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Abstract: The aim of this study is to diagnose and optimize a closed multistage gold ore flotation
circuit in an operational industrial plant. Linear circuit analysis (LCA), a partition-based model,
and a mass balance model using flotation first-order kinetics are employed to diagnose the current
process. The result shows that the current circuit operates with high recovery but the gold grade
of the final concentrate is low owing to the low buoyancy ratio. Hence, several alternative circuits
with different streamlines and cell arrangements are proposed and simulated using LCA and a mass
balance model. The result suggests that if the current process is changed to an alternative circuit
in which the floated product stream of the rougher bank is changed, then the gold grade of the
concentrate can be improved by 128%. Finally, the current circuit is optimized by changing it to an
alternative circuit. This study provides a methodology for adapting the simulation of optimization
for the flotation circuit of an industrial plant via LCA and mass balance simulation.

Keywords: flotation circuit; gold ore; diagnosis; optimization; mass balance; process simulation

1. Introduction

Efficient metal production is in demand owing to an increase in metal demand world-
wide and the depletion of resources. Accordingly, methods to improve the economic
efficiency of metal production have garnered attention [1–7]. The production of metal
from minerals involves the beneficiation process, i.e., mineral processing, which physi-
cally separates the target mineral (i.e., concentrate) and gangue (i.e., tailing). It comprises
several unit processes, such as comminution, classification, and separation [8,9]. In the
separation process, flotation is the final step that determines the efficient recovery of the
concentrate, which is the final product of beneficiation [10–12]. In general, the flotation
process comprises a complex multistage closed circuit, which improves the grade and
recovery of concentrates such as roughers, scavengers, and cleaner circuits [13–15]. Hence,
the installation and operation of a plant through an optimal design for a highly efficient
separation process is crucial, particularly in the froth flotation step [16–25]. Therefore,
it is believed that the overall energy-saving effect should be achieved through an opti-
mized flotation process owing to the improvement in productivity. However, because
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most large-scale plant flotation processes in operation have been preinstalled and operate
continuously, process optimization for an efficient concentrate production is difficult to
control [1,4,15]. To optimize flotation, the floatability of unit cells was evaluated primarily
via laboratory-scale experiments [3]. However, this method is prone to errors when scaled
up to accommodate the plant. Furthermore, it is expensive to configure and test multiple
plant-scale flotation circuits [14,19,26,27].

Hence, the diagnosis and optimization of circuits via computer simulations have
been proposed [12,14,16–19]. A general diagnostic and optimization model of the flotation
process includes a mass balance model based on flotation kinetics [2,28]. Furthermore,
Noble and Luttrel [26] proposed a linear circuit analysis (LCA) as a process diagnosis and
optimization model. This methodology is a partition-based separation model for estimating
the arrangement and interconnection of unit processes in a circuit. This evaluation method
does not require many experiments or knowledge associated with process variables, and
it can represent the separation efficiency of the circuit as one indicator [26]. Therefore,
the diagnosis and optimization of the flotation circuit can be performed easily and more
accurately if a mass balance model and LCA are applied.

In this study, the flotation process of a beneficiation plant during operation was
diagnosed and optimized using LCA and mass balance simulations. The target circuit
was that of a flotation process in an industrial gold ore beneficiation plant in Jeollanam-do
province, Korea. This beneficiation plant was first introduced by Lee et al. [29]. The plant
was not optimized and diagnosed when it was initially installed. In addition, the flotation
process was primarily operated based on the operator’s experience. Hence, it is difficult
to predict the recovery and grade of the concentrate based on changes in the quality and
throughput of the ore, and process optimizations such as circuit changes and flotation cell
addition are futile. Therefore, the abovementioned target circuit was selected as the test
bed for this study. The flotation circuit information, such as the mineral composition of
ores, throughput, and cell size, was used in a mass balance simulation to calculate the
gold grade of the concentrate and the recovery. The simulation results were validated by
comparing them with industrial data. Subsequently, several alternative circuits for the
flotation process were proposed for process optimization. Finally, the separation efficiency
of the alternative circuits and the current process were compared and analyzed using LCA
and mass balance simulations. The circuit was optimized by adopting the process that
afforded the best separation efficiency.

2. Materials and Methods
2.1. Materials and Reagents

Gold ores were obtained from the Gasado gold mine in Jeollanam-do, Korea. It is
known that the gold ore consists of pyrite, muscovite, and quartz [30]. The gold ores were
initially crushed using a jaw crusher and a cone crusher, and then ground using a ball mill
in the gold ore beneficiation plant. Water was obtained from the plants. The particle sizes of
50% passing (d50) and 80% passing (d80) were 35 and 94 µm, respectively. Potassium amyl
xanthate (KAX, C5H11KOS2, TCI Co., Ltd., Tokyo, Japan) and Aeropromoter 3477 (AP3477,
isobutyl dithiophosphates, Cytec Industries Inc., Woodland Park, NJ, USA) were used as
collectors. Poly-propylene glycol (PPG; average molecular weight ~425, Sigma–Aldrich,
St. Louis, MO, USA) was used as a frother.

2.2. Characterization of Gold Ores

The gold ores processed by the target beneficiation plant were Gasado gold ores [29].
To evaluate the mineralogical properties of these gold ores, X-ray fluorescence spectrometry
(XRF, PW2404, Phillips, Tokyo, Japan), X-ray diffraction (XRD, SmartLab, Rigaku, Tokyo,
Japan), and density analysis (gas pycnometer, AccuPyc II, Micromeritics, Norcross, GA,
USA) were performed. Gold in all ores was analyzed using the fire-assay technique. To
obtain photographs of gold ore, gold ore specimens were prepared by cold mounting
with an epoxy resin (KEM90 Resin, ATM GmbH, Mammelzen, Germany) and a hardener
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(KEM90 Hardener, ATM, Berlin, Germany). The specimens were polished using a polishing
machine (SAPHIR 520m, ATM GmbH, Mammelzen, Germany) equipped with cloth pads
and diamond suspensions. Subsequently, the gold ore specimens were directly observed
using a digital optical microscope (DVM2500, Leica, Wetzlar, Germany), where a white
LED was used as the light source.

2.3. Flotation Circuit Description

The target flotation circuit is a beneficiation plant located in Haenam-gun, Jeollanam-
do, Korea. The grinding and classification process of this plant was introduced by
Lee et al. [29]. Currently, the throughput of this process is 170 t/d (7.08 t/h). All of
the flotation machines are of the Denver sub-A type. Chemicals (collector: KAX, AP3477,
frother: PPG) were simultaneously added to the conditioner. Modifiers such as activators
and depressors were not used in this process. Groundwater was used as the process water,
and its pH was 6–6.5.

The flowsheet is shown in Figure 1, and Table 1 lists the number of cells, cell size,
and effective volume of this circuit. This flotation circuit comprised two rougher banks,
a cleaner, and a scavenger. Each rougher bank contained four cells. The scavenger and
cleaner were composed of four cells. The floated product of cleaner 1 bank was the final
concentrate, and the sunk product of scavenger #4 cell was the final tailings. This process
was designed to be cleaned three times by transferring the rougher concentrate to the
cleaner #3 bank. Furthermore, it was designed as a closed circuit, in which the cleaner
tailing and scavenger concentrate were fed back to the conditioner.
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Figure 1. Flowsheet of gold ore flotation circuit. Blue line represents stream of floated products, and
red line represents stream of sinked products after flotation. Red point represents sampling point:
1© cyclone overflow (o/f); 2© feed; 3© rougher 1 concentrate; 4© rougher 2 concentrate; 5© scavenger

concentrate 6© final tailing; 7© cleaner tailing; 8© final concentrate.

Table 1. Detailed information regarding flotation circuit in target beneficiation plant.

Number of
Banks

Number of
Cells Cell Size, m3 * Effective Volume,

m3

Conditioner - 1 2.4 × 2.4 9.8
Rougher 2 4 1.5 × 1.3 × 1.2 2.1

Scavenger 1 4 1.5 × 1.4 × 1.2 2.1
Cleaner 5 1 1.1 × 1.4 × 0.9 1.2

* Conditioner: diameter × higher; other cells: width × length × height.

The final concentrate was delivered to a refinery (LS-Nikko Copper Inc., Ulsan, Korea),
and gold was produced through pyrometallurgy. If the Au grade of the final concentrate is
less than 100 g/t, then an economical gold production is impossible at the refinery owing
to the high cost of refining gold. Therefore, the Au grade of the final concentrate should
exceed 100 g/t. Gold is an extremely expensive precious metal that can maximize profits
by improving the recovery of concentrates.
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2.4. Measurement of Flotation Rate Constant

Flotation experiments were performed to calculate the floatation rate constant for
minerals in the gold ore (pyrite, quartz, muscovite, and gold). The experimental conditions
were matched with the industrial conditions of a plant during the flotation process. For
the flotation tests, a gold ore slurry was prepared with 35 wt.% solid pulp density. The
prepared pulps were mixed with 70 g/t of KAX, 35 g/t of AP3477, and 40 g/t of PPG
for 10 min at 1200 rpm. The tests were performed in the first cell of the rougher 1 bank
(#1 Rougher 1). The flotation cell was a Denver sub-A type (Metso, Finland). Air was
injected into the cells. The flotation gas rate was 5 L/min, which was determined by the
suction of air into the pulp through the impeller at 1200 rpm. The total flotation time was 8
min. The water used was maintained at room temperature (25 ◦C), and its pH was 6.5 after
conditioning. Five concentrates were skimmed off after 0.5, 1, 2, 4, and 8 min. All solid
samples obtained from the flotation tests were dried at 40 ◦C and then weighed. The gold
grade of all the products was determined using the fire-assay method. The contents of
other elements were analyzed using XRD and XRF. The first-order rate constant model
was used in this study because the flotation process is generally regarded as a first-order
process. The rate constant was calculated using Equation (1), as follows [9]:

R = R∞(1 − exp(−kτ)) (1)

Here, R is the recovery of the target minerals, R∞ the maximum recovery, k the rate
constant, and τ the flotation time. The recovery of the target concentrate is expressed as
shown in Equation (2) [9,31,32]:

R =
Cc
F f

× 100 (2)

C and c are the weight and grade of the concentrate, respectively; F and f are the
weight and grade of the feed, respectively. The rate constant was calculated via nonlinear
regression analysis using MATLAB 2021a (MATLAB, Natick, MA, USA).

2.5. Optimization of Process: Alternative Process Proposal

Herein, alternative circuits were proposed to optimize the current gold ore flotation
process. The proposed alternative processes are illustrated in Figure 2. Considering the
space problem and throughput of the plant, four alternative processes were proposed.
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transfer float from rougher 2 bank to cleaner 4; (b) Case 2: scavenger bank is added; (c) Case 3: open circuit with addition of
cleaner bank; (d) Case 4: closed circuit with addition of cleaner bank. Blue line represents stream of floated products, and
red line represents stream of sinked products after flotation. Green text represents changes in the existing process.

Case 1 involves a circuit that transfers the floated products from the rougher 1 bank
to cleaner #3, and the floated products from the rougher 2 bank to cleaner #4. In the
current circuit, the floated products of all rougher banks were transferred to cleaner #3.
Therefore, the outstreams of the floated product of the rougher banks in Case 1 differed
from that of the current process. Case 1 was proposed to increase the gold grade of the
concentrate. In Case 2, a scavenger bank was added to increase the recovery rate of gold.
Case 3 involves an open circuit with an additional cleaner bank, and it was proposed to
significantly improve the gold grade of the final concentrate. Finally, Case 4 was designed
as the closed-circuit version of Case 3.

2.6. LCA

LCA, which is based on partition-based separation, is effective for analyzing the
connection and configuration of each unit [26,33,34]. In addition, because the circuit
configuration allows the separation efficiency (SE) to be determined, the performance of
circuits with different configurations can be evaluated easily [26]. The evaluation was
performed by calculating the overall circuit concentrate-to-feed ratio (C/F) using the
partition probability (P) of each unit process. The recovery of a unit is expressed as the
probability of the unit process as a function of the experimental variable (Z). The recovery
of the entire circuit can be expressed in the form of an algebraic expression using this
P [26,33,34]. For example, as shown in Figure 3, if the recoveries of each process are P1
and P2, then the recovery (C/F) of the entire process becomes P1 × P2. In this process,
if the recovery as a function of the experimental variable of the unit process is known,
then a partition curve of the overall recovery with respect to the experimental variable
can be constructed. Assuming that P is the same for each process, the SE of the entire
process can be compared with the efficiency of the unit process based on the slope value
(d(C/F)/dP, P = 0.5) at the point where P is 50% [26,35]. As shown in Figure 3, C/F is P2
when P1 = P2 = P; therefore, when P = 0.5, the slope value is 1, which is the same as the
efficiency of the unit process. In the case of a complex process such as a multistage flotation
circuit, it is difficult to calculate the algebraic expression directly. Therefore, the recovery
and SE of the entire circuit were calculated using the matrix reduction algorithm proposed
by Noble and Luttrell [26].
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recovery for each unit bank, and C the concentrate rate.

2.7. Simulation of Mass Balance

Using LCA, the recovery of the total circuit can be estimated as a function of the
recovery of the unit bank. We simulated the mass balance to compare the performances of
the current and alternative flotation circuits.

We assumed that the flotation process was in a steady state to simulate the mass
balance, grade of concentrate, and recovery. This assumption is reasonable as the target
flotation process has been in progress for a significant amount time, while the reagents
and operating conditions were maintained. Therefore, in this study, the steady state was
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assumed for the diagnosis and optimization of the flotation circuit. The mass balance
model based on flotation kinetics is expressed in Equation (3) [36].

Qci = Qfi

[
kiτ

1 + kiτ

]
(3)

In Equation (3), Qci is the mass flowrate of the concentrate (t/d), Qfi the mass flowrate
of the feed (t/d), τ the flotation time (min), and ki the flotation kinetic constant (1/min)
for each i component (kAu, kPy, kQtz, and kMu). To calculate the mass balance of each node,
Equations (4)–(6) were applied [35].

Q f = QAu + QPy + QMu + QQtz + Qw (4)

Qc = Qci + Qcw = ∑
i

Qfi

[
kiτ

1 + kiτ

]
+ Qcw (5)

Qt = Q f − Qc (6)

Here, Qf is the feed mass rate; Qw is the water mass rate; Qc is the concentrate
mass rate; Qcw is the water mass rate in the concentrate, which can be obtained from the
pulp density; QAu, QPy, QQtz, and QMu are the throughputs of gold, pyrite, quartz, and
muscovite, respectively, which can be obtained from each mineral grade of the ore; Qt is
the flow rate of the tailings. The flotation residence time (τ) can be calculated using the
volume of the cell occupied by the slurry (Vp) and the feed mass rate.

τ =
Vp

Q f
(7)

To estimate the recovery and grade of the concentrate, the simulation was performed
using the USIM-PAC 3.2 software (©Caspeo/BRGM, Orléans, France). Among the many
available mineral processing software, USIM-PAC was selected because it enables the
mass balance of the circuit to be predicted conveniently, and it contains all the considered
flotation models [21]. An iterative calculation algorithm was applied to calculate the mass
balance of the closed circuit, in which the in-stream and out-stream were repeated. In this
algorithm, the convergence criterion was set to 10−4. Convergence is achieved when the
sum of all the least-square differences between the calculated and previous iteration flow
rates becomes less than the convergence criterion.

Based on this simulation, the mass balance of the current circuit was calculated to
determine the performance of the current circuit. Subsequently, it was used to evaluate the
performance of the proposed alternative process.

2.8. Validation of Simulation

In the industrial plant, samples were obtained from each node. Subsequently, the
mineral composition of the collected samples was analyzed, and the results were compared
with the simulated results to validate the recovery and grade estimated from the simulation.
The sampling points are indicated by red points in Figure 1. Mineral composition analyses,
as described in Section 2.2, were performed.

3. Results and Discussion
3.1. Characterization of Gold Ores

According to a geological survey, the Gasado gold ore used in this study is a hy-
drothermal deposit formed by volcanic activity at the end of the Cretaceous period, and
that gold is a pyritic gold ore coexisting with pyrite [30,37–40]. Figure 4 shows the results
of XRD analysis of the gold ore and micrographs of the gold ore specimens. Table 2 shows
the mineral compositions measured via XRF analysis and the gold grade from fire-assay
analysis. Mineral analysis revealed that the gold ore contained primarily quartz, muscovite,
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and pyrite. Therefore, gold, pyrite, quartz, and muscovite were selected as representative
minerals of this gold ore, and the flotation circuit was diagnosed and evaluated based on
the quality and recovery of these minerals.
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Mu: muscovite).

Table 2. Mineral composition of gold ore.

Au (g/t) Pyrite (wt.%) Quartz (wt.%) Muscovite (wt.%) Others (wt.%)

gold ore 6.8 ± 1.2 9.6 ± 0.6 63.1 ± 1.1 28.0 ± 1.3 0.5 ± 0.2

3.2. Flotation Kinetics

Figure 5 shows the flotation recovery of gold, pyrite, quartz, and muscovite as a
function of the flotation time. The maximum recovery (R∞) and flotation kinetic rate
constant (k) of the minerals were obtained by performing a nonlinear regression analysis of
the experimental results using Equation (1). Because the coefficient of determination (R2)
of all minerals was calculated to be 0.96 or more, the experimental results can be assumed
to have correlated significantly with the first flotation kinetic model (Equation (1)) [27,41].
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k the flotation rate constant, and R2 the coefficient of determination.
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In general, the R∞ and k values of gold and pyrite were higher than those of quartz and
muscovite. The flotation rate constant was determined based on the bubble–particle inter-
action, which was dominated by the hydrophobicity of the mineral surface. Therefore, the
high flotation rate constants of pyrite and gold were calculated because the hydrophobicity
of their surfaces was increased by the thiol-type collectors (KAX, AP3477). In addition,
hydrophilic minerals such as quartz and muscovite have low flotation rate constants. It
is noteworthy that R∞ is governed by the degree of liberation. If the degree of liberation
is 100%, then the R∞ of gold and pyrite, which are hydrophobic minerals, is 1. However,
the photographs of the specimens presented in Figure 4b shows that the grain size of gold
is less than 30 µm and that of pyrite is less than 50 µm. Because the d80 of the feed was
94 µm, the R∞ of all minerals was between 0 and 1.

The k and R∞ values obtained from this batch flotation experiment were used to
simulate the mass balance of the flotation circuit.

3.3. LCAs

Figure 6 shows the LCA results of the current process and the alternative processes,
where their partition functions and sharpness parameters are included. In this regard, the
sharpness parameter is the SE, which is a frequently used indicator to technically evaluate
separation processes and can be useful when the recovery and grade of two products
are different [26]. The graph presented in Figure 6 can be demarcated by a diagonal line,
where the upper area of the partition curve is associated with the scavenging effect, which
increases the recovery, whereas the lower area is associated with the cleaning effect, which
increases the grade [26]. In this context, assuming that the gold recovery of the unit bank is
≥0.5, and that of silica or mica, which is a gangue, is lower than 0.5, if the flotation circuit
exhibits the scavenging effect when the recovery rate of the unit bank exceeds 0.5, and the
cleaning effect when it is lower than 0.5, then the SE value should be high.
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Comparing the current process with the other proposed processes, its SE (= 2.5) ranked
third, and the flotation process efficiency can be improved by changing the circuit to Case
1 using a simple circuit arrangement and changing it to Case 3 using an open circuit.
However, considering that the recovery of gold, an expensive metal, is critical, the process
of Case 3 is difficult to apply because the recovery of the entire process (= 0.46) is extremely
low. Finally, the circuit for Case 1 can be considered as a circuit that can increase the
enrichment ratio while maintaining a high gold recovery. The enrichment ratio is the ratio
of the concentrate grade to the feed grade. Comparing the other cases with the current
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process, the gold recovery did not differ significantly, and the SE value was low. Therefore,
it was difficult to improve the quality of the concentrate.

3.4. Mass Balance of Current Flotation Circuit

The recovery of each unit bank and the concentrate grade of the current circuit were
simulated by applying the throughput, pulp density, flotation kinetic constant, and max-
imum recovery of the minerals to the mass balance model. The simulated distributions
were compared with the industrial results for each stream to validate the simulation results.
Figure 7 shows the grade of the minerals calculated via simulation and the content analysis
results of minerals obtained from actual plants. Regarding the grade distribution shown in
Figure 7, the simulated results agreed well with the industrial results. Therefore, the mass
balance of the industrial plants was predicted via simulations [29].
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Figure 8 shows the mass balance results for the current circuit. The concentrate
product rate was estimated to be 0.4 t/h (9.6 t/d), and the gold grade was 105.5 g/t for
this closed flotation circuit at a throughput of 7.08 t/h (= 170 t/d). The total recovery of
the circuit was 94.92%, and the enrichment ratio was 16.3 (= 105.5/6.47). Hence, it was
confirmed that the current process operated at an extremely high recovery rate. Mass
balance analysis revealed that the current process is highly effective for recovering gold
from pyrite, quartz, and muscovite. These results are similar to those estimated using
LCA. The overall recovery is important because gold is a precious and expensive metal.
However, the enrichment ratio of the process was low. If the gold grade of the ore decreases
significantly as compared with that of the current ore, then the final concentrate grade may
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be less than 100 g/t. As mentioned in Section 2.3, when the gold grade of the concentrate is
less than 100 g/t, the smelting cost is high. In this case, the process must be modified to
increase the gold grade of the concentrate.
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3.5. Comparison between Current Circuit and Alternative Circuits

Figure 9 shows a comparison of the recovery and concentrate grades for all alternative
circuits. Case 1 does not involve the addition of a flotation bank to the existing process
and does not incur additional equipment costs because it pertains to a circuit where the
floated product stream of the existing rougher banks is changed. However, because of
this change, the gold grade of the final concentrate improved from 105.5 to 134.7 g/t. The
recovery was expected to be 90.92%. In Case 2, an alternative circuit with a scavenger bank
added, and the overall recovery of 96.2%, which is slightly higher than 94.4% of the existing
process. Because of the addition of scavenger trails, additional cost is incurred to change
the process. In Case 3, which involves an alternative circuit designed as an open circuit,
the gold grade of the final concentrate was 203.42 g/t, which yielded the highest-quality
concentrate. However, the overall recovery was calculated to be as low as 62%. Meanwhile,
Case 4, which involved the addition of only a cleaner unit bank to the existing process, did
not differ significantly from the current process. Although the cleaner was added (which
incurred additional cost), the economic efficiency did not increase as compared with that
of the current process.
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In summary, Cases 2 and 4, which are alternative processes involving additional unit
banks, did not differ significantly from the current process. If the process is designed with
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an open circuit, as in Case 3, then the recovery will be reduced significantly. Hence, the
open circuit is not suitable for the gold flotation process, where recovery is important. In
Case 1, where the stream was changed without adding equipment to the current process,
the grade of the concentrate improved by 128% (=134.7/105.5) compared to the gold grade
of concentrate of current process., while a high recovery of 90.92% was maintained.

Figure 10 shows the simulated mass balance of the alternative process of Case 1. Com-
pared with Figure 8, which shows the mass balance of the current process, the mass flow
rate differed slightly, but it was confirmed that the final gold grade of the concentrate im-
proved significantly. The enrichment ratio of the process of Case 1 was 20.8 (=134.73/6.47),
which was a significant improvement compared with that of the current process. In partic-
ular, this process is more advantageous than the existing process when the gold quality of
the ore is reduced.
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Therefore, the alternative process of Case 1 is expected to yield a higher SE than the
current process. This expectation is consistent with the LCA results. Therefore, based
on the LCA and mass balance analysis, the flotation process should be changed to the
alternative process of Case 1. Currently, the plant has adopted the Case 1 process.

4. Conclusions

In this study, the diagnosis and optimization of the flotation circuit of gold ore in
an industrial plant were performed. Optimization was proposed to design an alternative
process with an SE that is higher than that of the current process. The SE was evaluated via
LCA based on partition-based separation and mass balance simulation using a flotation
first-order rate constant model. Because the simulated grade distributions of each of the
streams were consistent with the industrial results, the simulation results were considered
reasonable. After diagnosing the current process, an operation with high gold recovery was
achieved. However, the operation was unsuitable for processing low-grade ore because of
the low enrichment ratio. Therefore, LCA and mass balance simulations were performed
for various alternative processes. Based on the results obtained, it was discovered that the
alternative process of Case 1 should be adopted instead of the current process, as the former
maintained high recovery while improving the enrichment ratio. Therefore, the process of
Case 1 was adopted in the plant. Finally, we demonstrated that an operating plant can be
diagnosed and optimized using LCA and mass balance simulations. In conclusion, our
study provides a methodology for adapting the simulation of flotation circuit optimization
for industrial plants, and based on these results, future research to be applied to other
plants with various minerals compositions will be needed.
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