and does not have a
fixed dominant frequency or apparent velocity, coherent noise shows a correlation with
effective signals, thereby enabling the identification of defined features.

Effective suppression of seismic random noise and the recovery of high-quality seis-
mic data are challenging and have garnered considerable attention from the scientific
community [8,9]. Many denoising methods and theories have been proposed and widely
used in seismic data processing. The first method is based on the seismic data stack in the
offset direction [10,11]. However, this method is not suitable for pre-stack seismic data
denoising and exhibits considerable dip angle limitations. The second method is based
on predictive filtering, which assumes that the signal is predictable and random noise is
not. Based on the above theory, f–x deconvolution (FXDECON) [12,13], non-stationary
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predictive filtering [14], and t–x predictive filtering [15] have been proposed. Although
frequency filtering suppresses regular interference waves, such as surface waves, it is not
effective for random noise processing. The third method is based on mathematical transfor-
mation, which uses the differences between the signal and noise in the transform domain
to better separate the signal and noise. Examples include the Fourier transform [16,17],
wavelet transform [18,19], Radon transform [20], curvelet transform [21,22], dreamlet trans-
form [23], and seislet transform [24,25]. Nevertheless, when the data features are complex,
the robustness and efficiency of these algorithms must be optimal. The fourth method
is based on matrix rank dimension reduction [26,27]. These methods assume that clean
seismic data are low-order structures. Therefore, seismic data can be denoised by reduc-
ing the rank. One example of this approach is multi-channel singular spectrum analysis
(MSSA) [28]. The fifth method is based on dictionary learning trans-formation [29,30],
which constructs an over-complete dictionary for sparse decomposed signals and separates
the effective signal and noise [31]. This type of algorithm entails dictionary updating and
sparse coding, which is computationally complex.

More importantly, these methods must establish the noise parameters based on experi-
ence. When the parameters are not properly set, the denoising effect is relatively poor [32].
Therefore, a procedure for intelligent data processing that does not require prior knowledge
is critical to establish the denoising parameters accurately and efficiently. Deep learning en-
ables the extraction of hidden features by learning the low-level features of data, which can
then be used for prediction or classification [33,34]. Thus, deep-learning algorithms [35,36]
facilitate seismic random noise attenuation based on data-driven approaches. Most deep-
learning methods are based on supervised learning [37] and unsupervised learning [38]. In
supervised learning, training label selection is critical because it is the basis of the learning
features. However, clean label data are difficult to obtain. Synthetic noiseless records [39]
are often used as training labels. This approach is not suitable for the analysis of real data.
The authors of [40] proposed that the denoised data obtained from traditional methods can
be considered as the input of the training set; however, this limits denoising performance.
The corresponding noise label cannot be obtained from real seismic data, and therefore,
a real training label cannot be constructed. In contrast, unsupervised denoising enables
the recovery of clean data from noisy data without the need for data labeling. An autoen-
coder (AE) is a neural network that is often used to extract data features [41]. Specifically,
this procedure is a self-supervised learning technique that can be used for efficient data
encoding. More importantly, AE has several advantages compared with other supervised
learning technologies [42,43]. The authors of [44] proposed a sparse AE neural network
for seismic noise attenuation. Unfortunately, the features extracted using this method are
not sufficient for effective seismic data reconstruction. AE variants include the stacked AE
(SAE), denoising AE (DAE), variational AE (VAE), and others. Among them, SAE stacks
several AEs to form a deep structure. Greedy layer-wise learning is used to train SAE
multiple times. SAE is used to discover highly nonlinear and complex features. However,
in the case of weak classification, the performance of SAE degrades sharply [45,46]. DAE
introduces noise into the encoding, resulting in an encoding file, which is a corrupted
version of the original input data. The idea, therefore, is to force the hidden layer to acquire
more robust features and to prevent the network from merely learning the identity function.
DAE can be used to denoise the corrupted signal and extract the important features from
the data [47]. VAE produces a probability distribution for the different features of the latent
attributes. It arranges the learned features with similar shapes close to each other in the
projected latent space, thereby reducing the loss in the reproduction of input. Nevertheless,
an increase in the dimensionality of the latent layer without an increase in the complex-
ity of data causes a VAE to extract unrepresentative features and to overfit the training
dataset [48,49]. In practice, autoencoders are widely used for image coloring, denoising,
dimensionality reduction, watermark removal, anomaly detection, and feature variation.
To extract the complex characteristic of seismic data better, we modified the convolutional
DAE network to provide a novel approach for exploring seismic data.
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Our study aimed to suppress incoherent noise (i.e., random noise) from seismic data
and improve the efficiency and robustness of convolutional AE learning. We employed
unsupervised learning, as mentioned above, and proposed a deep convolutional DAE
network framework to attenuate seismic random noise. Unlike traditional methods, which
employ synthetic clean data or denoising results as training labels, we used raw noise data
to directly construct the training set. The advantage of the proposed method was that we
were able to quickly prepare the training dataset from the noisy data using any input real
seismic data input, and we did not disconcert the process of obtaining the real training
labeling. Our method showed excellent ability in exploring the specific characteristic of
the real noisy seismic data because we designed multiple filters and special procedures
for extracting useful features. The MSE was selected as an error criterion to establish
the cost function. Additionally, tied weights were used to reduce over-fitting risk. These
modifications accelerated the training process and the acquisition of optimal network
parameters. Finally, the optimized CNN was used to denoise the patches from a target
region. The final denoising result was obtained after patch synthesis and inverse operation.
This method was used to process synthetic and real seismic data along with other novel
denoising methods such as MSSA, FXDECON, and wavelet transform. Upon comparison,
the proposed method was found to be more effective than the aforementioned alternatives.

2. Methodology

Seismic data noise was defined as the sum of the effective signal and noise and could
be expressed as follows:

Y = X + N, (1)

where X is the clean signal to be solved, N is the additive noise, and Y is the observed
seismic noise data.

Notably, signal X was independent of noise N. We restricted our discussion to the
assumption that the noise term N was additive isotropic Gaussian noise, and each example
ni ∈ N(0, σ) was a variance σ distribution derived from a zero-mean vector.

The proposed method, which was based on deep CNNs, primarily aimed to establish
a relationship between X and Y. To train an effective deep CNN, a good training dataset
and test dataset should be prepared first.

2.1. Training Set Preparation and Self-Supervised Learning

To ensure the quality of deep learning and accelerate network convergence, we first
normalized the original seismic dataset Y as follows:

Y∗ =
Y

Y.max
, (2)

where Y∗ is the normalized dataset, and Y.max is the maximum value of the original data.
We normalized the data range to a value between −1 and 1.

2.1.1. Self-Supervised Learning

Self-supervised learning is adopted to circumvent the need for label preparation
associated with supervised learning [50]. Our training data were not extracted from clean
data. Instead, we directly used the noise data of the target region. The neural network was
then used to extract the characteristics of the seismic data by learning a small number of
training samples. Afterwards, the feature model was used to analyze the entire work area
for denoising.
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2.1.2. Dataset Preparation

After normalizing the data derived from the region of interest, the random sampling
operator R1 was introduced to randomly extract the data from the target area to construct
the training set Xtrain as follows:

Xtrain = C(R1Y∗), (3)

where the sampling operator R1 randomly divides the noisy data Y* of the target work area
into a size N×N matrix and uses cutting operator C to divide the training data into smaller
training patches of size n to obtain Xtrain. This approach could generate immense training
samples, which was helpful to network learning. However, using small datasets could
reduce computational complexity and improve the efficiency of neural network training.
After repeated experiments and referring to the literature, a total of 32 general training
seismic patches (n value) were selected from a range of 28–64 [51,52].

When the entire AE network structure completed the deep-learning training for the
training set Xtrain, the neural network model was used to denoise the target work area
as follows:

Xtest = C(R2Y∗), (4)

Xtest
∗ = MDAE(Xtest), (5)

ˆ
Y
= R2

′C′(Xtest
∗). (6)

First, the target work area Y∗ was divided into N1 ×N2 data using the regular operator
R2, after which the training data was divided into smaller patches Xtest with size n using
the cutting operator C for denoising. The neural network model MDAE with optimized
parameters was then used to denoise Xtest and obtain Xtest

′ after prediction. Subsequently,
the denoised blocks were restored to the large data block using operator C′. Finally, the
sampling operator R2

′ was used to reverse the process and merge the data into a complete
work area, after which reverse normalization was performed to obtain the denoised data of
the entire work area.

The patch numbers of the training and test sets were generally different. Each patch
in the training set processed by cutting operator C had the same size n as the small block in
the test set. Additionally, we used operator R2 to ensure that all raw data were included in
the denoising process. The entire process is illustrated in Figure 1.
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Figure 1. Proposed workflow.

2.2. Principle of Convolutional AE Seismic Denoising

DAE neural networks were used for feature selection and extraction via dimensionality
reduction and reconstruction. AE neural networks used fewer hidden layers than inputs to
train the network to ignore input “noise”, as shown in Figure 2.
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Figure 2. Schematic of DAE neural network.

The encoding process was as follows: For the input noise data X, there was a mapping
relationship F, which was used to compress X into Y. This was generally referred to as an
“encoder”. Moreover, this mapping relationship was typically nonlinear.

F(X) = σ(W1X + b1), (7)

where σ is a nonlinear activation function. The encoding mapping parameter is set as F =
{W, b}, where W is the weight matrix, and b is the offset.

The decoding process was as follows: through a mapping relation G(Y), the com-
pressed representation Y was restored to the reconstruction Z, which was as close as
possible to its input:

G(Y) = σ(W2Y + b2), (8)

where σ is a nonlinear activation function. The encoding mapping parameter is set as G =
{W, b}, where W is the weight matrix, and b is the offset.

The entire encoding and decoding processes were trained by minimizing the loss
function as follows:

JDAE = ∑ ‖X− Z‖2
2. (9)

The purpose of mapping F(x) and G(Y) was to minimize the average reconstruction
error JDAE of the training set, so that Z was similar to the original input noisy data X.
The parameters were initialized randomly and then optimized using the random gradient
descent method.

Based on the above-described procedure, the entire DAE process consisted of data
feature extraction and recovery of complete data [53]. Encoding was a dimension-reduction
process that was used to extract specific features, whereas decoding was a dimension-
raising process that was used to recover complete data. Since random noise was irregular
data and effective signals were regular data, a robust feature representation could be gener-
ated through nonlinear neural network learning. Therefore, if an algorithm could accurately
reconstruct its input, it could also retain most of the input feature information [54].

When we denoise a one-dimensional signal, a fully connected AE neural network is
always selected. Nevertheless, fully connected AE neural networks were not appropriate
for two-dimensional seismic signals because: (1) a fully connected AE neural network
flattened the input layer and turned them into a single vector that lost the structural
information of seismic signals; (2) in a fully connected mesh topology, all nodes were
connected to each other, thereby resulting in considerable redundancy and prohibitively
high implementation costs.

In recent years, CNNs have been successfully implemented to extract local features of
multidimensional data and have shown extraordinary denoising performance. However,
the complexity of seismic profile signals was considerably higher than that of ordinary
images because of the complexity of the stratigraphic structure and noise interference.
Therefore, our study aimed to improve the efficiency and robustness of convolutional AE
learning. In this study, we proposed a modified AE neural network based on tied weights,
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which combined AE with CNNs to improve the performance of seismic noise attenuation
and showed a higher practical application value.

2.3. Proposed Network Architecture and Optimization

We proposed an end-to-end deep DAE network in which the encoder and decoder
functions were combined. The proposed DAE requires structurally symmetric encoding
and decoding layers, as shown in Figure 3. In other words, they had the same size in the
corresponding structure, sharing certain parameters; therefore, only one set of weights was
needed for learning. In the last layer, the decoding weight was the transpose of the first
encoding weight because of the opposite process. We used the up-sampling layer to resize
the signal, which simply doubled the dimensions of the input signal and did not perform
an inverse operation. In the other decoding layers, the decoding weights and encoding
weights shared the same set of weights. This was described using formulas (7) and (8):

Fi+1 = σ(WiFi + bi), (10)

Wi =

{
Wn

T , i = 1
Wn−i+1, i = 2, . . . , n− 1

, (11)

where Fi is the mapping vector of the i-th layer, and Fi and bi are the weight and bias of the
training, respectively. Moreover, σ is the nonlinear activation function, where n is the total
number of convolution layers, and Wi is the weight of the i-th convolution layer. In this
way, the tied weights between the encoder and decoder are generated.
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Figure 3. Proposed DAE tied-weights neural network.

Compared with learning individual weights in the decoding and coding stages, this
method had the following benefits: (1) faster training speed, as we stopped the model
training process in decoding layers by freezing the weights and shared the weights from
encoding layers, reducing the number of model parameters and just learning one set of
weights; (2) better learning performance, as this was often preferred over learning separate
weights for both phases and could be regarded as a regularisation form, thus reducing the
risk of over-fitting.

Figure 4 illustrates the overall network architecture and key steps of our proposed
procedure. In the entire convolutional encoding layer (L1–L3), we used three pairs of
convolutional layers, batch regularisation layers, and max-pooling layers. The intermediate
layer (L4) was a pair of convolution and batch regularisation layers. The intermediate
layer was a latent representation layer that forced the AE to find patterns in the input
data and to eliminate unimportant features. In the decoding layer (L5–L7), we used three
pairs of up-sampling layers, batch regularisation layers, and convolution layers, which
were mirror-symmetric to the encoding layer. In the encoding and decoding process steps,
leaky ReLU was used as the activation function to enhance the training of complex seismic
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signals with negative values. In the last layer, tanh was used as the activation function
because the range of the tanh activation function value was between −1 and 1, which
was more suitable for our model. A max-pooling layer, which accelerated the calculation
and prevented over-fitting, was used to obtain translation invariant representation and
dimension reduction. A batch regularisation layer was used to stabilize the gradient
training of deep neural networks, thereby improving training speeds [55]. In the decoding
layer, the up-sampling layer was used to expand the dimensions of the hidden feature to
reconstruct the original sample. This method was based on the up-sampling processing of
the nearest-neighbour interpolation, which increased the sample rate by inserting zeros
between samples.
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As mentioned above, combining Equations (1)–(11), the entire denoising process was
expressed as follows:

Z = MDAE(X; δ), where δ = {W, b}, (12)

W1 = W7
T , W2 = W6, W3 = W5, (13)

where X represents the input noisy data, and Z represents the denoised restored data after
processing. The MDAE represents the DAE neural network model, which included seven
layers. δ = {W, b} indicated that the network parameters including weight and bias. We
froze the weights in the decoding layers and shared the weights from encoding layers.

The size of the signal patch and convolution filter had a dramatic effect on the denois-
ing performance of the model. Through several experiments and by referring to previous
studies [44–49], we selected the best performing 32 × 32 as the best performing patch size
and 3 × 3 as the filter size. We used Adam as the optimizer and MSE as the loss function.
A total of 25 epochs were trained, and satisfactory results were obtained. Table 1 shows the
network architecture.

Table 1. List of hyperparameters for the proposed deep networks.
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3. Numerical Experiments

The denoising performance of the proposed method was assessed using synthetic
and real data, after which the results were compared with those obtained with three novel
methods (wavelet transform, FXDECON, and MSSA). The denoising performance results
were evaluated based on the peak signal-to-noise ratio (PSNR). This parameter represented
the ratio between the maximum possible power of a signal and the destructive noise power.
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PSNR was typically used to evaluate the quality of a compressed image and compare
the results with the original image (used for signal denoising). The higher the value of the
PSNR, the better the quality and the higher the resolution. PSNR was expressed as follows:

PSNR = 10× log10

(
MAX2

MSE

)
= 20× log10

(
MAX√

MSE

)
, (14)

where MAX is the peak value of the signal and PSNR is measured in dB, which is mainly
used for image compression. When processing an image, MAX represents the maximum
possible pixel value. In seismic data processing, MAX is the maximum value of the
seismic data.

MSE is an estimator that represents the cumulative square error between the recon-
structed and original signals. The lower the MSE value, the lower the error. MSE can be
expressed as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖I(i, j)− K(i, j)‖2 , (15)

where I(i, j) is the original data, K(i, j) is the approximate data (processed data), and m
and n are the data dimensions.

3.1. Synthetic Seismic Signal
3.1.1. Synthetic Signal Used in the Experiment

The synthetic seismic signal used herein was part of a record obtained from the
forward modeling, consisting of 120 traces with a total time of 0.6 s, and a sampling
interval time of 5 ms, each of which included 120 sampling points, as shown in Figure 5a.
The entire seismic signal was complex and contained both strong and weak amplitude
signals. The noise signal shown in Figure 5b was obtained after normalizing the seismic
signal and adding random noise levels of 0.25. The PSNR of the noise signal was 13.98 dB,
which was used as the test signal in the subsequent process. The noise pollution was
considerable, with fuzzy axis signals and details that were difficult to distinguish.
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3.1.2. Comparison between Tied Weights and Non-Tied Weights

First, we evaluated the influence of tied weights and non-tied weights on the denoising
performance of synthetic data. We performed the algorithm experiment on a notebook with
a 2.0 G Intel i7 8 core processor and 16 GB of memory. To verify the denoising efficiency
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and denoising results of the two network models, we performed tied-weights and non-
tied-weights denoising experiments on seven different training sets (from 10,000 to 40,000)
with the same network parameters and the same training epoch (25 epochs).

Figure 6a showed the training time of the two network models for different numbers
of training sets. The training time of the tied-weights model for different numbers of
training sets was lower than that of the non-tied-weights model, and the average training
time was reduced by 19%, which demonstrated that the tied-weights AE method improved
the training speed (Table 2). Figure 6b showed the denoising effect of the two network
models after optimizing the model parameters through different numbers of training sets.
We then calculated the PSNR value of the denoised result and the original clean signal.
The PSNR of the tied-weights model for different numbers of training sets was higher
than that of the non-tied-weights model, with an average improvement of 1.08 dB, which
proved that the proposed method performed better (Table 3). The two methods achieved
the best results when using 25,000 training sets, after which the denoising effect tended
to be stable but not improved. Figure 6c shows the denoising effect of the two network
models after optimizing the model parameters through different epochs. We also calculated
the PSNR value of the denoised result and the original clean signal. First, the PSNR of
the tied-weights model for different epochs was higher than that of the non-tied-weights
model with an average improvement of 0.80 dB, which proved that the proposed method
performed well (Table 4). Second, the two methods achieved the best results after 25 epochs,
after which the denoising effect tended to be stable but not improved. In other words, 25
epochs led to the best denoising performance.
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AE model.

Table 2. Training time comparison with respect to training number of tied weights and non-tied
weights.

Number of Training Data (10,000) 1 1.5 2 2.5 3 3.5 4

Tied-weights training times (s) 1230 1857 2614 3098 3675 4402 5113
Non tied-weights training times (s) 1486 2203 3208 3626 4366 5231 6097



Minerals 2021, 11, 1089 11 of 20

Table 3. Denoising results with respect to the training number of tied weights and non-tied weights.

Number of Training Data (10,000) 1 1.5 2 2.5 3 3.5 4

Tied-weights denoising result (db) 17.09 19.70 20.53 21.00 20.91 20.74 20.75
Non tied-weights denoising result (db) 16.06 18.57 19.26 20.04 19.8 19.71 19.72

Table 4. Denoising results with respect to the epochs of tied weights and non-tied weights.

Epoch 1 5 10 15 20 25 30 35 40 45 50

Tied-weights denoising
result (db) 12.10 18.62 19.17 20.87 20.88 20.90 20.83 20.58 20.51 20.54 20.51

Non tied-weights
denoising result (db) 10.40 17.50 18.33 19.52 20.26 20.29 20.18 20.13 19.88 20.12 20.11

3.1.3. Experimental Comparison with Other Denoising Algorithms

We compared the existing three novel denoising algorithms, FXDECON, MSSA, and
wavelet transform, with our proposed methods. As shown in Figure 7, some random noise
was still observed in a–c, and the edge of the event axis was fuzzy. In Figure 7d, random
noise interference was almost absent, and the edge of the event axis of the effective signal
became clear. The results illustrated in Figure 7d demonstrated that the PSNR value of
our proposed method was 21.00 dB, which was higher than the denoising results of other
methods. Table 5 shows the main parameters and denoising performance of each method.
Therefore, both the qualitative and quantitative results demonstrated that the denoising
ability of the proposed method was better than that of the other three methods.
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Figure 7. Denoised result comparison for synthetic data. Denoise results using (a) FXDECON
(PSNR = 16.77 dB), (b) MSSA (PSNR = 15.01 dB), (c) wavelet transform (PSNR = 17.63 dB), and
(d) the proposed method (PSNR = 21.00 dB).
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Table 5. Quantitative evaluation of FXDECON, MSSA, wavelet transform, and the proposed methods.
Parameters are tuned manually.

Denoising Algorithms Parameters PSNR (db)

FXDECON
filter length = 4

trace window length = 12
time window length = 32

16.77

MSSA

rank variance= 1
aggregation method = ‘average’

uncertainty quantification = True
direct variance = True

15.01

Wavelet mode = ‘db8’
threshold = 0.5 17.63

Proposed method - 21.00

Figure 8 illustrates the noise removal results of the FXDECON, MSSA, wavelet trans-
form, and the proposed method. Fewer random noise and residual effective signals were
observed in Figure 8a, whereas 8b and 8c removed more random noise but left some resid-
ual effective signals. In Figure 8d, more random noise was removed, but fewer residual
coherent signals were left. This illustrated that the proposed method could remove more
random noise while maintaining an effective signal.
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To further study the denoising performance of the four methods, we extracted the
100th channel from the denoising result of the clean data, noise data, FXDON, MSSA,
wavelet transform, and the proposed method and calculated the frequency amplitude
spectrum, as shown in Figure 9a–d. As shown in the figure, the noise significantly interferes
with the effective signal, especially after 40 Hz, which deviates greatly from the effective
signal. Moreover, Figure 9b–d shows that the four methods maintain the general shape
of the original signal amplitude spectrum within a 0–40 Hz range. After 40 Hz, some
random noise was compressed in (b)–(c), but more random noise remained. As indicated
in Figure 9d, the sharp peaks in the noise spectrum of the curve were effectively removed,
which demonstrated that the proposed method accurately extracted the underlying useful
signals from the noisy input.

Minerals 2021, 11, x FOR PEER REVIEW 13 of 20 
 

 

Figure 8. Comparison of noise removal from synthetic data. The noise was removed using (a) FXDECON, (b) MSSA, (c) 
wavelet transform, and (d) the proposed method. 

To further study the denoising performance of the four methods, we extracted the 
100th channel from the denoising result of the clean data, noise data, FXDON, MSSA, 
wavelet transform, and the proposed method and calculated the frequency amplitude 
spectrum, as shown in Figure 9a–d. As shown in the figure, the noise significantly inter-
feres with the effective signal, especially after 40 Hz, which deviates greatly from the ef-
fective signal. Moreover, Figure 9b–d shows that the four methods maintain the general 
shape of the original signal amplitude spectrum within a 0–40 Hz range. After 40 Hz, some 
random noise was compressed in (b)–(c), but more random noise remained. As indicated 
in Figure 9d, the sharp peaks in the noise spectrum of the curve were effectively removed, 
which demonstrated that the proposed method accurately extracted the underlying useful 
signals from the noisy input. 

  

(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 9. Frequency amplitude diagram. (a) Noise and clean signal comparison. (b) FXDECON and clean signal comparison.
(c) MSSA and clean signal comparison. (d) Wavelet and clean signal comparison. (e) The proposed method and clean signal
comparison. The frequency amplitude spectrum curve of the original signal is indicated in red, whereas the frequency
amplitude curve of the denoising result is indicated in blue.
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To conduct a more detailed numerical comparison, we selected seven synthetic
datasets and added random noise levels of 0.1, 0.125, 0.15, 0.175, 0.20, 0.22.5, and 0.25
based on the normalized data. Figure 10 shows the PSNR noise values of FXDECON,
MSSA, wavelet transform, and the proposed method at different random noise levels. As
illustrated in the figure, the denoising results of the proposed method were better than
those obtained using other methods, demonstrating the excellent denoising performance
of the proposed method at different noise levels.
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3.2. Application to Real Seismic Signals

To study the denoising performance of the proposed method in practical applications,
we analyzed real seismic profile data from the South China Sea. The real profile data had
1000 traces, with a total time of 2 s and a sampling interval time of 2 ms. The frequency
range was between 5 and 70 Hz, the wavelength was 300m, and the distance between two
traces was 25 m.

There were several differences between the real and synthetic datasets in our experi-
ments. Table 6 shows a quantitative comparison between the real and synthetic datasets
in our experiments. First, the real dataset contained more complicated events that the
forward modeling could not achieve, such as more faults, fractures, and buried hills, as
observed in Figure 11. Second, the signals of the real data had wide-frequency range
characteristics, which meant that more detailed signals were submerged by the noise.
Third, we added white Gaussian random noise to the synthetic raw data and obtained the
noisy data. However, incoherent background noise mixed with real dataset signals was
unstructured, untrackable, and not Gaussian distributed. All these differences presented
additional challenges.

Table 6. Quantitative comparison of the real and synthetic datasets in our experiments.

Seismic Dataset Traces Total Time (s) Sampling Interval
Time (ms) Frequency Range (Hz)

Synthetic data 120 0.60 5.00 5 ~ 20
Real data 1000 2.00 2.00 5 ~ 70
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We first randomly collected 43,000 32 × 32 patches in the target region to establish
the training set. To verify the denoising effect, we intercepted the test data of 1000 seismic
traces and 1000 time samples in the target work area, as shown in Figure 11. Our method
was then used to process the real seismic signal. The network structure was the same as
described above, including seven convolution layers and other network parameters. The
optimized network model was obtained after 25 training epochs, after which it was used to
denoise the test seismic signal.

Figure 12a–d showed the denoising results obtained using FXDECON, MSSA, wavelet
transform, and the proposed method, respectively. Notably, FXDECON denoising resulted
in more residual noise. Moreover, denoising using MSSA and wavelet transform resulted
in less residual noise; however, the edge of the event was fuzzy, thereby indicating low
fidelity. In contrast, the proposed method rendered less residual noise and clearer signal
details. As highlighted in the local correlation map, Figure 12d exhibited more detailed
thin-bed reflections and less random noise. However, in Figure 12a,b, the thin-bed details
were hazy and difficult to recognise.

Figure 12e–h illustrates the noise removal results of FXDECON, MSSA, wavelet
transform, and the proposed method, respectively. Among them, the FXDECON, MSSA,
and wavelet transform methods left some coherent signals, which indicated that the original
signal was damaged during denoising. Moreover, no evident line reflection signal was
obtained using the proposed method, which indicated that the proposed method caused
no serious damage to the signal during the denoising process. In summary, the denoising
performance of the proposed method was better than the others.

Local similarity describes the similarity of a seismic signal in relation to another
one. Therefore, in local similarity analysis, we calculated the local similarity between the
denoised result and removed noise to further study the signal leakage of denoised data.
Figure 13a–d showed the local similarity analysis between the removed noise and denoising
results obtained via FXDECON, MSSA, wavelet transform, and the proposed method,
respectively. Local abnormal area similarities indicated that the noise and denoising
results of the corresponding position were similar. In turn, this was indicative of signal
leakage (i.e., damage to the original signal). As illustrated in the figure, there were many
high-similarity abnormal regions in the MSSA and wavelet transform algorithm, which
indicated considerable signal damage. In contrast, compared with the other methods,
the proposed method exhibited less high-similarity outliers, meaning that the proposed
procedure not only rendered less signal leakage but also preserved more effective signals
after noise removal.
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Figure 12. Denoising comparison of real seismic data results. Denoised results obtained using
(a) FXDECON, (b) MSSA, (c) wavelet transform, and (d) the proposed method. Noise removal using
(e) FXDECON, (f) MSSA, (g) wavelet transform, and (h) the proposed method.
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4. Discussion

In this study, we proposed a tied-weights AE neural network, which presented several
advantages. First, our method had a wider scope of application. We directly used patches of
raw noise data to establish the training set; therefore, we could prepare the training dataset
from the raw data from any real seismic data input. Second, the proposed method benefited
from the end-to-end deep convolutional DAE framework and showed a strong ability to
extract useful features in the real noisy seismic data. Third, our method accelerated the
training process and improved the denoising performance, as we proposed a modified AE
neural network based on tied weights to reduce the training number of model parameters
and reduce the risk of over-fitting.

However, there were some limitations to the proposed approach. First, the training
procedure was generally time-consuming and complicated. Through experimental compar-
ison and analysis, optimal training times and results could be obtained with 32×32 patches
and more than 30,000 training sets. Due to a large amount of training data and complex
network structure, it took a long time to train the network model. In addition, the network
lacked scalability to high-dimensional features. The DAE network corrupted the inputs
before mapping them into the hidden representation and then reconstructed the original
input from its corrupted version, leading to the loss of some high-dimensional features.

5. Conclusions

Our study proposed a framework for a deep denoising convolutional DAE network
to suppress seismic random noise. The scheme was based on AE self-supervised learning,
which addressed the limitations of supervised learning (i.e., the requirement for data labels).
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Unlike conventional approaches, we directly used patches of raw noise data to construct the
training and test sets instead of using synthetic clean data or denoising results as training
labels. We then designed a robust deep CNN that only depends on the input noise dataset
to learn hidden features. Then, we implemented tied weights to reduce the risk of over-
fitting and accelerate the training process to obtain optimal network parameters. Finally,
we employed a strategy to denoise the target signals using the trained CNN network. The
final denoising result was obtained after patch recombination and inverse operation. In
quantitative experiments, our tied-weights approach reduced the average training time by
19% and improved the average PSNR value to 1.08 dB in contrast to the non-tied-weights
approach. The proposed method also had a higher denoising PSNR value than the other
novel denoising algorithms. In qualitative experiments, the proposed method rendered
less residual noise and clearer signal details and caused less damage to the signal during
denoising. Therefore, both the qualitative and quantitative results demonstrated that the
proposed procedure provides a promising means for accurate geological exploration.
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