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Abstract: The Three Gorges valley is one of the two key capture points of the evolution of the Yangtze
River, yet the formation of this valley—from the pre-Miocene to the late Pleistocene—remains
uncertain. The Jianghan Basin, a late Mesozoic–Cenozoic basin located just downstream of the
Three Gorges valley, is a crucial area for understanding the formation of the valley. In this study,
we used heavy mineral assemblages to trace the provenance of Pliocene–Pleistocene sediments
obtained from the 300-m-depth Zhoulao drillcore in the Jianghan Basin. Results show that heavy
mineral concentrations, compositions, and species display a clear change at a depth of 110 m in the
studied core, consistent with the change in values of magnetic indexes and trace-element geochemical
indicators. The heavy mineral assemblage deposited below a depth of 110 m (lower section of
the core) comprises zircon, epidote, leucoxene, rutile, anatase, pyrite, and titanite, whereas that
deposited above 110 m (upper section) consists of hornblende, pyroxene, garnet, hematite-limonite,
and magnetite. In addition, the heavy mineral assemblage of the upper section is similar to that of
the modern surface fluvial sediments of the Yangtze, which indicates that materials of the upper
core section of the Jianghan Basin were sourced from the upper Yangtze River Basin, west of the
Three Gorges. After incision of the Three Gorges valley, sediments from the upper Yangtze were
transported to the Jianghan Basin and deposited. Combining the results of this study with the known
paleomagnetic chronology of the Jianghan Basin, we propose that the Three Gorges valley was incised
at ca. 1.1 Ma.

Keywords: heavy mineral; late Cenozoic sediment; Jianghan Plain; Three Gorges; Yangtze River

1. Introduction

As the largest fluvial system draining the Tibet Plateau, the Yangtze River delivers
large amounts of sediment from its headwater regions to the middle–lower reaches and the
adjacent East China Sea [1–7] (Figure 1a,b). Chronological data and provenance interpreta-
tions of these ancient Yangtze sediments have helped not only to understand the temporal
and spatial variation in sediment source-to-sink processes but also to reconstruct the evo-
lution of the Yangtze River [8–12]. Recognition of the source-to-sink delivery pattern of
Yangtze River sediments has allowed a better understanding to be gained of the processes
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involved in the transportation of vast volumes of sediment by the Yangtze River and the
related evolution of sedimentary systems in East Asia [13–17]. Although many methods
have been used to study the provenance of the sediments of the Yangtze, the origin and
evolution of the Yangtze River Basin remain debated [18]. Some previous studies have
argued that sediment derived from the upper Yangtze River Basin first appeared in the
middle–lower Yangtze River Basin during the Pleistocene [19–21], whereas other studies
have proposed that the Yangtze River developed into a large river similar to the modern
Yangtze, probably during the Oligocene and no later than the end of the Neogene [10,22–24].
It is generally accepted that there have been two key capture points during the evolution of
the Yangtze: the First Bend in the Shigu area and the Three Gorges valley [22]. In particular,
the Three Gorges area, which is the link between the upper and the middle–lower Yangtze,
has become a major focus of research.

Minerals 2021, 11, x FOR PEER REVIEW 2 of 13 
 

 

reconstruct the evolution of the Yangtze River [8–12]. Recognition of the source-to-sink 
delivery pattern of Yangtze River sediments has allowed a better understanding to be 
gained of the processes involved in the transportation of vast volumes of sediment by the 
Yangtze River and the related evolution of sedimentary systems in East Asia [13–17]. 
Although many methods have been used to study the provenance of the sediments of the 
Yangtze, the origin and evolution of the Yangtze River Basin remain debated [18]. Some 
previous studies have argued that sediment derived from the upper Yangtze River Basin 
first appeared in the middle–lower Yangtze River Basin during the Pleistocene [19–21], 
whereas other studies have proposed that the Yangtze River developed into a large river 
similar to the modern Yangtze, probably during the Oligocene and no later than the end 
of the Neogene [10,22–24]. It is generally accepted that there have been two key capture 
points during the evolution of the Yangtze: the First Bend in the Shigu area and the Three 
Gorges valley [22]. In particular, the Three Gorges area, which is the link between the 
upper and the middle–lower Yangtze, has become a major focus of research. 

The Jianghan Basin, located just below the outlet of the Three Gorges [25] (Figure 1b), 
is the closest and most sensitive depocenter related to the incision of the Three Gorges. 
Detrital zircon U–Pb dating has suggested that material eroded from the Tibetan Plateau 
reached the Jianghan Basin at ca. 0.8 Ma, which implies that the Three Gorges valley was 
incised at the same time [26]. However, rare earth elements (REE) and Nd isotopic data 
indicate that the modern Yangtze River was established no later than the beginning of the 
Quaternary (2.58 Ma) [9], whereas detrital K-feldspar Pb isotope compositions show that 
feldspars from the Songpan-Ganzi terrane were already being delivered to the Jianghan 
Basin by 3.4 Ma. Although these studies have provided important constraints on sediment 
provenance, at present there is no consensus regarding the timing of formation of the 
Three Gorges. 

 
Figure 1. Sketch map showing the locations of the Yangtze River Basin (A), Jianghan Basin (B), and 
the Zhoulao borehole (C). (A) The Yangtze River originates from the Tibetan Plateau and discharges 
into the Pacific; (B) locations of the two key capture points during the evolution of the Yangtze: the 
First Bend (black circle) and the Three Gorges (red rectangle). Additionally shown are the locations 
of the Sichuan and Jianghan basins located to the west and just downstream of the Three Gorges, 
respectively; (C) location of the Zhoulao borehole in the depo-center of the Jianghan Basin. 

Figure 1. Sketch map showing the locations of the Yangtze River Basin (A), Jianghan Basin (B), and
the Zhoulao borehole (C). (A) The Yangtze River originates from the Tibetan Plateau and discharges
into the Pacific; (B) locations of the two key capture points during the evolution of the Yangtze: the
First Bend (black circle) and the Three Gorges (red rectangle). Additionally shown are the locations
of the Sichuan and Jianghan basins located to the west and just downstream of the Three Gorges,
respectively; (C) location of the Zhoulao borehole in the depo-center of the Jianghan Basin.

The Jianghan Basin, located just below the outlet of the Three Gorges [25] (Figure 1b),
is the closest and most sensitive depocenter related to the incision of the Three Gorges.
Detrital zircon U–Pb dating has suggested that material eroded from the Tibetan Plateau
reached the Jianghan Basin at ca. 0.8 Ma, which implies that the Three Gorges valley was
incised at the same time [26]. However, rare earth elements (REE) and Nd isotopic data
indicate that the modern Yangtze River was established no later than the beginning of the
Quaternary (2.58 Ma) [9], whereas detrital K-feldspar Pb isotope compositions show that
feldspars from the Songpan-Ganzi terrane were already being delivered to the Jianghan
Basin by 3.4 Ma. Although these studies have provided important constraints on sediment
provenance, at present there is no consensus regarding the timing of formation of the Three
Gorges.



Minerals 2021, 11, 1056 3 of 13

Numerous previous studies have established that fluvial sediments, especially assem-
blages of heavy minerals, record the source or provenance terrain and geology from which
they were derived, thus providing insights into sedimentary transport systems [27–30].
Heavy mineral analysis has been shown to be a sensitive and robust technique for constrain-
ing sediment provenance and has been successfully applied in interpreting the provenance
of modern Yangtze River sediments [30]. Heavy minerals are reliable and robust indicators
of sedimentary sources because of their durability and stability during parent rock me-
chanical disaggregation and subsequent sediment abrasion, sorting, erosion, weathering,
delivery, and deposition. However, this technique has not been applied to tracing the
provenance of ancient fluvial sediments of the Yangtze River Basin.

In this study, we analyze variations in the heavy mineral assemblage of Pliocene–
Pleistocene sediments in the Jianghan Basin, middle Yangtze River Basin, to provide
information regarding the timing of incision of the Three Gorges. The aims of the present
contribution were to: (1) establish the temporal variation in heavy mineral assemblages
of late Cenozoic sediments in the Jianghan Basin; (2) determine the factors controlling
the composition of these heavy mineral assemblages; (3) constrain the evolution of the
provenance of late Cenozoic sediments in the Jianghan Basin and identify the implications
for the channelization/incision of the Three Gorges valley.

2. The Yangtze River Basin
2.1. River Setting

The Yangtze River is the largest river in Asia and the third-largest river in the world,
with a length of >6300 km and a catchment area of ~1.8× 106 km2 [31]. It is located between
24◦27′–35◦44′ N and 90◦33′–122◦19′ E. Traditionally, the Yangtze River has been divided
into the upper, middle, and lower reaches [32] (Figure 1b). The Yangtze River drainage
basin consists of complex strata ranging in age from Archean to Quaternary [33]. The
Emeishan Large Igneous Province is the main mafic source rock in the upper Yangtze [34].
Loose Quaternary sediments and Paleozoic sedimentary rocks are extensively exposed in
the middle–lower reaches of the Yangtze River [35] (Figure 2).
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2.2. The Jianghan Basin

The Jianghan Basin is a Mesozoic—Cenozoic basin located just downstream of the
Three Gorges. It is situated in the area of the middle Yangtze River and lower Hanjiang
River between 29◦26′–30◦23′ N and 111◦30′–114◦32′ E (Figures 1B and 2) [36]. The Yangtze
River crosses the entire Jianghan Basin from west to east. The Jianghan Basin is a depression
belt of the Neo-Cathaysian structural system, with its landforms having originated from
the Late Jurassic, controlled by the E–W-trending Qinling and Nanling structural belts [37].
Since the early Tertiary, the Jianghan Basin has been in a state of subsidence, although
Quaternary subsidence has been dominant and is concentrated in the Xinhe area. The
lithofacies are fluvial–lacustrine facies showing a typical interlayered structure. The Jiang-
han Basin is an important catchment basin in which voluminous sedimentary materials
have been deposited by the upper Yangtze River. With the continuous accumulation of
deposits sustained over a long time, especially during the late Cenozoic, the Jianghan Basin
provides an ideal material record for reconstructing the evolution of the Yangtze River [38].

2.3. The Late Cenozoic Zhoulao Drillcore

A continuous core was obtained from the Zhoulao drillhole in the Qianjiang Depres-
sion, Jianghan Basin (Figure 1c). The Zhoulao core provides the best available magnetic
stratigraphic column of the Jianghan Basin. The magnetic stratigraphic framework of the
core has been reported by Zhang et al. [21] (Figure 3) and shows a record of the Brunhes—
Matuyama boundary (ca. 0.78 Ma) at 81 m depth and the Matuyama—Gauss boundary
(ca. 2.58 Ma) at 250 m. The late Cenozoic (since 3.0 Ma) sedimentation record in the central
Jianghan Basin appears to be continuous. The final drilling depth of the Zhoulao drillhole
was 300.49 m, with an average recovery rate of 85%. The average deposition rate of the
Zhoulao core is 100 m/Ma.
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3. Sampling and Method

A total of 22 samples were collected from the Zhoulao core. Sampling information,
including sample numbers and corresponding depths, is presented in Table 1 and Figure 3.
The experimental procedure was as follows. First, a 1 kg sample was taken from each sam-
ple after drying, immersed in clear water for 48 h, then sieved to obtain the 0.125–0.063 mm
fraction, which was weighed using an electronic balance. Second, a 10 g sample was taken
by separating the heavy and light minerals using bromoform (density of 2.89 g/cm3). After
drying at a temperature of 60 ◦C, the total content of heavy minerals was obtained by
weighing. Third, 10 view fields were selected using the strip method under a microscope to
identify heavy minerals, with the mean value of these determinations being used to reduce
errors. Several samples were ground into thin-sections to allow confirmation of heavy
mineral identification under a polarizing microscope. The number of grains analyzed was
more than 600 for every heavy mineral sample, on which basis the percentage of each
type of heavy mineral was determined [39–42]. Because the samples are of the same size
fraction, these percentage values represent volume percentages. Finally, the weight of each
heavy mineral was calculated using the volume percentage and density.
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Table 1. Heavy mineral contents of the Zhoulao core.

Sample
Num-

ber

Sampling
Depth

(m)

Total
Weight

of
Sample

(g)

Total
Weight of

Heavy
Minerals

(g)

% Content
of Heavy
Minerals

Zircon Apatite Tourmaline Titanite Kyanite Epidote Hornblende Tremolite Pyroxene Garnet Leucoxene Rutile Glauconite Chlorite Anatase Pyrite Hematite–
Limonite Ilmenite Magnetite Allanite

Debris
Affected
by Iron

1 15 550 7.40 1.35 3.08 0.38 3.30 3.64 0.13 13.40 9.22 0.11 7.23 8.30 1.42 0.81 0.51 16.36 1.39 0.00 23.82 19.57 12.04 0.68 9.25
2 30 520 9.10 1.75 4.04 1.65 1.44 4.77 0.50 19.15 16.61 1.44 9.48 16.31 1.86 4.23 0.94 19.80 3.63 0.00 25.37 19.24 13.52 1.79 9.43
3 45 150 2.83 1.89 0.65 3.53 0.15 3.40 0.18 20.48 20.99 0.15 11.83 25.19 1.99 0.45 0.00 19.40 0.19 few 12.52 36.57 19.28 0.19 11.53
4 61 340 3.02 0.89 1.91 0.78 0.14 0.23 0.08 6.04 3.57 0.00 2.24 6.00 2.64 0.10 0.64 7.80 0.09 0.14 8.30 24.25 18.11 0.08 5.73
5 78 240 6.20 2.58 2.94 2.40 0.21 6.94 0.24 32.50 24.16 1.05 2.30 23.72 10.81 0.31 0.00 19.20 0.26 0.42 53.94 12.44 42.62 2.60 19.60
6 87 340 7.30 2.15 7.29 1.98 0.52 3.82 1.00 26.85 9.07 0.52 9.49 21.77 2.23 0.76 0.49 17.84 2.18 few 42.21 28.25 21.66 0.64 16.19
7 96 190 3.72 1.96 2.36 1.93 1.68 1.86 few 48.45 19.39 few 12.91 12.69 4.34 1.97 1.57 30.81 0.21 0.34 6.83 27.45 5.26 0.00 15.73
8 104 80 3.45 4.31 5.04 4.11 0.36 1.98 few 87.59 22.60 0.72 23.64 67.80 4.64 2.64 6.72 69.95 0.45 0.72 9.74 95.97 5.62 0.89 20.17
9 120 620 2.60 0.42 2.07 1.27 0.37 2.44 few 6.13 1.55 0.00 2.02 2.32 2.86 0.54 0.14 4.65 0.93 0.15 5.50 4.93 0.58 0.46 3.11
10 127 410 2.80 0.68 3.46 1.41 0.25 2.04 0.07 13.64 3.23 0.06 3.38 2.32 3.18 0.90 0.58 10.58 0.47 0.50 10.01 6.39 0.96 0.31 4.61
11 136 700 3.90 0.56 4.60 0.27 0.23 2.58 0.05 4.67 2.94 few 2.05 2.94 2.41 0.69 0.13 6.96 1.18 few 2.54 18.05 0.15 0.23 3.06
12 143 300 3.30 1.10 7.56 0.41 0.45 3.97 few 14.93 8.47 few 3.94 7.91 3.48 3.95 0.50 12.34 2.27 few 7.30 23.99 1.40 0.45 6.72
13 156 410 8.51 2.08 12.03 1.23 0.64 0.47 0.50 33.25 13.48 0.21 7.05 18.88 8.30 1.57 1.00 27.00 0.54 4.32 2.90 54.07 3.35 0.80 16.04
14 165 400 2.13 0.53 0.64 0.26 0.46 0.50 few 10.60 4.30 0.05 3.50 2.87 2.35 0.67 0.85 10.96 0.06 0.09 0.62 10.14 0.07 few 4.26
15 173 500 3.00 0.60 2.83 1.73 0.50 1.11 0.06 10.05 2.11 few 3.31 4.44 3.90 0.59 0.38 5.19 1.91 0.30 7.51 8.97 0.79 0.63 3.77
16 179 70 0.60 0.86 2.00 0.25 1.43 0.08 0.08 10.28 6.74 0.07 6.26 4.49 2.76 0.21 0.67 13.90 0.09 7.20 7.74 8.47 2.23 0.09 10.68
17 197 750 1.90 0.25 1.27 1.30 0.23 0.75 0.00 5.77 0.24 0.00 0.75 1.71 2.05 0.20 0.11 1.56 0.57 0.18 2.76 3.02 1.06 0.14 1.69
18 217 300 5.30 1.77 4.02 1.15 1.43 3.17 few 41.29 9.01 few 3.14 10.82 7.40 2.10 2.68 18.05 3.62 5.78 9.71 42.53 2.24 0.53 8.04
19 229 260 2.90 1.12 7.75 2.11 0.92 2.03 0.21 22.44 4.82 few 3.03 5.79 7.13 0.68 0.17 9.49 1.16 1.86 16.21 13.66 2.88 0.69 8.61
20 253 170 2.20 1.29 4.53 0.62 0.54 4.75 few 22.63 6.76 few 2.36 6.76 8.32 0.79 1.01 22.20 2.71 0.22 4.37 30.31 0.17 0.40 10.06
21 274 290 2.40 0.83 8.32 0.53 0.66 3.64 few 10.94 1.38 few 0.72 4.97 5.10 0.97 0.12 10.56 2.49 1.06 2.68 23.45 0.10 0.16 4.93
22 285 310 2.01 0.65 2.20 0.60 0.52 0.58 0.06 11.00 1.64 0.10 1.72 7.23 2.70 0.77 0.49 8.97 0.33 3.16 1.42 14.73 1.63 0.13 4.89
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4. Analysis and Results
4.1. Heavy Mineral Species and Heavy Mineral Concentration Index

Statistical results of heavy minerals for the 22 analyzed samples are presented in
Table 1. Twenty-one different heavy minerals were detected in the Zhoulao core sediment
samples. Several minerals with densities of >2.89 g/cm3 account for 83.54% of the total
heavy mineral content, including magnetite, amphibole, pyroxene, epidote, chlorite, garnet,
ilmenite, hematite–limonite, and iron-stained detritus, whereas zircon, apatite, titanite,
leucoxene, anatase, and pyrite account for 13.61%, and the other 11 heavy minerals account
for 2.85%.

The heavy mineral concentration (HMC) index measures the abundance of heavy
minerals contained in fluvial sediments [29]. The HMC index measures the production
of heavy mineral grains by source rock and is calculated as the heavy mineral content of
a sample expressed as a percentage. Figure 4 shows that contents of the main minerals
vary substantially with depth. A marked change is observed in heavy mineral contents at
sample 8 (104 m depth, gray band in Figure 4).
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The mean value of HMC for the whole core is 1.35%, but the maximum (4.31%)
appears in sample 8. The mean HMC value of samples 1–8 is 2.11%, whereas that of
samples 9–22 samples is 0.91%. Taking the overall mean of 1.35% as the background
value, the mean value of samples 1–8 is 0.76% higher than the background value, whereas
that of samples 9–22 is 0.44% lower. Therefore, we divided the core into two sections,
corresponding to samples 1–8 and samples 9–22, respectively.

4.2. Heavy Mineral Assemblages

In addition to the variation in HMC, we also made a comparison of the heavy mineral
assemblages between the two sections. Figure 5 shows that samples 22–9 are characterized
as a heavy mineral assemblage of zircon, apatite, epidote, leucoxene, rutile, chlorite,
ilmenite, anatase, pyrite, and titanite (white rectangle in group 1), whereas samples 8–1 are
characterized by hornblende, pyroxene, garnet, hematite–limonite, and magnetite (black
rectangle in group 2). These results also show that the sediment source area underwent a
marked change at the time, corresponding to a depth of 104 m in the Zhoulao core.
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4.3. Apatite–Tourmaline, Garnet–Zircon, and Zircon–Tourmaline–Rutile Index Analysis

Morton and Hallsworth [31] proposed that the main controls on heavy mineral assem-
blages in fluvial sediments are (1) hydraulics, which fractionates the relative abundance
of minerals with different hydraulic behavior; (2) burial diagenesis, which reduces min-
eral diversity through progressive dissolution of unstable mineral species. Morton and
Hallsworth [31] proposed the ATi (apatite-tourmaline), GZi (garnet-zircon), and ZTR
(zircon-tourmaline-rutile) indexes to understand the transportation processes of sediments.
These three indexes are defined as:

ATi = 100 × apatite%/(apatite% + tourmaline%) (1)

GZi = 100 × garnet%/(garnet% + zircon%) (2)

ZTR = zircon% + tourmaline% + rutile% (3)

ATi can be used to measure the extent of weathering during alluvial storage. In fluvial
sediments deposited in humid tropical settings, the ratio of apatite to tourmaline decreases
substantially over time during alluvial storage, whereas the effect on other indexes is less,
meaning that variations in ATi can at least partially reflect the degree of weathering during
alluvial storage. ATi can also be used to indicate changes in provenance combined with
GZi and ZTR.

Table 2 and Figure 6 show that there is a significant difference in each of ATi, GZi, and
ZTR between samples 22–9 and samples 8–1. The values of ATi and GZi increase, whereas
the value of ZTR decreases from 120 to 100 m depth in the Zhoulao core. The increase in
ATi may be due to two reasons: the first is that the source rock changed from one with a
lower abundance of apatite to one with a higher abundance during the time corresponding
to this depth interval; the second is that the depositional environment changed to one
characterized by stronger hydrodynamics and a higher deposition rate, which caused
the weathering of apatite to weaken. The increase in GZi was caused by an increase in
the proportion of source composed of metamorphic rock, which caused garnet content
in the core sediments to increase. The decrease in ZTR indicates that the mineralogical
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maturity reduced owing to increasing rates of weathering, denudation, and deposition.
Thus, all three curves in Figure 6 show that the depositional environment changed at the
time corresponding to 110 m in the Zhoulao core to one characterized by strengthened
hydrodynamics and increased sediment volume, suggesting that the drainage system also
had to make a corresponding adjustment.

Table 2. Variation in ATi, GZi, and ZTR indexes through the Zhoulao core.

Sample No. ATi GZi ZTR Sample No. ATi GZi ZTR

1 9 75 5.5 12 44 54 9.5
2 50 82 5.0 13 63 64 4.8
3 95 98 0.6 14 33 83 3.0
4 83 78 2.3 15 75 64 5.8
5 91 90 1.2 16 13 71 4.2
6 77 77 3.6 17 83 60 5.6
7 50 86 2.8 18 41 75 4.0
8 91 94 1.6 19 67 45 7.5
9 75 56 6.0 20 50 63 4.0

10 83 43 5.4 21 41 40 11.0
11 50 42 8.5 22 50 79 5.0
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5. Discussion
5.1. Provenance of Diagnostic Heavy Minerals

Figures 4–6 show that there is a marked difference in heavy mineral assemblage
between the lower section of the Zhoulao core (samples 22–9) and the upper section
(samples 8–1), suggesting that the source of the sediments underwent a pronounced
change. It is worth noting that the heavy mineral assemblage of the upper section is
similar to that of modern surface fluvial sediments and low-terrace fluvial sediments of
the Yangtze River, which are characterized by magnetite, hornblende, pyroxene, garnet,
epidote, limonite, and ilmenite [20,30]. Enriched epidote, garnet, and chlorite in the upper
section are typical minerals sourced from metamorphic rocks and secondary minerals of
ferromagnesian minerals, such as hornblende, pyroxene, and biotite [20,30]. In addition,
ilmenite, magnetite, pyroxene, and hornblende are sourced from mafic–ultramafic volcanic
rock, whereas hematite and limonite are supplied mainly by metasedimentary rock [35].
This suggests that areas of metamorphic and mafic-ultramafic volcanic rock in the upper
Yangtze River Basin are the main sedimentary source areas. Diagnostic zircon, leucoxene,
epidote, and chlorite are sourced mainly from sedimentary rock, which crops out mainly
in the middle-lower Yangtze River Basin, especially the Jianghan Basin [37] (Figure 2).

Before incision of the Three Gorges valley, the sediments of the Jianghan Basin were
supplied by adjacent areas and the Han River catchment, which are located on sedimentary
rock [30]. This sourcing of sediment from local areas and the Han catchment is consistent
with the heavy mineral assemblage of the lower section of the Zhoulao core. The upper
Yangtze River Basin, west of the Three Gorges, consists mainly of mafic–ultramafic volcanic
rock and metamorphic rock, especially within the Jialing River catchment. In addition,
Emeishan basalt and vanadium titano-magnetite in the Panzhihua area have made a
contribution of magnetite to the upper section of the Zhoulao core and also to modern
surface Yangtze sediments and low-terrace fluvial sediments [30]. After incision of the
Three Gorges, materials from the upper Yangtze River Basin were able to be transported to
the middle–lower reaches and were deposited mainly in the Jinghan Basin, just downstream
of the Three Gorges.

5.2. Comparison of Heavy Metals with Other Provenance Indicators for the Zhoulao Core

In previous studies, numerous provenance indicators have been applied to trace the
sediment provenance of the Zhoulao core to constrain the formation of the Three Gorges.
Magnetic parameter analysis of the Zhoulao core [21] has shown that the contents of
coarse materials and stable magnetic minerals both increase markedly above a depth of
~110 m (Figure 3). In addition, the magnetic susceptibility of the sediments, their saturation
isothermal remanent magnetization, and the magnetic susceptibility values of anhysteretic
remanent magnetism also increase sharply at the same depth, indicating an important
adjustment event in the hydrological–sedimentary environment of the Jianghan Plain
related to incision of the Three Gorges valley. Taking into consideration the paleomagnetic
framework, Zhang et al. [21] proposed that the timing of channelization of the Three Gorges
valley probably occurred between 1.17 and 1.12 Ma. Pyroxene contents of the Zhoulao
core change abruptly at ~104 m [32], and provenance indicator trace-element contents
and ratios [33] (∑REE, Y, Th, U, Th/Sc, Co/Th, La/Sc, and Cr/Cu) become lower above
~125 m depth, which has been interpreted as evidence that the Three Gorges was incised at
1.25 Ma (Figure 7). All of these previous studies constrained the timing of formation of the
Three Gorges during the Early Pleistocene.
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Figure 7. Variation in provenance indicator values of the Zhoulao core. Lithology, magnetic characteristics, heavy mineral
assemblage, pyroxene content, and trace-element patterns suggest that the sediment provenance underwent a major change
at a depth of ~110 m in the Zhoulao core.

5.3. Implications for the Timing of Incision of the Three Gorges

Our provenance interpretation shows that sediments of the lower section (below
110 m) of the Zhoulao core were sourced from the area surrounding the Jianghan Basin,
whereas materials of the upper section (above 110 m) were supplied mainly by the upper
Yangtze River Basin, west of the Three Gorges. This transition in provenance of sediment
in the Jianghan Basin reflects the incision of the Three Gorges. Combining our provenance
information with paleomagnetic polarity chronology [21], we propose that the Three Gorges
valley was incised at about 1.1 Ma, which allowed throughflow of water and sediment into
the Jianghan Basin.

6. Conclusions

The Jianghan Basin is located just downstream of the Three Gorges valley and is a
crucial location for understanding the evolution of this valley. Our study of the provenance
of sedimentary deposits in the Jianghan Basin has shed light on the geological origin of the
sediments, the morphological evolution of the Three Gorges valley, and the development
of the Yangtze River valley. In this study, we obtained 22 samples from late Cenozoic
sediments obtained from the Zhoulao core in the central Jianghan Basin for heavy mineral
assemblage analysis to trace their provenance.

Results of the study show that there is a marked difference in the heavy mineral
assemblage between the lower (below 110 m) and upper (above 110 m) sections of the
Zhoulao core. The lower section has a heavy mineral assemblage of zircon, epidote,
leucoxene, rutile, anatase, pyrite, and titanite, whereas the upper section has an assemblage
of hornblende, pyroxene, garnet, hematite–limonite, and magnetite. The sediments in the
lower section were sourced from the area surrounding the Jianghan Basin, but those of
the upper section were supplied mainly by the upper Yangtze River Basin. This sediment
provenance transition marks the incision of the Three Gorges, which allowed sediment to
be transported into the Jianghan Basin and deposited there. Combining our provenance
information with paleomagnetic polarity chronology, we propose that the Three Gorges
were incised at about 1.1 Ma. Our results are consistent with patterns of other provenance
indicators, including magnetic parameter analysis, lithology, pyroxene content, and trace-
element characteristics.

Author Contributions: C.K. and C.L. formulated the topic of the study and performed the project;
C.K., C.W., Y.Z. and H.J. performed fieldwork and sample collection; C.K., Y.L. and R.G. analyzed the
data and wrote the manuscript. All authors have read and agreed to the published version of the
manuscript.
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