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Abstract: In a mine, knowledge of rock types is often desired as they are important indicators of
grade, mineral processing complications, or geotechnical attributes. It is common to model the rock
types with visual graphics tools using geologist-generated rock type information in exploration
drillhole databases. Instead of this manual approach, this paper used random forest (RF), a machine
learning (ML) algorithm, to model the rock type at Erdenet Copper Mine, Mongolia. Exploration
drillhole data was used to develop the RF models and predict the rock type based on the coordinates
of locations. Data selection and model evaluation methods were designed to ensure applicability for
real life scenarios. In the scenario where rock type is predicted close to locations where information
is available (such as in blocks being blasted), RF did very well with an overall success rate (OSR) of
89%. In the scenario where rock type was predicted for two future benches (i.e., 30 m below known
locations), the best OSR was 86%. When an exploration program was simulated, performance was
poor with a OSR of 59%. The results indicate that EMC can leverage RF models for short-term and
long-term planning by predicting rock types within drilling blocks or future blocks quite accurately.

Keywords: machine learning; random forest; rock type; mining geology

1. Introduction

Machine learning (ML) has been applied to mining and geology problems for at least
two decades now [1–6]. On the mining geology side, grade estimation has been a major
area of focus [7–11]. Machine learning techniques that were commonly applied were neural
networks (NN) and support vector machines. Many also tried hybrid approaches [12].
In order to estimate iron ore grades at a mine, researchers [6] used an “extreme learning
machine” (a feed forward NN) algorithm in combination with a “particle swarm opti-
mization” approach. To fill the data gaps for geochemical element grades in a porphyry
copper deposit, a multi-layer NN was used [13] along with a Gustafson-Kessel clustering
algorithm. In a case study to generalize assay values for known and unknown sampled
locations of a mineral sand deposit a hybrid NN was deployed. The combination included
a trained, tested, and validated feed forward NN along with a geostatistics model [14].
In another instance, a genetic algorithm (GA) was used to train a NN [11] for predicting
iron grades.

Researchers investigated methods for generalization, considering the complications
typical in earth science data [2,15,16]. Addressing these issues, some researchers have
used GA to split datasets properly into training and testing subsets [17,18]. To be method
agnostic, recommendations were made on how data should be split to ensure proper
evaluation of artificial intelligence models [19].

Some recent examples used ML to identify rock types based on machine operation
data from drills (such as drill penetration rate) or other sensor data. Logistic regression,
neural networks and gradient boosting were used by [20] to identify rock types based on
sensor data in oil well directional drilling. Clustering and other techniques were applied to
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“measurement-while-drilling” data to identify rock types in an iron ore mine [21]. Though
the nature of the application is different, it is worth mentioning that some have also used
machine learning to identify rock types from images [22,23].

Detecting rock types is also a focus of this paper. The large exploration drillhole
database of Erdenet Copper Mine (EMC), Mongolia, is utilized in this paper to identify
rock types. Traditionally, exploration databases are used primarily for grade estimation.
However, rock type modeling is also undertaken in support of grade estimation, geotechni-
cal modeling or mineral processing operations. For example, if rock type is known along
with grade, it may be processed a particular way. If rock type can be estimated at depths
below current operational depths, it can be used in developing future plans. Currently,
rock type modeling is performed manually using visual tools.

Manual modeling performed using 3D visual tools can be difficult and time consuming.
Making changes to manual models because of new data is also difficult. ML, on the other
hand, not only makes the job easier but also allows incorporation of data from other
sources. Therefore, the objective of this paper is to evaluate the effectiveness of using ML
in modeling the rock type.

EMC, about 350 km northwest of capital city Ulaanbaatar, mines the Erdenetiin Ovoo
copper porphyry deposit, one of the largest copper-molybdenum deposits in Mongolia.
The deposit is hosted by an intrusive complex in the Orkhon-Selenge trough [24]. The
mine, which started operations in 1978, splits the mining area primarily into four deposits,
Central, Northwest, Shand and Oyut. This paper focuses only on the Northwest and
Central deposits, as they are the only two deposits being mined currently.

Though the exploration holes were drilled from 1963 to 2018, the drillhole information
was only recently entered into a database as part of a relatively new digitization effort at the
mine. Therefore, there were several issues with the database, all of which had to be dealt
with prior to starting work on this paper. The issues primarily included duplicate holes,
irrelevant columns (or fields), terminology issues, missing critical values, and spelling.
After cleaning, the database consisted of 2823 exploration drillholes for the Northwest and
Central deposits. The total number of lithological “segments” were 90033. Segments are
explained later in the paper. Four fields (or columns in tables) in the database were used
in this research, three for the coordinates, and one for the rock type. As is common in
exploration databases, rock types in the database are geologist’s interpretation of the rock.

Figure 1 shows two views of the drillholes. Some holes were drilled from the surface
before the start of operations, while other holes were drilled inside the pit. Therefore, hole
lengths ranged from 28 m to 1054 m, with a median length of 75 m. About 140 holes were
above 485 m in depth (95th percentile). Hole bottom elevations range from 166 m to 1505 m,
with the median bottom elevation being 1310 m.

EMC uses the drillhole database to classify the main domains by lithology and fault
zones. These zones are then related to mining and mineral processing conditions. Rocks
are grouped into five major zones: andesite, granodiorite (GDIR), biotite granodiorite
porphyry, dyke and fault zones, and finally, unknown. About 43% of the copper comes
from GDIR. Therefore, the goal in this paper is to predict if the rock type in a given location
is GDIR or not.

ML, as with most modeling methods, requires data to be split into modeling (or
training) subset and testing subset. Usually, data is split into training and testing subsets
to ensure that both subsets are similar [15]. However, a model can be developed and
evaluated using different strategies to reflect the various ways it can be used in real life.
Therefore, a novelty of this paper is in how data is split for modeling and evaluation. This
is explained in the next section.
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Figure 1. Plan view (top) and cross-sectional view of the 2823 drillholes. Arrow points north. Scale is shown in meters. A 
total of 90,033 drillhole segments are depicted. 

2. Methodology 
2.1. Data Selection Approaches 

This paper uses two approaches for selecting data for training and testing subsets, 
segment-based (SB) and hole-based (HB). The reasoning for the two approaches is ex-
plained in a subsequent section. 

SB and HB approaches are demonstrated using Figure 2. The figure shows a dataset 
consisting of four holes, H1–H4. Each hole contains several lithological segments. Seg-
ments are 5 m in thickness, except when the lithological segment is less than 5 m in thick-
ness or not a perfect multiple of 5 m. For example, consider a granodiorite intersection of
23 m, followed by 3.5 m of diorite. The granodiorite intersection will be split into five 

Figure 1. Plan view (top) and cross-sectional view of the 2823 drillholes. Arrow points north. Scale is shown in meters. A
total of 90,033 drillhole segments are depicted.

2. Methodology
2.1. Data Selection Approaches

This paper uses two approaches for selecting data for training and testing subsets,
segment-based (SB) and hole-based (HB). The reasoning for the two approaches is explained
in a subsequent section.

SB and HB approaches are demonstrated using Figure 2. The figure shows a dataset
consisting of four holes, H1–H4. Each hole contains several lithological segments. Segments
are 5 m in thickness, except when the lithological segment is less than 5 m in thickness or
not a perfect multiple of 5 m. For example, consider a granodiorite intersection of 23 m,
followed by 3.5 m of diorite. The granodiorite intersection will be split into five segments



Minerals 2021, 11, 1059 4 of 12

of lengths 5 m, 5 m, 5 m, 5 m, 5 m and 3 m. The diorite will be on a separate segment of
3.5 m.
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elevations (“Elev.”) of 1020 and 1000.

In Figure 2, there are a total of 28 segments between the four holes. The figure also
shows two lines that indicate two arbitrary elevations (1020 and 1000). These lines will be
used later to explain additional concepts.

Assume that it is determined that 75% of the data will be selected for training. In
the SB method, 21 segments are selected for training. Of course, segments are selected
so that the training and testing subsets are similar in their distribution of rock types [19]
or meet the real life considerations. In the SB method, each hole will likely contribute to
both training and testing subsets. In the HB method, selection is made by holes and not by
segments. Therefore, 75% of the holes are selected for the training subset. Each segment in
the selected hole contributes only to the training subset. Segments in the other holes are all
in the testing subset.

Note that regardless of method, there would be exactly 28 rows of total data in the
data set. However, while the number of rows in the training subset will be 21 in the SB
approach, this will be different for the HB approach. It depends on which holes are selected
for training and testing subsets. For example, if H1 is sent to the testing set, the training
subset would have 22 rows.

2.2. Operational Situations and Their Relationship to Evaluation Methods

In a mine, there is information about rock type in areas that are drilled. However,
information is often preferred at a more granular level for operational reasons. Many times,
in this scenario, there is information available close to and surrounding the non-drilled
location. This operational situation is reflected in the SB strategy, where rock types are
predicted at locations close to where information is available. For example, if segments 3
and 5 in Figure 2 are in the test set, they are locations close to where information is available
(segments 1, 2, 4, 6). Segments are about 5 m apart. Therefore, this is similar to desiring
to know the rock type in a particular production blast, since drillhole spacing in a typical
blast is 5-by-5 m at EMC. Knowing the rock type has immediate operational value as it can
help predict grades or mineral processing complexities.

Another situation that occurs at a mine is when information is needed for areas where
hole density is sparse. This scenario is captured by the HB method. Since the holes in the
test set are not known to the model, this method simulates predicting an entire drillhole
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between known drillholes. The difference with SB is that the distance of testing segments
from training segments is much larger in HB. In HB, when a prediction is made for a test
segment, it is made based on segments (training data) that are in other holes. Since holes
are 50 m or more apart, predictions are essentially for locations 50 m or more away from
known data. In SB, however, predictions are made based on segments, some of which are
in the same hole (perhaps as close as 5 m away). SB is thus a scenario where predictions
are for locations that are near to locations with known data. Hence, SB-versus-HB is also a
near-versus-far comparison.

A variant of the above scenario is when information is required at depths beyond the
current drilling depth. In this situation, named “SB specific to elevation” (SBE), information
is available up to a given elevation, while there is interest in knowing the rock types
below this elevation. Therefore, using information up to this elevation, rock type has to
be predicted for deeper locations (future benches) for short-term or long-term planning
purposes. In this method, all segments above the specific elevation are in training subset,
while locations deeper than that are in the test subset. To define terminology, SBE-1600-
1300-30 indicates the SB evaluation method where segments between 1600 m and 1300
m elevations are part of the training subset. The “30” refers to the segments in the next
30 m of depth (1270–1300 m elevation). This 30 m forms the test set. Thus, the evaluation
is occurring at 1300 m elevation, with 1600–1300 m being the training set and 1270–1300
being the test set.

In the label SBE-1600-1300-30, 1600–1300 is referred to as the training interval (TI) with
a training width (TW) of 300 (1600–1300 = 300), while 30 is the evaluation width. Inciden-
tally, the highest collar elevation is 1600 m and, therefore, when the training interval starts
at 1600 m, it implies all segments up to a certain depth are included in the training subset.

One may also use Figure 2 to understand this method. When applied to Figure 2,
SBE-1020-1000-5 would imply that all segments of the dataset between the thick blue line
and the dashed blue line would be used in the training set. Predictions will be made for
5 m below this line, i.e., one segment below the dashed line. Note that in the dataset a
segment is represented by the coordinates of its centroid. Therefore, unlike Figure 2, it is
always clear whether a segment is above or below a line.

In the SB and HB strategies, training and testing subsets are selected by randomly
splitting the datasets [25]. In the results section, it is shown that despite the random
shuffling, the characterization of the subsets is almost identical in both strategies. In the
SBE strategy, training data is everything within a particular training interval, while testing
data is everything within a particular evaluation width that is just outside the training
interval. Since the two subsets represent different 3D spaces, there is no reason for them
to be similarly characterized. Normally, this would be an improper modeling approach.
However, that concern does not apply here as the intention is to test if ML can predict just
outside its training area.

The ML method used in the paper is random forest (RF). RF were used for two
major reasons [26]. One, unlike geostatistics, RF do not require any assumptions on the
distribution of data. Two, as explained in the section below, RF tend to generalize well.
RF are not new to mining geology [27,28], but since they are not a common technique in
mining they are briefly presented next.

2.3. Random Forest: Background

This paper is not intended to be a manual on random forest (RF). Those seeking a
deeper understanding are referred to [29], the source for this introduction. First, a note
on terminology. In machine learning terminology, ‘feature’ refers to a database field. A
drillhole database that contains the coordinates (northing, easting, elevation) and the rock
type code has four features. A RF developed to determine the rock type will then be based
on three features (northing, easting, elevation).

To understand random forests, one must first understand decision trees. A decision
tree is a series of yes/no questions that are used to sub-divide the samples in the training
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set. A question applied to a group of data acts like a boundary, as it splits the parent group
into two. The child groups can then be further split using boundaries of their own. The
application of decision trees is explained through an example.

Consider the training set in Figure 3 where each sample consists of x-coordinates,
y-coordinates, and a binary class indicator (1 or 0). In this example, the goal of the decision
tree is to determine the class for a given (x, y) location.
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Figure 3. Example training data set showing the two classes (1 and 0) and their coordinates, x (hori-
zontal axis) and y. The three lines shows three boundaries.

Assume that the tree starts with the blue boundary (Y > 36), splitting the data into
two. The two resultant groups are further split using the red (bottom group) and yellow
(top group) boundaries. The four subgroups are numbered I-IV to assist in the description.
Assume that the above was the extent of the tree, and the modeler wishes to know the class
for the test point (20,5). When the decision tree is applied to the point, it lands in Group III.
Therefore, the class assigned to (20,5) is the class implied by the samples in Group III. Since
1’s form the majority in Group III, the class assigned to (20,5) is 1. In a regression decision
tree, the assigned value can be the mean or median (or any other appropriate statistic) of
the group into which the point lands. In this example, any point being evaluated will face at
most two boundaries. Therefore, the depth of the tree is 2. Figure 4 shows a representation
of the decision tree, with the “yes” branch progressing to the left. The location at which a
boundary exists is called a node, i.e., a group of data points is a node. The final nodes are
also shown (I, II, III, and IV).

When a node is to be divided, one must first decide which feature to use for the
boundary. In this example, two features are available to be used as a basis for dividing
the boundary. The first boundary in the above example could have been on the X-axis
instead of the Y-axis. The next design choice is to identify where to locate the boundary on
the selected feature. In this example, the choice was to locate the first boundary at 36 (i.e.,
Y > 36). Most decision tree algorithms make both choices at once. If the number of features
is low, one could systematically apply boundaries in all the features, and then pick the one
where the resultant child groups have the least error (i.e., each node is homogenous and
contains only or mostly samples from the same category). Notice how group IV contains
only 0. This node can no longer be divided as it is fully homogeneous. The process of
dividing nodes can continue till the final nodes are all homogenous or have at least one
sample. One may also choose to limit the depth of the tree. Usually, a tree that is too deep
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may not be generalized. When the number of features is large, to reduce computations,
the algorithm may randomly choose a set of features to be used a basis for the boundary.
Different features are then considered for different boundaries.
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the decision boundary at a node.

In a decision tree, algorithms will generally yield the same set of boundaries for a given
training set if all the features are considered for every boundary. In a random forest with N
training data points, decision trees are formed by randomly selecting (with replacement)
N of the training data points. Thus, the same data point may be selected many times for
modeling a tree, at the cost of other data points that are not selected. Multiple trees are
formed this way to make the forest. When the forest is applied to determine the category
for a given test point, the decisions of the various trees in the forest are combined to form
the final decision. One may use different strategies to combine the decisions. Random
forests have been found to be superior to a single decision tree, with generalization not
being an issue [26].

3. RF Modeling and Results

RF models were developed using the RandomClassifier() tool in scikit [30]. Only one
hyper parameter was set: maximum tree depth (MTD). It was set using trial and error runs.
Tree depth was increased until performance did not increase. In other words, the shortest
tree depth for the highest performance was used as the setting. The task of the RF was to
predict the rock class, GDIR (1) or not (0). Table 1 shows the distribution of GDIR rock type
in the training and testing subsets for the various strategies. Table 2 shows the performance
of the RF models for the various strategies.

Table 1. Data characterization for various evaluation strategies.

Strategy MTD NTrain GDIR_Train GDIR_Train_
Prop NTest GDIR_Test GDIR_Test_

Prop nonGDIR_Test

SB 20 45,016 18,696 42% 45,017 18,404 41% 26,613

SBE-1600-
1300-30 25 45,603 20,872 46% 5473 2198 40% 3275

SBE-1600-
1300-45 25 45,603 20,872 46% 7995 3216 40% 4779

SBE-1600-
1300-60 25 45,603 20,872 46% 10,468 4230 40% 6238

SBE-1400-
1300-30 25 28,531 12,744 45% 5473 2198 40% 3275

SBE-1400-
1300-45 25 28,531 12,744 45% 7995 3216 40% 4779

SBE-1400-
1300-60 25 28,531 12,744 45% 10,468 4230 40% 6238

SBE-1500-
1200-30 25 61,589 27,411 45% 4093 1490 36% 2603
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Table 1. Cont.

Strategy MTD NTrain GDIR_Train GDIR_Train_
Prop NTest GDIR_Test GDIR_Test_

Prop nonGDIR_Test

SBE-1500-
1200-45 25 61,589 27,411 45% 6008 2171 36% 3837

SBE-1500-
1200-60 25 61,589 27,411 45% 7786 2804 36% 4982

SBE-1300-
1200-30 25 16,632 6590 40% 4093 1490 36% 2603

SBE-1300-
1200-45 25 16,632 6590 40% 6008 2171 36% 3837

SBE-1300-
1200-60 25 16,632 6590 40% 7786 2804 36% 4982

HB 25 45,154 18,467 41% 44,879 18,632 42% 26,247

MTD = Maximum Tree Depth; NTrain = Total rows in training subset; GDIR_Train = Number of rows in training set with GDIR;
GDIR_Train_Prop = Proportion of GDIR in training subset; NTest = Total rows in testing subset; GDIR_Test = Number of rows in testing
set with GDIR; GDIR_Test_Prop = Proportion of GDIR in testing subset; nonGDIR_Test = Number of rows in testing set with rocks other
than GDIR

Table 2. Performance of RF models for various evaluation strategies.

Strategy GDIR_success
_num

GDIR_success
_prop

GDIR False
Positive

nonGDIR
_success_num

nonGDIR_
success_prop OSR

SB 15,760 86% 9% 24,246 91% 89%

SBE-1600-1300-30 1584 72% 13% 2865 87% 81%

SBE-1600-1300-45 2179 68% 14% 4115 86% 79%

SBE-1600-1300-60 2758 65% 15% 5301 85% 77%

SBE-1400-1300-30 1414 64% 11% 2909 89% 79%

SBE-1400-1300-45 1939 60% 13% 4175 87% 76%

SBE-1400-1300-60 2444 58% 14% 5376 86% 75%

SBE-1500-1200-30 1209 81% 12% 2302 88% 86%

SBE-1500-1200-45 1704 78% 13% 3353 87% 84%

SBE-1500-1200-60 2146 77% 14% 4304 86% 83%

SBE-1300-1200-30 1415 95% 71% 763 30% 53%

SBE-1300-1200-45 2053 95% 71% 1100 29% 52%

SBE-1300-1200-60 2656 95% 71% 1424 29% 52%

HB 7756 42% 29% 18727 71% 59%

GDIR_success_num = Number of GDIR test rows successfully classified; GDIR_success_prop = Proportion of GDIR test rows successfully
classified (100 × GDIR_success_num/ GDIR_Test); nonGDIR_success_num = Number of non-GDIR test rows successfully classified;
nonGDIR_success_prop = Proportion of non-GDIR test rows successfully classified (100 × nonGDIR_success_num/non-GDIR_Test);

The results demonstrate the following:

• The proportion of GDIR in the training and testing subsets depend on the evalua-
tion strategy.

# In SB and HB, despite random shuffling, GDIR is split about evenly between
training and testing subsets. This similarity between training and testing
subsets is appropriate as both represent the same 3D space.

# In the SBE strategies, the training subsets are much larger than the testing
subsets, since the training interval (e.g. 1600–1300 implies a 300 m training
interval) is much larger than the evaluation widths (e.g. 30 m). Since the two
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subsets represent completely different 3D spaces, the proportion of GDIR and
non-GDIR in the two subsets can be quite different.

• SBE models were developed for elevations of 1300 and 1200 m, as the mine is currently
operating approximately between those levels.

• RF performs quite well in the SB strategy. 81% of GDIR in the test subset is detected,
while 90% of non-GDIR is detected. The overall success rate (OSR) was 87%, i.e., 87%
of the rocks are recognized correctly as GDIR or non-GDIR.

• In the SBE strategy (also see Figure 5):

# Notice how the performance lines in Figure 5 are inclined downwards to the
right. In each scenario, the performance falls as the evaluation width increases
from 30 m to 60 m. This is not surprising, as a larger evaluation width tests
space farther away from the modeling space.

# The overall accuracy is higher for higher training intervals (Figure 6). Thus, at
1300 m, 1600–1300 (training interval = 300) outperforms 1400–1300 (training
interval = 100). Similarly, at 1200 m, 1500–1200 outperforms 1300–1200. The
effect is more pronounced at 1200 m elevation.

# The seemingly flawless performance for SBE-1300-1200 is misleading (Table 2,
column GDIR_success_prop). The ability to classify 95% of the GDIR rock type
as GDIR is paired with a 71% false positive rate. In other words, the classifi-
cation of rock as GDIR is unreliable. This strategy classifies most segments as
GDIR. Though that results in capturing all the GDIR, it also ends up classi-
fying non-GDIR as GDIR. This is seen in the low success rate for classifying
non-GDIR.

• The false positive rate of 9–15% (for most cases) is decent. This means that when a
rock is classified as GDIR, it is most likely to be GDIR.

• HB strategy showed that predicting entire holes is difficult. When a hole is hidden in
its entirety, only 42% of the GDIR rock segments in the hole are classified accurately.
This is accompanied by a 29% false positive rate, which is not good.
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4. Discussion

Most mining operations either use the manually developed rock type models or sensor
technologies to make assumptions on the rock types contained within a drill block, or in
future benches/blocks. This paper tested ML algorithms as an alternative to both approaches.

The SB strategy demonstrated that given a good density of information, the gaps
can be predicted with high accuracy. This would suggest that ML of existing information
may be a good substitute for using technologies to detect rock types, when information is
available for nearby locations.

The SBE strategies demonstrated that mine planning can benefit from ML. Erdenet
Copper Mine, with a bench height of 15 m, can predict rock type two to three benches
below the current depth with significant reliability.

The HB strategy demonstrated that RF machine learning cannot yet replace a drilling
campaign. The HB strategy simulated data sparsity. Without data density, ML can have
problems. A research team [31] cited inadequate data as the reason for overfitting when ap-
plying neural networks to estimate grades based on sample locations, lithological features
and alteration levels. Another team [28] cited data density as a concern when applying RF
for mineral prospectivity mapping.

Despite the mixed results, there are advantages to using RF. Unlike geostatistics, no
assumptions are made about the statistical characterization of drillhole data. However, RF
performs about as well as geostatistics [32]. Performance aside, geostatistical methods take
advantage of spatial relationships as defined by variograms. RF does not explicitly take
advantage of spatial relationships. The K-nearest neighbor machine learning technique [33],
which is a version of the common inverse distance squared technique in geostatistics, does
take distances into consideration. However, it is not a sophisticated algorithm. It is possible
that by incorporating spatial relationships such as variograms, RF or other machine learning
techniques may perform better. This would be an excellent topic for future research, would
be along approaches being attempted in recent times [18].

5. Conclusions

The machine learning technique random forest was applied to the exploration drill-
hole database at Erdenet Copper Mine in Mongolia to predict the presence of rock type
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granodiorite. Granodiorite is an important rock type at the mine as it contains 43% of the
copper. The data consisted of 90,033 drillhole segments from 2823 drillholes. Most segments
were 5 m in thickness. Two data selection approaches, segment-based and hole-based,
were utilized to ensure that models could be tested to align with real life needs. Models
were developed to test for three operational scenarios. The base SB method tested for the
scenario when rock type is predicted at locations close to where rock types are known. This
simulates the typical block that is blasted as part of day-to-day operation, where rock type
is known in a relatively dense grid. The base HB method tested for the scenario where
rock type is unknown for the entire length of a drillhole in between other drill holes. The
SBE method tested for the scenario where rock type is known up to a given elevation
but is unknown beyond that elevation. In the SBE method, rock types were predicted for
30, 45 and 60 m (evaluation width) beyond a specific elevation. The information made
available to the models in the SBE method, or the training interval, varied from 100 m to
300 m. Given the 15 m benches at the mine, the 30, 45 and 60 m evaluation widths implied
predictions to 2, 3 and 4 benches below where rock types were known.

The models performed very well in the SB scenario, with 86% of granodiorite being
predicted accurately, with a false positive rate of 9%, resulting in an overall accuracy level
of 89%. In the SBE method, the overall accuracy varied from 52% to 86%. Performance was
better for higher training intervals, and for shorter evaluation widths. Performance was
best in the SBE method at 1200 m, i.e., rock type was predicted better at 1200 m than at
other elevations. The highest performance was achieved at 1200 m elevation with a training
interval of 300 m and evaluation width of 30 m. The performance in the HB method was
not encouraging, with an overall success rate of 59%.

This paper demonstrated that random forest-based machine learning can be very
effective for predicting rock types in near distances. Predicting the entire length of a
missing drillhole is, however, another story. The good performance of near-distance
predictions should prompt mines to perhaps switch to machine learning over traditional
manual modeling (or imperfect sensor technologies) to predict rock types in ore blocks
blasted for production.
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