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Abstract: The wetting film evolution process is essential for flotation, especially in bubble–particle
attachment. A mixed collector has been proved effective in promoting flotation. In this paper, the
effect of a mixed collector (MC) composed by n-dodecane (D) and oleic acid (OA) on wetting film evo-
lution was investigated using the extended Derjagin–Landau–Verwey–Overbeek (EDLVO) theory, the
Stefan–Reynolds model, induction time, and zeta potential measurement. The hydrophobic force con-
stant between bubble and coal treated by different collectors was analyzed. The results showed that
MC was superior in reducing the induction time and increasing the zeta potential. When bubbles inter-
acted with coal treated by MC, they had relatively low interaction energy, high critical film thickness,
and high drainage rate. The order of hydrophobic force constant was no reagent < D < OA < MC. It
indicated that the hydrophobic interaction between bubbles and coal particles treated by MC was the
strongest because of the synergistic effect of D and OA.

Keywords: wetting film; EDLVO theory; Stefan–Reynolds model; collector; hydrophobic force
constant

1. Introduction

Wetting film, i.e., thin liquid film, is a common phenomenon in nature, which often
occurs when air bubbles and solid particles approach each other in a fluid medium. The
evolution of wetting film experiences the process of drainage, thinning, and rupture. Then,
the three-phase contact line will form, expand, and relax, and the attachment occurs [1].
Froth flotation is a separation process based on the hydrophobicity difference between
minerals. The hydrophobic particles will adhere to bubbles and rise, while the hydrophilic
ones will remain in the pulp. The bubble–particle attachment that is dominated by the
evolution of wetting film is a prerequisite for flotation [2]. Therefore, the evolution of
wetting film between air bubble and particle is closely related to flotation efficiency.

The wetting film between hydrophilic surfaces is stable, and it will reach equilibrium
thickness during the drainage process. However, the wetting film between hydrophobic
surfaces is unstable, and it will drain faster and rupture spontaneously after reaching
the critical thickness [3,4]. Scholars have done much research on the interface chemical
properties and related theories of wetting film. Xie et al. studied the factors that influence
the wetting film evolution, and discussed the bubble–monolayer interaction, bubble–
polymer interaction, and bubble–superhydrophobic surface interaction [5]. They further
investigated the influence of salt concentration and depressants on bubble–molybdenite
interaction, and found the high salt concentration reduced the repulsive interaction and
the polymer depressant weakened the hydrophobic interaction [6]. Huang et al. [3] stud-
ied the dynamics of hydrophobic solid surface interacting with the oil droplets in water.
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Wang et al. [7] discussed the effect of gas enrichment on wetting film, and they found that
a gassed system had faster coalescence due to the strong surface force. Besides, there are
multiple theories trying to interpret the mechanism of the film evolution. The Derjagin–
Landau–Verwey–Overbeek (DLVO) theory was introduced to explain the aggregation and
dispersion behavior of colloidal particles [2]. Many scholars have used the extended DLVO
(EDLVO) theory to calculate the bubble–particle interaction and particle–particle interac-
tion [4]. Yoon et al. [8] applied the EDLVO theory to define the total interaction energy
between air bubbles and particles. The Stokes–Reynolds–Young–Laplace model [9] can
well simulate the film thinning process between bubble and solid surface. The Reynolds
lubrication theory [3] and Stefan–Reynolds models [10] were used to describe the dynamics
of the film drainage process. In the film drainage process, the disjoining pressure deter-
mined by Derjaguin and Kussakov [11] was considered the reason for driving the wetting
film evolution.

Recently, the effect of surfactant on the wetting film evolution has attracted the
attention of some researchers [12–16]. The addition of a surfactant or collector in the
flotation system is essential. Collectors in coal flotation are usually hydrocarbon oils, such as
kerosene or diesel oil. The adsorption of hydrocarbon oils on the nonpolar region increased
the hydrophobicity of coal surface [17], which enhanced the hydrophobic interaction
between bubble and coal particles, and accelerated the evolution of wetting film. However,
the low-rank coal was rich in oxygen functional groups, which caused the formation of
hydration film [18], low surface hydrophobicity, and inefficient reagent adsorption [15].
So, the common oily collectors were not effective in low-rank coal flotation [19]. To solve
this problem, mixed collectors or compound reagents have been widely used to improve
flotation performance. It was demonstrated that the addition of ionic or nonionic surfactant
can enhance the hydrocarbon oil adsorption and increase the hydrophobicity of low-rank
coal [20–22]. Jena et al. [23] conducted low coal flotation using waste black oil as a collector,
which contained a mixture of different oxygen-containing groups. The results showed that
waste black oil was more effective than a conventional collector. Sis et al. [24,25] compared
the effect of kerosene, pine oil, and tall oil on low-rank coal flotation. They found tall oil
was the most effective because it contained more than 40% oleic acid, which can interact
with oxygen groups on low-rank coal surface. Xia et al. [26] used the mixture of dodecane
and 4-dodecylphenol (DDP) as a collector, and it was indicated that the lignite flotation
index of the mixture was better than that of dodecane and DDP alone. Erol et al. [27]
studied coal flotation performance by using the mixture of Triton x-100 or Brij-35 with
MIBC (Methyl isobutylcarbinol) in various ratios as a collector. The combustible matter
recovery was greatly increased by using a mixture of Brij-35 and MIBC. In summary, the
researches of mixed collectors in coal flotation were mainly focused on reagent types,
adsorption [26], dispersion [28], or molecular structure [18], but there are few studies on
the aspect of wetting film evolution between bubble and coal particle.

In this paper, the effect of a mixed collector (MC) composed of n-dodecane (D) and
oleic acid (OA) on the wetting film evolution between air bubble and low-rank coal was in-
vestigated. XPS measurement was used to analyze the composition of low-rank coal surface.
The induction time and zeta potential of the coal particles treated by different collectors
were measured. The EDLVO theory was applied to analysis interaction energy between air
bubble and low-rank coal, and the Stefan–Reynolds model was used to simulate wetting
film evolution process. In addition, the hydrophobic force constant was calculated by
establishing an exponent model based on the EDLVO theory and Stefan–Reynolds model.

2. Materials and Methods
2.1. Materials

Oleic acid and n-dodecane were used as carboxylic acid and hydrocarbon oil, respec-
tively, which were both analytically pure and purchased from the Aladdin. A reagent
purity test proved that both oleic acid and n-dodecane were of 99% purity, which met the
requirements of this test. Based on the previous research work of interfacial tension and
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flotation results [29], a mixed collector was composed of n-dodecane and oleic acid in the
mass ratio of 4:1 in this paper.

The coal sample was taken from the raw coal bunker of Daliuta Mine in Shanxi
Province, China. The sample was crushed and grinded. The size fractions of 0.0074–
0.125 mm and −0.074 mm were taken for the further induction time and zeta potential
measurement, respectively, and the samples were preserved in sealed vessels after the
drying process. The industrial analysis results showed that the volatile content and ash
content of the sample were 44.74% and 25.82%, respectively.

The element analysis results of the coal sample are shown in Table 1, in which the C
content was as high as 75.55%, and the O content was 15.35%. It indicated that the coal
sample contains more oxygen-containing functional groups, and there were few inorganic
oxides, which was suitable for this mechanism study.

Table 1. Ultimate analysis of coal sample.

Ultimate Analysis (%)

Cdaf Hdaf Odaf Ndaf St,d
75.55 4.96 15.35 1.05 2.07

2.2. XPS Measurement

X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher, Waltham,
MA, USA), located in the Advanced Analysis and Computation Center of China University
of Mining and Technology, was used to confirm the composition of the sample surface.
Monochrome aluminum anode target (Al Kα) with spot size 650 µm was applied as
radiation source. Pass energy was set at 20 eV and energy step size at 0.050 eV. To calibrate
C1s binding energy, 284.8 eV was set.

2.3. Induction Time Measurement

A self-assembled induction time measurement device, located in National Engineering
Research Center of Coal Preparation and Purification of China University of Mining and
Technology, was used to obtain different induction time between air bubble and coal
particles treated by different collectors. Figure 1 shows the device for measuring induction
time, which consisted of the driving device, the sample cell, the industrial camera, the
microsyringe, and the light source. First, the coal sample was weighed to 1 g and divided
into four batches, three of which were immersed into the reagents of D, OA, and MC,
respectively, and then stirred, filtrated, and dried. Then, each batch was arranged in the
bottom of the cell as a flat particles layer with a certain thickness. The cell was filled
with ultra-pure water. An air bubble with certain size controlled by the microsyringe was
generated and stabilized on the tip of the needle. The bottom of the air bubble was set at
an initial distance of 2 mm from the particles layer. Afterwards, the needle with the bubble
adhering on the tip moved at a constant velocity of 15 mm/s for 2.5 mm distance to contact
the particles layer. The contact time between air bubble and particles layer maintained
a certain time. The certain time was set at a series of values between 10 ms to 3000 ms.
During this time, the attachment would happen, and the capillary moved upwards back to
the initial position. The measuring process was conducted at least 10 times to acquire the
appropriate contact time for the attachment that had just occurred. Appropriate contact
time was the time that the probability of the attachment occurred was over 50%. The
images of the particles layer and air bubble contact process were displayed and recorded
in the computer. The induction time experiment was repeated five times for each batch in
different position on the particles layer. The mean value of contact time was taken as the
final result.
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Figure 1. The induction time measurement device.

2.4. Zeta Potential Measurement

Zeta potential measurement employed the potentiometric analyzer (ZetaPALS,
Brookhaven Instruments, Holtsville, NY, USA). The coal sample was treated by D, OA, and
MC, respectively. A total of 0.05 g coal sample was mixed with ultra-pure water into a
suspension with 0.1% mass concentration. The suspension was first conditioned for 3 min
with a magnetic stirrer, and then kept standing still for 10 h, then the supernatant of 1.5 mL
was taken for a zeta potential test. The 10-h standing allowed the settlement of large-sized
particles to let the fine particles form the colloid system with the upper suspension [30,31].
The zeta potential measurement was carried out at pH of about 8, mainly because the
flotation test of low-rank coal was carried out at this pH. The neutral and weak alkaline
environment was the common pH range for coal flotation [32]. The tests were repeated
five times at the room temperature of 20 ◦C, and the average was taken as the final result.

2.5. The Interaction Energy Calculation

The EDLVO theory was employed to study the interaction energy between bubble
and low-rank coal treated by different collectors. Presuming the bubble and coal particles
were all sphere shaped, the EDLVO theory [28,33,34] can be expressed as follows:

VT = VE + VD + VH (1)

VT is the total interaction energy, which is the function of wetting film thickness; VE is
the electrostatic interaction energy; VD is the Van der Waals interaction energy. VH is the
hydrophobic interaction energy.

Each term in Equation (1) can be expressed as follows:

VE =
εε0πRbRp

Rb + Rp

[
4ψ1ψ2arctanh

(
e−κh

)
+
(

ψ1
2 + ψ2

2
)

ln
(

1 − e−2κh
)]

(2)

VD = −
RbRpA132

6
(
Rb + Rp

)
h

(3)

VH = −
RbRpK132

6
(
Rb + Rp

)
h

(4)

Rb and Rp represent the radius of air bubbles and solid particles, respectively; ε and
ε0 are the dielectric constant in the water medium and vacuum, respectively; κ−1 is the
Debye length; ψ1. and ψ2 are stern potentials of particles and air bubbles, respectively. h is
the distance between two surfaces, i.e., the wetting film thickness; A132 is the Hamaker
constant; and K132 is the hydrophobic force constant.

To solve Equation (1), the coal’s zeta potential ψ1 can be obtained through previous
measurement. The radius Rp of coal particles was set 50 µm. The air bubble’s stern
potential ψ2 was −50 mV according to multiple literatures [35–38]. The Hamaker constant
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A132 was 1 × 10−20 J [10,12]. The subscripts 1, 2, and 3 represented the coal particles, air
bubbles, and water medium, respectively.

2.6. The Wetting Film Drainage Process Calculation

The Stefan–Reynolds model was applied to analyze the kinetic characteristics of the
wetting film drainage process when air bubbles interacted with low-rank coal particles
treated by different collectors. The disjoining pressure induced by the hydrophobic inter-
action was considered to be the reason driving the instability of the wetting film [5]. The
disjoining pressure is defined as a partial derivative of free enthalpy G, with respect to film
thickness h.

Π(h) = −(∂G/∂h)µ,A,T (5)

µ is the constant chemical potential, A is the superficial area, and T is the temperature.
When ∂G/∂h < 0, the wetting film is in a thermodynamic stable condition. According to
EDLVO theory, the disjoining pressure can be expressed as the follow equation, whose
three terms represent the electrostatic force, the Van der Waals force, and the hydrophobic
force, in order, respectively.

∏ = ∏E + ∏D + ∏H (6)

∏E =
εε0κ2

2
2ψ1ψ2cosh(κh)− ψ2

1 − ψ2
2

sinh2(κh)
(7)

∏D = − A132

6πh2 (8)

∏H = − K132

6πh2 (9)

If the bubble and particle are treated as two parallel immobile surfaces [39], the
Stefan–Reynolds model is expressed as the following equation:

dh
dt

= −2h3∆P
3ηR2 (10)

R is the radius of wetting film which can be approximated to the particle’s radius
Rp [40]; η is the liquid dynamic viscosity; ∆P is the pressure that drives the wetting film
thinning; ∏ is the disjoining pressure; and γ is the surface tension.

∆P =
2γ

Rp
− ∏ (11)

Combining Equations (10) and (11), the model of time-dependent wetting film thick-
ness is acquired:

dh
dt

= − 2h3

3ηR2

(
2γ

Rp
− ∏

)
(12)

Equation (12) is a typical differential equation. The fourth-order Runge–Kutta for-
mula was employed to solve Equation (12) and obtain curves of time-dependent wetting
film thickness between coal particles treated by different collectors and air bubble in the
condition of different hydrophobic force constants.

3. Results and Discussion
3.1. XPS Measurement Results

Figure 2 shows the XPS wide sweep spectrum of the raw coal sample. The raw coal
absorption peak of O1s is stronger than that of C1s, which indicates a higher oxygen
content than carbon. The elements of coal surface are primarily carbon and oxygen. There
are also a few other elements, such as silicon, aluminum, calcium, and sodium. The
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element composition indicates the heterogeneous coal surface containing both organic and
inorganic components.
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Figure 2. XPS survey scan result of coal sample.

Figure 3 shows the C1s peak fitting spectra of the raw coal sample. The sample has
relatively high content C–C bonds and C–H bonds, and the proportion of both is up to
61.74%. The relative content of C–O bonds, C=O bonds, and O=C–O bonds are 28.55%,
5.43%, and 4.28%, respectively, indicating that the coal is rich in oxygen functional groups.
The amount and type of the oxygen functional groups of coal surfaces are related to the
surface wettability and hydrophobicity, which will deeply affect the wetting film evolu-
tion [41–43]. The oxygen functional groups are the main reason for the low hydrophobicity
of low-rank coal that make it more difficult in wetting film drainage process.
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3.2. Induction Time Results

The results of induction time measurement between air bubbles and coal particles
treated by different collectors are shown in Table 2. As shown in Table 2, the induction
time decreases in the order of no reagent > D > OA > MC. The induction time of untreated
coal interacting with air bubble is 1125 ms, while the induction time is 551 ms, 92 ms, and
48 ms for the coal treated by D, OA, and MC, respectively. It is obvious that the induction
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time decreases greatly after being treated by collectors, and MC shortens the induction
time most significantly. Induction time is defined as the time of the whole wetting film
evolution process, including the time of film drainage, film rapture, and the time of three-
phase contact line forming, expansion, and relaxation [1]. It can be interpreted as the time
from collision to attachment between particles and bubbles. It reflects the wetting film
evolution process in the perspective of efficiency. In the flotation process, particles have
more probability to attach to the bubble and become concentrate product if the induction
time is shorter than the contact time. The coal particles treated by MC will be more efficient
in the attachment process due to shorter induction.

Table 2. Results of induction time and zeta potential measurement.

Number
No Reagent D OA MC

InT ZeP InT ZeP InT ZeP InT ZeP

1 1175 −20.57 595 −19.08 65 −16.58 60 −12.66
2 1065 −35.45 495 −18.39 105 −10.36 55 −15.32
3 1140 −19.14 535 −19.41 90 −12.82 35 −14.71
4 1095 −18.93 575 −22.19 95 −11.33 65 −13.97
5 1150 −23.61 555 −21.18 105 −18.76 25 −15.84

AVE 1125 −23.54 551 −20.05 92 −13.97 48 −14.50
STDVE 39.62 6.19 34.41 1.41 14.70 3.20 15.36 1.11

InT and ZeP represents induction time and zeta potential, respectively, AVE represents average value of data, and
STDVE represents standard deviation.

3.3. Zeta Potential Results

Table 2 presents the results of zeta potential measurement. The order of zeta potential
of coal treated by different collectors is: no reagent < D < MC < OA. The zeta potential of
low-rank coal without collector treatment is negative in natural pH, and its zeta potential
value is the lowest. Zeta potential increases slightly from −23.54 mV to −20.05 mV after
the treatment of D. Zeta potential value can reflect the collector adsorption state to some
extent [44]. The effect of D increasing the zeta potential value is very limited, because
D is a nonpolar reagent which can only adsorb to the hydrophobic sites, and it has little
impact on electrical double layer. The low-rank coal treated by OA has the highest zeta
potential value, because OA can adsorb on the hydrophobic sites of low-rank coal surface
and compress the double electric layer. Moreover, OA can reduce the pH value of the
environment. The zeta potential of coal generally increases with the decreasing of the pH
value [44]. MC has a significant effect on increasing the zeta potential, which changes it
from −23.54 mV to −14.50 mV. The zeta potential value of coal treated by MC is close
to, but slightly lower than, OA. The OA, as a component of MC, has lower content, but
still played a dominant role in reducing the zeta potential. The effect of D or MC on zeta
potential is weaker than OA. Therefore, the effect of MC increasing zeta potential is slightly
weaker than OA. The zeta potentials of bubble and coal are both negative in water, so the
electrostatic interaction is repulsive between them. A closer value to zero of zeta potential
means a lower repulsive effect and relatively higher attractive interaction between particles
and bubbles. Therefore, wetting film for two surfaces with low zeta potential absolute
value is less stable, and the attachment between bubble and particle is more likely to
happen. So, the coal treated by MC and OA should have more unstable wetting films in
terms of zeta potential. In addition, the calculation of K132 in this paper was based on the
measured induction time and zeta potential. The standard deviation analysis on these two
key parameters was conducted. The standard deviation was calculated as follows:

STDVE =

√
∑5

i=1
(
Xi − X

)2

5
(13)
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where X represents actual measured value, X represents average value of data, and STDVE
represents standard deviation. The results of STDVE are given in Table 2. The results
showed that the error of induction time and zeta potential was small, which ensured the
accuracy of the subsequent calculation results.

3.4. Interaction Energy Calculation Results

The functional relationship between total interaction energy and the wetting film
thickness can be obtained when hydrophobic force constants are set for different values.
Figure 4 shows the curve of interaction energy as a function of wetting film thickness
between air bubble and coal treated by different collectors. For a certain K132 value, the
total potential energy at film thickness 150 nm is positive, which indicates the interaction
is repulsive. When air bubble and coal particle initiates approaching each other, the
electrostatic interaction energy acts as repulsive, because both of the surfaces’ potential
are negative. The Van der Waals interaction energy and hydrophobic interaction act as
attractive. As wetting film thickness h decreased, the interaction energy reached the
maximal value at critical wetting film thickness hcr. The maximum energy is referred to as
the energy barrier [8]. Compared to the coal treated by no reagent, the coal treated by the
collector has a lower energy barrier. OA and MC have relatively low energy barriers. The
lowest energy barrier of bare coal is 1.34× 10−16 J at K132 value of 1.0× 10−18, which is still
higher than the highest energy barrier of OA, 0.81× 10−16 J, and that of MC, 0.89× 10−16 J,
at K132 value of 4.0 × 10−19. This means that OA and MC reach the hcr with less energy
to overcome. After reaching maximum value, the film ruptures, the interaction energy
rapidly declines to negative value, and the interaction become attractive.
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As shown in Figure 4, each hydrophobic force constant K132 corresponds to a critical
film thickness hcr. The hydrophobic force constant K132 and corresponding critical film
thickness hcr is listed in Table 3. There is a linear relationship between hcr and K132 [10],
as shown in Figure 5. The hcr increases with the increasing of K132, and increases in order
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of no reagent < D < MC < OA at the same K132. The hcr of coal treated by collectors is
thicker than the coal without collector treatment. The hcc of coal treated by OA and MC is
thicker than D, which indicates the higher hydrophobicity of coal surface treated by OA
and MC [45]. The larger hcr value means that the wetting film is easier to rupture and the
attachment between air bubble and coal occurs more easily [4].

Table 3. The hydrophobic constant and the corresponding wetting film thickness of coal treated with
different reagent.

hcr
K132(J)

4.0 × 10−19 6.0 × 10−19 8.0 × 10−19 9.0 × 10−19 1.0 × 10−18

No reagent 57 65 75 - 87
D 67 79 87 - 95

OA 95 109 124 130 -
MC 92 105 119 127 -
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3.5. The Wetting Film Drainage Calculation Results

Figure 6 shows the curves of time-dependent wetting film thickness under different
hydrophobic force constants. Each critical film thickness hcr corresponds to a critical time
which is defined as the induction time tb. The drainage rate of film (curve slope) decreases
with the time but increases with the hydrophobic force constant. The order of wetting film
drainage rate for coal treated by different collectors is: no reagent < D < MC < OA. The
drainage rate of OA and MC are close. The kinetics results of the wetting film drainage
process are consistent with the interaction energy results. The hcr obtained from Figure 4
corresponds to the theoretical induction time tb. Apparently, thinner hcr corresponds to a
shorter induction time and faster thinning rate. The hcr plays a dominant role in wetting
film drainage, but K132 has little effect on thinning rate.
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OA markedly increases the zeta potential value of coal particles and weakens the
repulsive electrostatic force. Given that the properties of air bubbles and water medium
remain constant, drainage rate and induction time reflect the hydrophobicity of the coal
particles to some extent. The rich oxygen-containing groups existing on low-rank coal
surfaces may form hydrogen bonding with water, causing low surface hydrophobicity [17],
which results in slow drainage rate and long induction time. As a type of alkane, D can
strongly adsorb to the hydrophobic sites on coal surface and increase the hydrophobicity.
So, the drainage rate of coal treated by D is faster than coal without collector treatment.
OA molecules possess not only hydrocarbon chins, but also the carboxyl groups. OA
interacts with the hydrophilic sites through hydrogen bonding [18], and increases the coal
hydrophobicity more than D. MC can implement the synergy of OA and D. It can cover both
the hydrophobic and hydrophilic sites on coal surface, resulting in higher hydrophobicity
and faster drainage rate. The drainage rate of using OA alone is slightly faster than that of
MC. The drainage process is accelerated because of the high concentration of OA spreading
from coal surface and wetting film into the medium and then entraining water from the
film [46]. However, in the flotation process, OA in high concentration can adsorb to coal
and gangue at the same time [47], and lose the selectivity.

3.6. Back Calculation of Hydrophobic Force Constant

The theoretical induction time tb under different hydrophobic force constants is
shown in Table 4. The exponential function was applied to fit the functional relationship
between hydrophobic force constant K132 and calculated induction time tb. The fitting
results are shown in Figure 7. Based on the model obtained from the fitting curves,
the measured induction time is applied to calculate the hydrophobic force constant of air
bubble interacting with coal treated by different collectors. The fitted models and calculated
hydrophobic force constant are shown in Table 5. The order of calculated K132 for different
collectors is no reagent < D < OA < MC. Coal treated by MC interacting with air bubble has
the maximum K132 value of 1.34 × 10−18 among all used collectors. The hydrophobic force
constant K132 reflects the hydrophobic interaction degree. Moreover, the K132 is a decisive
parameter for hydrophobic force and disjoining pressure. The greater value of K132 means
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the hydrophobic force and disjoining pressure is higher, which indicates the critical wetting
film thickness is thicker and the drainage process is faster. The hydrophobic interaction
between bubble and coal treated by MC is the strongest. The MC has the most significant
impact on hydrophobic interaction and the wetting film evolution process.

Table 4. The calculation value of induction time tb corresponding to different hydrophobic force
constants.

Induction
Time tb (s)

K132(J)

4.0 × 10−19 6.0 × 10−19 8.0 × 10−19 9.0 × 10−19 1.0 × 10−18

No reagent 1.193 0.899 0.659 - 0.472
D 0.857 0.594 0.472 - 0.381

OA 0.384 0.267 0.182 0.156 -
MC 0.416 0.295 0.207 0.168 -
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Table 5. Hydrophobic force constant between air bubbles and coal particles treated with different reagents.

Reagent Actual Induction Time tind (s) K132-tind Function Model Calculation Value of K132 (J)

No reagent 1.125 K132 = 1.8370 × 10−18 × e−1.2669tind 4.42 × 10−19

D 0.551 K132 = 1.9758 × 10−18 × e−1.8986tind 6.94 × 10−19

OA 0.092 K132 = 1.5337 × 10−18 × e−3.5084tind 1.11 × 10−18

MC 0.048 K132 = 1.5721 × 10−18 × e−3.2817tind 1.34 × 10−18

The MC collector was the compound reagent of dodecane and oleic acid. The low-rank
coal has polar and non-polar regions on the surface. The dodecane is a non-polar reagent
and it can be adsorbed on the non-polar region, while the oleic acid, a carboxylic acid
collector, can be adsorbed on the polar region. The carboxyl groups of oleic acid interact
with the oxygen-containing groups by hydrogen bonding, and the non-polar alkyl chains
face outward, improving the hydrophobicity of the polar region [48]. The cooperation of
the two components in MC can enhance the hydrophobicity of coal surface. The synergistic
effect of the two collectors makes the MC more effective than the single collector. In our
previous work, the flotation results using the MC were proved to be better than using D or
OA alone [29].

4. Conclusions

The wetting film evolution process between air bubble and coal particles treated by
mixed collector (MC) composed of n-dodecane (D) and oleic acid (OA) was investigated.
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The induction time between bubble and coal particle and zeta potential of coal particle
was measured. The interaction energy, wetting film drainage kinetics, and hydrophobic
force constant between air bubble and coal particles treated by different collectors was
calculated by the extended Derjagin–Landau–Verwey–Overbeek (EDLVO) theory and
Stefan–Reynolds model. The main conclusion is as follows:

The induction time of air bubble interacted with coal treated by different collectors
was: MC < OA < D < no reagent. MC showed the strongest ability in shortening the
induction time. The zeta potential of coal treated by different reagent was: no reagent < D
< MC < OA. OA had great ability in increasing zeta potential.

The interaction energy between air bubble and coal particles slowly increased as the
film thickness thinned. When film reached critical thickness, the interaction energy reached
the maximum. The order of maximum energy of coal treated by different collectors inter-
acting with bubble was: OA < MC < D < no reagent, while the critical film thickness was
in the reverse order. With the increase of hydrophobic force constant K132, the interaction
energy decreased, and the critical film thickness increased.

The drainage rate of film decreased with the time but increased with the K132. The
order of wetting film thinning rate for coal treated by different collectors was: no reagent <
D < MC < OA. The theoretical induction time under different hydrophobic force constant
was obtained, and the hydrophobic force constant K132 was calculated based on K123–
induction time relationship. The order of calculated K123 value was: no reagent < D < OA <
MC, which indicated that MC had the most significant impact on hydrophobic interaction
and the wetting film evolution process. The synergy of OA and D can improve the
collector adsorption, increase the coal surface hydrophobicity, and enhance the hydrophobic
interaction.
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