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Abstract: The universe is molecularly rich, comprising from the simplest molecule (H2) to complex
organic molecules (e.g., CH3CHO and NH2CHO), some of which of biological relevance (e.g., amino
acids). This chemical richness is intimately linked to the different physical phases forming Solar-like
planetary systems, in which at each phase, molecules of increasing complexity form. Interestingly,
synthesis of some of these compounds only takes place in the presence of interstellar (IS) grains,
i.e., solid-state sub-micron sized particles consisting of naked dust of silicates or carbonaceous
materials that can be covered by water-dominated ice mantles. Surfaces of IS grains exhibit particular
characteristics that allow the occurrence of pivotal chemical reactions, such as the presence of
binding/catalytic sites and the capability to dissipate energy excesses through the grain phonons.
The present know-how on the physicochemical features of IS grains has been obtained by the fruitful
synergy of astronomical observational with astrochemical modelling and laboratory experiments.
However, current limitations of these disciplines prevent us from having a full understanding of
the IS grain surface chemistry as they cannot provide fundamental atomic-scale of grain surface
elementary steps (i.e., adsorption, diffusion, reaction and desorption). This essential information can
be obtained by means of simulations based on computational chemistry methods. One capability of
these simulations deals with the construction of atom-based structural models mimicking the surfaces
of IS grains, the very first step to investigate on the grain surface chemistry. This perspective aims to
present the current state-of-the-art methods, techniques and strategies available in computational
chemistry to model (i.e., construct and simulate) surfaces present in IS grains. Although we focus on
water ice mantles and olivinic silicates as IS test case materials to exemplify the modelling procedures,
a final discussion on the applicability of these approaches to simulate surfaces of other cosmic grain
materials (e.g., cometary and meteoritic) is given.

Keywords: computational chemistry; quantum chemistry; density functional theory (DFT); materials
modelling; periodic surfaces; cluster models; astrochemistry; interstellar grains; silicates; water ice

1. Introduction

The formation of a Solar-like planetary system is the result of the evolution of a
primordial interstellar cloud, which takes place through five physical steps: the prestellar,
protostellar, protoplanetary disk, planetesimal and planet formation phases [1]. This
complex process is associated with an increase in molecular complexity, in which from
one phase to the other the chemical composition grows in complexity because molecules
formed in the previous steps react to form species that are even more complex [2,3]. This is
reflected by radio to near-infrared (IR) observations, which have detected rotational and
vibrational transitions of more than 200 different gas-phase molecular species in different
interstellar, circumstellar, extragalactic and other astrophysical environments [4]. However,
not all the syntheses of these compounds take place through gas-phase reactions, but a
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significant part of them occurs on the surfaces of dust grains [5–7]. This is, for instance, the
case of the simplest and most abundant molecule in the Universe: H2 [8].

The story begins when a dying old star ejects gas and dust [9–12], which become
gravitationally collected forming interstellar diffuse clouds, characterized by temperatures
of 50–100 K and gas density of 10–102 cm−3. Dust grains consist of bare silicates and
carbonaceous materials, while the gaseous component, because of the high UV incidence
due to the diffuse conditions, is mainly in the form of atoms and simple diatomic species.
The interstellar chemistry begins here, although it is relatively poor. Gravitational contrac-
tion of the diffuse clouds leads to the formation of dense molecular clouds. Here, matter
accumulates towards the center of the nebula forming a prestellar cloud, with temperatures
as low as 5−10 K and gas density of ca. 104 cm−3. At variance with the diffuse cloud dust
grains, prestellar grains are made up by thick ice mantles that cover the dust particles.
Due to the high abundance of H atoms, hydrogenation reactions dominate the prestellar
grain surface chemistry (e.g., H2O [13] and CH3OH [6,7] formation through H-addition to
O [14], O2 [15,16], O3 [17] and CO [18,19], respectively), in which the resulting products
(i.e., hydrogenated simple molecules) remain as frozen species on or in the ice mantles. As
the continuing collapse takes over, the dense central condensate starts to heat up forming
a protostar. In the innermost regions, the collapsing gas and dust reach temperatures of
100−300 K, becoming a “hot core”. Due to these “warm” conditions, the ice mantles subli-
mate releasing all the frozen molecules into the gas phase. During this step, many common
organic compounds are formed and, indeed, observed (e.g., alcohols, ethers, esters, alde-
hydes, nitriles, etc.), indicating the occurrence of a very rich chemistry, whose elementary
steps are under intense study. These organic species are called iCOMs (interstellar complex
organic molecules) and are defined as molecules with 6−12 atoms in which at least one
is C [20,21]. One of the paradigms for the synthesis of iCOMs postulates that they are
formed before the ice sublimation and advocates the presence of the grains [22–24]. That
is, hydrogenated frozen species undergo homolytic cleavages due to UV and/or cosmic
ray incidences. The resulting radical species diffuse and react via radical-radical couplings
to form iCOMs. This would be, for instance, the coupling of HCO with CH3 or NH2 to
form CH3CHO or NH2CHO, respectively, two of the most studied iCOMs in protostellar
environments [25–30]. Finally, iCOMs, during ice sublimation, are injected to the gas phase
where they can be detected through their rotational lines. The evolution continues with the
dissipation of the protostellar envelope converting into disks of gas and dust that rotate
around the nascent star, i.e., the protoplanetary disks (PDs) [31]. In the coldest regions
of PDs (so-called midplanes) reside the vast majority of solid-state matter. There, dust
settles, and the remnant molecules formed in the previous phases freeze-out again onto
the grains. Very little is known on the chemistry of the PD phase, but it is believed that
similar reactions to those of the dense molecular clouds take place, mainly hydrogenations
(e.g., formation of CH3CH2OH by H-addition to CH3CHO) giving rise to a richer chemical
composition [32]. In the PD midplanes, icy grains start to coagulate into larger sub-micron
particles up to coalescing into macroscopic bodies, the so-called planetesimals, the seeds of
planets, comets, meteorites, and other asteroid bodies [33]. Part of the PD grain components
are preserved while they glue together, being incorporated into the planetesimals [34].
However, they can undergo alteration processes leading to a new increase in molecular
complexity. Particularly relevant are hydrothermal alteration processes in meteorites [35],
which in combination with the catalytic properties of meteoritic materials [36–38], can
convert the pristine “interstellar parent material” into a new generation of more complex
organic molecules through a variety of organic reactions in solution [39–42], some of them
of biological potential such as formation of amino acids, sugars and nucleobases. It is
needless to say that this evolved molecular content is of great significance because it could
have arrived at the primordial Earth in comets and/or meteorites (i.e., exogenous delivery),
this way providing raw material for the development of life.

It seems clear, then, that grain particles are crucial players in this molecular voy-
age from the prestellar clouds to the early solar system. Here, we briefly describe their
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characteristics, which we feel very important in the context of this perspective. As men-
tioned, interstellar bare dust grains consist mainly of silicates and carbonaceous materials.
The nature of the later ones has unambiguously not been determined yet. Plausible can-
didates seem to be polycyclic aromatic hydrocarbons (PAHs), non-hydrogenated and
hydrogenated amorphous carbon, silicon carbides, or mixtures of hydrocarbon-based
disordered structures [10,43–45]. In contrast, silicates have been clearly observed and
identified as major components of interstellar dust [46,47]. Indeed, silicate dust grains
emit at mid-IR wavelengths, whose spectral features give information on the chemical
composition and structural state. Silicates are a wide class of inorganic materials based on a
[SiO4]4− building block, the negative net charge being compensated by divalent cations, in
the interstellar ones by Mg2+ and Fe2+ as they appear with the largest cosmic abundances.
Astrophysical silicates correspond to the groups of olivines and pyroxenes, with general
formula Mg2xFe(2−2x)SiO4 and MgxFe(1−x)SiO3 (x = 0−1), in which Fe2+ and Mg2+ replace
each other in the structure. They show two broad IR bands at 9.7 (≈1000 cm−1) and 18 µm
(≈550 cm−1), corresponding to the Si-O stretching and O-Si-O bending modes. This is
indicative of the predominance of an amorphous nature since the random distribution of
bond lengths and angles common in amorphous structural states results in broad bands. In
pre-stellar cores, proto-stellar envelopes and protoplanetary midplanes grains are covered
in ice mantles. This is due to the freeze-out of gas-phase molecules onto the dust grain
surfaces but also mainly by the formation of water molecules in situ (see above). Ice man-
tles can also be studied by their IR spectroscopic features [48,49], which show stunningly
complex profiles as a result of the diverse chemical composition, structural state and grain
shape and size. The most dominant component is water, through the O-H stretching
3 µm (≈3300 cm−1) band. Additionally, smaller quantities of other volatile species are
also present, e.g., CO, CO2, NH3 and CH3OH, and hence that ice mantles are usually
referred to as “dirty ices”. The actual composition and ratios (ca. 5−50% wrt water ice
abundance) depend on the environment where they reside. Comparison of experimental
IR features with the observational ones indicates that the structural state of the ice mantles
matches reasonably well with that of the amorphous solid water [6,7,50]. Moreover, they
are also reported to be porous materials [49,51,52], although the porosity degree is uncer-
tain. Cometary grains are composed by rocks, ices and organic components [34], the ratio
between the inorganic and the organic fractions being as similar as 55%:45% to that found
in the 67P comet [53]. Interestingly, glycine, the simplest amino acid, has been identified in
the Stardust Wild 2 [54,55] and Rosetta’s 67P [56] comets, with the corresponding profound
implications in the exogenous delivery theories. The rocky components comprise a mixture
of silicates, oxides and metal sulfides, while the ice composition is similar to that of the
interstellar mantles, i.e., H2O as the major component with CO, CO2 and CH3OH as the
minor components with more abundance. Finally, in relation to meteoritic grains, the most
interesting ones from an astrochemistry standpoint are those belonging to the group of car-
bonaceous chondrites (CCs) because they are considered to be pristine and representative
of materials forming the PD. They are mineralogically very rich as ca. 275 class of minerals
have been characterized [57]. The most common ones are silicates, aluminosilicates, metal
oxides, metal sulfides, carbonates and phosphates. Remarkably, CCs are also very rich
as far as soluble organic components are concerned, in which diverse organic molecular
species have been identified (e.g., carboxylic acids, hydroxyacids, alcohols, aldehydes and
ketones and aromatic and aliphatic compounds), some of them of biological relevance such
as amino acids, sugars and nucleobases [58,59].

Spectroscopic observational measurements are traditionally complemented by as-
trochemical modelling and terrestrial laboratory experiments. However, this combined
approach, which has been very fruitful to build-up our current knowledge on the physico-
chemical properties of IS grains, is currently severally limited at reproducing and charac-
terizing the truly existing grain surface chemistry. Observations allow us to detect, identify
and quantify chemical species in different astrophysical environments, but they cannot
tell us the ways through which they form, e.g., either in the gas phase or on the grain
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surfaces, the most favorable reaction channel and the mechanistic steps. Astrochemical
modelling is a computational simulation tool mostly dedicated to modelling the abun-
dances of chemical species and their evolution with time with the aim to rationalize the
observations. However, some of the input parameters needed for the simulations suffer
from uncertainties (especially those involved in gas–grain processes) affecting the accu-
racy of the simulations [60]. Laboratory experiments are also very useful to rationalize
observations, in this case by simulating experimentally chemical reactions of astrophysical
interest, which allow us to identify the nature of the products formed and the feasibility
of the reactions under the harsh physical conditions of space. However, setting up the
physicochemical conditions of the IS medium realistically is technically very difficult, and
reproducing the actual composition of grain analogues (e.g., dirty ice mantles) is also
tricky [61]. Additionally, information derived from the experiments (e.g., activation and
diffusion energies) is dependent on the physico-chemical model adopted to interpret the
results, as in the temperature programmed desorption (TPD) experiments [62].

In this interdisciplinary approach, computational chemistry can serve as a comple-
mentary discipline that can partly overcome these limitations. Indeed, simulations derived
from computational chemistry are capable of representing the elementary physicochemical
steps associated with a grain surface reaction (namely, adsorption of the reactants, their
diffusion on the surfaces, the chemical reaction and the eventual desorption of the products)
realistically and at a molecular level, this way providing unique and valuable atomic-scale
information (i.e., structures, energetics and dynamics) of the related phenomena. Within
this context, a fundamental aspect is the construction and simulation of realistic atom-
based structural models for grains. This is indeed a key and mandatory pre-requisite if
one wants to investigate the sequence of elementary steps occurring on the grain surfaces
in a reliable and accurate way. Although surface modelling is recurrently used for many
purposes in surface science and heterogeneous catalysis (normally for the simulation of
metal and metal oxide crystalline surfaces), its application in the field of astrochemistry is
more limited. Thus, the aim of this perspective is to present different surface modelling
techniques grounded on the computational chemistry that are useful to simulate IS grain
materials in a realistic way. An earlier report aimed at describing the quantum mechanical
treatment of molecule–surface interactions in the context of the biomaterials was published
by some of us, which can be used as a complement of this perspective [63].

This manuscript is organized as follows. Section 2 provides a description of the
different methods (based on both quantum and classical mechanics) currently available in
computational chemistry. Section 3 describes with examples the different state-of-the-art
techniques and strategies to construct and model surfaces of interstellar solid-state matter.
Finally, Section 4 is devoted to the conclusions alongside some future perspectives in the
surface modelling of cosmic grains by means of computational chemistry tools. We would
like to mention that the surface modelling techniques presented here use silicates and
water-based ices as test cases, because these are the systems in which the authors have
more experience. However, the presented techniques can extend to other materials of
cosmic interest, as discussed in more detail in this last section as future perspectives.

2. Computational Chemistry Methods

The main objective of computational chemistry is to solve chemical problems by
simulating chemical systems (molecular, biological, materials) in order to provide reliable,
accurate and comprehensive information at an atomic level. To this end, there are two
main methodological families: those based on quantum chemical methods and those based
on molecular mechanics. The former are methods in which the electrons are explicitly
accounted for, while in the latter their presence is hidden in the force field. For the sake of
understanding this perspective, these methods are briefly described in this section.
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2.1. Quantum Chemical (QC) Methods

QC methods, also called electronic structure, first-principles or ab initio methods,
calculate how electrons and nuclei interact by solving the time-independent electronic
Schrödinger equation in the Born–Oppenheimer approximation. QC can be classified into
two groups based on either wave function methods or the density functional theory (DFT).

2.1.1. Wave Function-Based Methods

These are methods that, by solving the electron Schrödinger equation, calculate the
explicitly correlated electronic wave functions. The simplest wave function-based method
is the Hartree–Fock (HF), in which the multielectron wave function is approximated to a
single Slater determinant (the mathematical expressions for wave functions in quantum
mechanics). This approximation, however, leads to the main pitfall of HF: it neglects the
instantaneous electron correlation. That is, it considers that one electron moves in an
averaged field due to the remaining electrons, when in reality the motion of the electrons is
correlated (the motion of one electron depends on the instantaneous, mutual interaction
with the other electrons). The lack of instantaneous electron correlation introduces an
error in the HF wave function and energy, seriously affecting the prediction of the kinetic
barriers or the description of London dispersion forces.

Despite this inaccuracy, the HF solution can be systematically improved. One way
is through the many body perturbation theory, culminated in the Møller–Plesset (MPn)
methods [64], or by expressing the wave function as a linear combination of Slater deter-
minants, i.e., the HF one plus those representing single, double, triple, etc., excitations,
giving rise to the configuration interaction (CI) methods [65]. The coupled cluster (CC)
theory also introduces excited state configurations to the wave function but adopting
an exponential expansion (through the cluster operator) on the HF one [66]. The most
popular CC derivation is the CCSD(T) method [67], in which single (S) and double (D)
excitations are included through the cluster operator and triple (T) excitations by using the
perturbation theory. CCSD(T) extensively includes electron correlation and, in combination
with largely extended basis sets, is considered the “gold standard” in QC [68].

Despite the improved quality of the post-HF methods, they are considerably com-
putationally expensive so that their applicability is hampered by the size of the systems.
CCSD(T) calculations for more than 25−30 atoms are unfeasible so that, in practice, these
calculations in surface modelling are mainly used for calibrating more approximate (but
cheaper) methods to ensure their suitability in the description of the electronic structure of
the simulated surfaces.

2.1.2. Methods Based on the Density Functional Theory (DFT)

The DFT foundations lie on the mathematical formulations developed by Kohn and
Sham in 1965 [69]. The central theorem states that the ground state energy of a non-
degenerate electronic system is unequivocally defined by the total electron density ρ(r)
through a universal and exact mathematical functional (a functional takes a function
and defines a single number from it, like in a definite integral)—that is, the energy of a
system can be expressed as a functional E of ρ(r), i.e., E[ρ(r)]. This represents an enormous
advantage with respect to the wave function-based methods because, in DFT, the ρ(r) for
a system of N electrons only depends on 3 spatial coordinates, while the corresponding
wave function depends on 3N spatial and N spin variables. Because of this, DFT methods
are even cheaper than HF (according to the choice of the functional E[ρ(r)]) while including
a significant fraction of the missing instantaneous electron correlation. The disadvantage of
DFT is that although the existence of the universal functional relating the electron density
to the energy of a system can be mathematically demonstrated, the exact form of E[ρ(r)]
is still unknown. The search for functionals connecting these two quantities, known as
exchange-correlation functional EXC[ρ(r)], leads to the existence of a wide variety of DFT
methods [70].
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The simplest approach for EXC[ρ(r)] is the Local Density Approximation (LDA), which
implicitly assumes that EXC[ρ(r)] does only depend on the functional expression on the ρ(r)
value at the local position r. LDA is improved by the Generalized Gradient Approximation
(GGA), in which the EXC[ρ(r)] depends not only on the density ρ(r) but also on the gradient
of the density, ∇ρ(r), this way accounting for the spatial varying electron density present
in any chemical system. Meta-GGA functionals are a new class of methods in which higher
order density gradients or the kinetic energy density are accounted for. Combination of
conventional GGA EXC[ρ(r)] with HF-like electron exchange functional EX(HF) gives rise
to the DFT hybrid functionals. For these cases, since the weight factor for each component
in the definition of the EXC[ρ(r)] cannot be assigned from first-principles, a certain degree
of empiricism is used, for instance by fitting the coefficients to experimental data or to
post-HF wave-function-based results. Finally, hybrid-meta GGA methods apply a meta-
GGA similar concept to conventional hybrid functionals so that these methods depend
on the electron density and its gradient, a percentage of exact exchange and the kinetic
energy density.

As mentioned, a wide number of DFT methods have been developed. However, only
some of them are most commonly used since they provide a reasonable description of the
electronic structure and related properties of broad different molecular and solid-state systems.
Usual GGA methods are PBE [71], OPBE [71–73], PW91 [74,75] and BLYP [76,77]. Conventional
hybrid functionals are B3LYP [77,78], BHLYP [77,79], PBE0 [80,81] and wB97X [82]. The most
used meta-GGA and hybrid-meta-GGA are functionals developed by Truhlar and coworkers,
particularly those of the M06 family: the M06L meta-GGA [83] and the M06 and M06-2X
hybrid-meta-GGA [84].

Among the main drawbacks of the DFT methods (specially the oldest ones) is that
they do not cope with long-range non-covalent (i.e., dispersion or London) interactions.
Although this is not particularly important in the modelling of conventional surfaces (i.e.,
metals, oxides, etc.), it gains relevance when a proper simulation of the elementary steps
taking place at the surfaces (i.e., adsorption, diffusion, reaction) is aimed. A pragmatic
solution to account for dispersion interactions in DFT methods was proposed by Grimme,
in which an a posteriori correction term based on an atom–atom additive London-type em-
pirical potential (D) is introduced to supplement the DFT energy [85]. Different correction
terms have been sequentially proposed and improved (D [86], D2 [87], D3 [88] and D4 [89]).
The main advantage of the DFT-D scheme is that it maintains the original accuracy of the
pure DFT method for short-range interactions while including the dispersion interactions
at a negligible computational cost.

2.1.3. Semiempirical Methods

Despite the enormous cost-effective advantage of the DFT methods with respect to
the wave function ones, DFT simulations are also limited by the size of the systems up to
hundreds of atoms or even thousands of atoms with high performance computing allowing
massively parallel calculations. This is an important aspect in surface modelling, because,
in most of the cases, realistic extended systems are inevitably large (e.g., amorphous
surfaces), reaching the limits of the DFT applicability.

Semiempirical methods are faster alternative approaches to overcome the size limi-
tations of DFT. These methods are derived from the pure QC methods but with different
approximations (e.g., omission of the bielectronic integrals) while including some empirical
parameters to mitigate the errors due to the approximations and to account for electron
correlation effects. Due to these simplifications and parametrizations, semiempirical meth-
ods are faster than their ab initio counterparts, permitting the treatment of large chemical
systems, impossible to deal with the pure QC methods. However, accuracy of the semiem-
pirical methods strongly depends on whether the parametrization is suitable for the specific
case under study. That is, results can be very wrong if the simulated system does not fit
with the training set used to parametrize the method.
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Semiemprical methods can be classified into several groups: (i) by Pople [90–93]—
CNDO/2, INDO and NDDO—in which the parametrization is mostly based on HF re-
sults; (ii) by Dewar—AM1 [94] and MNDO [95]—which are NDDO-derived methods
parametrized with experimental fittings; (iii) the PMx (x = 3, 6 and 7) family developed by
Stewart [96–98], in which more experimental parameters are introduced in NDDO; and (iv)
by the tight binding approaches (e.g., SCC-DFTB [99,100]), which are the semiempirical
methods derived from DFT. Very recently, Grimme and coworkers developed the GFN-xTB
family [101–103], a set of tight binding-based methods that model covalent as well as
H-bond and dispersion interactions with improved accuracy, parametrized for almost the
entire periodic table of elements (Z ≤ 86).

2.1.4. Basis Set

Basis sets are a linear combination of basis functions used to build molecular orbitals,
which in turn approximately represent the electronic wave function. Thus, the use of basis
sets in electronic structure calculations is compulsory. The quality of the calculation and
the accuracy of the derived information strongly depend on the completeness of the chosen
basis set.

Two main types of basis sets exist: Gaussian-type orbitals (GTOs) and plane waves
(PWs). GTOs are localized functions centered on the atoms. They are commonly used in
molecular (i.e., finite) calculations because they obey the typical radial–angular decomposi-
tion and exhibit the spatial and symmetry properties of atomic orbitals. PWs are periodic
functions in nature, i.e., they are not localized functions but uniformly diffuse in space, so
that their use requires the adoption of periodic boundary conditions (in which an infinite
system is approximated by repeating a unit cell, see below). Because of that, they are
widely used in the simulation of periodic solid-state systems.

The main advantage of GTOs with respect to PWs is that the number of basis functions
exclusively depends on the number of atoms of the system, while the number of PWs,
since they fill the 3D space, depends on the unit cell size. Advantages of PWs with respect
to GTOs are that their quality is controlled by a unique parameter (the cut-off kinetic
energy) and that they do not suffer from basis set superposition errors (BSSE), which can
be dramatically critical for adsorption purposes. BSSE is an artefact when using truncated
GTO basis sets, in which there is a system composed of two fragments: one fragment uses
the basis set of the other and vice versa, this way leading to an overestimation of the total
energy and, therefore, affecting the optimized geometries. BSSE is usually corrected by the
counterpoise method [104], with schemes to correct energies (CP) and geometries (gCP). In
relation to that, it is worth mentioning the recent development of the HF-3c method [105].
HF-3c is based on HF using the minimal MINIX basis set in which 3 correction (3c) terms
are applied (upon inclusion of empirical parameters) to include London dispersions (D3
scheme), to alleviate BSSE (gCP scheme), and to correct for short-range effects caused by
basis set incompleteness (i.e., to remove the systematic overestimation of bond lengths for
electronegative elements when employing small basis sets).

2.2. Classical Molecular Mechanic (MM) and Molecular Dynamic (MD) Simulations

Methods based on classical MM (also called force field methods) ignore the electrons
and their motion. A chemical system is described by a “ball and spring” model, in
which atoms are represented by balls of different sizes and softness and the bonds by
springs of different stiffness. The energy of the system is calculated as a function of the
nuclear positions only. To this end, force fields (FFs), a set of interatomic potentials (IPs)
encompassing energy functions and parameters, are used to define the molecular mechanics
energy measuring the degree of mechanical strain within the system. As electrons are not
explicitly accounted for in the classical MM, very large systems (thousands of atoms) can be
simulated to predict conformational flexibility and relative stability (e.g., protein folding).

FFs contain energy functions that include bonded and non-bonded terms to represent
the intra- (i.e., covalent) and inter- (i.e., non-covalent) molecular forces within the system.
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In essence, the various contributions present in the IPs should model: (i) the interaction
between pairs of bonded atoms (covalent bond stretching), (ii) the energy required for
bending an angle formed by three atoms (angle bending), (iii) the energy change associated
with a bond rotation (torsional or dihedral), and iv) the non-bonded pairwise interac-
tions, usually using a Coulomb potential for electrostatic interactions and a Lennard-Jones
potential for van der Waals interactions.

The energy functions contain a set of parameters (e.g., equilibrium values for bond
lengths, angles, dihedrals and atomic charges) that define the different types of atoms, chem-
ical bonds, angles torsions, non-bonded interactions and other terms. The FF parametriza-
tion (i.e., the numerical assignment of the parameters) was historically derived from
experimental data, but nowadays has been replaced by QC calculations.

Due to the cheap cost, MM methods are adopted to simulate the dynamics of the
nuclear motion within a molecule through molecular dynamic (MD) simulations. In MD,
successive configurations of the system are generated by integrating the Newton’s laws
of motion. The result is a trajectory that specifies how the positions and velocities of the
nuclei vary with time, in which at each nuclear position, the molecular mechanics energy
and the nuclear forces of the system are evaluated. Thus, MD simulations are a good choice
to study the evolution in time–space phase of the atomic positions subject to the internal
forces of chemical nature, while the kinetic energy associated with the nuclear motion
provides the temperature of the system. Classical MD simulations can reach time-scales of
hundreds of picoseconds to microseconds, which allows the ergodicity of the system to
be reached.

MD simulations can also be carried out by moving the nuclei within the electronic
field generated by the corresponding electronic wave function or, more conveniently, by the
electron density usually computed within the DFT. For these cases, the electrons are treated
quantum mechanically, while the nuclei, within the Born–Oppenheimer approximation,
are treated as classical particles so that their dynamics can be followed by the integration
of the Newton equations, like in the MM method. Hence, these simulations are called ab
initio molecular dynamics (AIMD). In AIMD simulations, although being computationally
more expensive than pure classical MD, the introduction of the electronic structure of the
system allows the study of bond breaking/formation as the result of internal exchange of
energy. Thanks to the huge improvement of the power of high-performance computers,
AIMD can nowadays reach tens to hundreds of picoseconds.

To overcome the high cost and limited time evolution intrinsically linked to AIMD, the
relatively new methodologies of machine learning (ML) can be adopted. ML is becoming
an explosive field, not only in problems such as image recognition, language translation or
to play the GO game but also to tackle physical chemistry problems. The present review
cannot expand to include the multitude of new contributions by ML in the present topic
due to space constraints and limited authors experience in the ML field. In essence, neural
network (NN) approaches can be used to model the potential energy surface for almost
any kind of systems through a specific learning based on ab initio data run on a limited set
of representative cases. The interested reader can refer to this perspective article [106]. An
impressive example of the success of ML in greatly expanding the applicability of AIMD
quality calculation up to 100 million atoms at the rate of 1ns/day was recently made possi-
ble by the combination of the Deep Potential Molecular Dynamics approach using a highly
optimized code (GPU DeePMD-kit) on the Summit supercomputer (see Reference [107]).

3. Results

In computational chemistry, either periodic or cluster approaches are used as possible
paradigms to represent the external faces of the real material. The periodic paradigm starts
by cutting out a unit cell from the bulk of the material to build up a 2D model (in principle
infinite) of the surface represented by a slab of the material of finite thickness. The surface
unit cell is thus repeated periodically. The cluster paradigm is based on using a molecular
system (i.e., the cluster) as a structural model mimicking the surfaces. In this section, the
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application of these two surface modelling strategies and related approaches are described
using, as test cases, interstellar ices and silicates.

3.1. Periodic Surfaces
3.1.1. Crystalline Surfaces

Observation of the interstellar dust (see above) revealed that both the core of the
grains (silicates) and the mantles (mainly water ice) are in the amorphous state. This
fact renders the computer simulation of these materials particularly challenging as no
definite molecular structure is available for amorphous phases. The usual way to model
surfaces (not limited to those of IS interest but applicable in a wider context) is to imagine
the amorphous material as a repetition of a fictitious unit cell large enough to mimic the
absence of local order due to the amorphous nature of the material, which is repeated
by the periodic boundary conditions. In this way, the same machinery (programs and
algorithms) to simulate crystalline materials is adopted.

A perfect crystalline solid bulk structure can be generated by repeating its unit cell
along the three directions (3D) of space, in such a way that an infinite, periodic system
is obtained (see Figure 1). The crystallographic unit cell is defined by six independent
parameters, i.e., the a, b and c cell vectors, and the α, β and γ intra-cell angles (see Figure 1).
The atomic content of the unit cell is repeated periodically by application of the lattice
translation vector T = la + mb + nc (where l, m and n are integer numbers spanning the
[−∞, +∞] range), this way generating the periodic systems. Examples of the unit cell for
silicates (Mg2SiO4, forsterite) and water ice (P-ice) are shown in Figure 2 (bulk structures).
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along the 3D space generating a periodic system.

Crystalline surfaces are systems in which T applies only along two cell parameters
(those defining the actual surface), this way forming a 2D-periodic slab model. The
remaining direction perpendicular to the surface slab is no longer crystallographic and
describes the z-coordinate of each atom in the slab. The number of atomic layers defines
the slab thickness of the surface model. These crystalline surfaces of finite thickness results
from cutting out a slice from the corresponding crystalline bulk structures along a desired
Miller (hkl) plane (so-called slab-cut procedure), while maintaining cell neutrality, the right
stoichiometry and zero dipole moment across the slab. Figure 2 exemplifies the slab-cut
procedure to model the (010) Mg2SiO4 (A) and the (010) water proton ordered P-ice (B)
surfaces form the corresponding bulk systems, as provided in References [108–111] for
Mg2SiO4 surfaces and References [112–115] for H2O P-ice surfaces.

When modelling surfaces adopting the periodic crystalline approach, the thickness of
the models should be large enough to avoid structural and energetic artefacts. Low thick-
nesses can lead to spurious surface geometry reconstructions (e.g., in molecule adsorption)
due to an exceedingly high mobility of the surface atoms. Moreover, the surface energy
(ES) of the model should remain constant by adding an increasing number of layers. ES
is a quantity representing the penalty suffered by a given slab when it is detached from
the crystal bulk. ES is used to establish a ladder of relative stabilities between surfaces
derived from the same bulk (e.g., for Mg2SiO4 slab stabilities see References [116,117]). If
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ES is not constant (normally due to a too low thickness), the electronic structure of the
slab is thickness-dependent and accordingly surface properties may vary as a function of
the thickness.
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lateral and the top views of the surface models are shown. Unit cells are represented in blue.

Finally, it is worth mentioning that depending on the basis set functions used to
describe the atomic orbitals, the slab surfaces may or may not be considered as a true 2D
system. With GTOs (see above, Section 2), due to their localized nature, true 2D-periodic
systems can be modelled, i.e., with a true infinite empty space above and below the slab.
In contrast, when PWs are employed, surface modelling is forcedly based on pseudo 3D
systems, as the PWs extend towards the space. The surface model consists of a 3D replica
of the slab along the direction perpendicular to the slab plane, which is used to ensure that
enough empty space is left between replicas, to prevent spurious interactions between the
replicated slabs.

3.1.2. Amorphous Surfaces

As mentioned above, the phase of most of the IS grains is amorphous. This in
terms of computational modelling means that the structures do not follow long-range
order, which implies that a 2D surface unit cell should be large enough to represent the
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disordered structures. This is achieved by adopting a large unit cell, with randomized
internal atomic positions to ensure bond length and angle distribution characteristics of
amorphous systems. The unit cell amorphous content is usually achieved by starting
from a crystalline phase of the system and running MD at high temperature to randomize
the nuclei positions which are then cooled down to reach a vitreous/amorphous phase
(so-called hot/cool MD procedure).

An example of this procedure is shown in Figure 3A for the amorphization of the
crystalline P-ice (010) surface. Alternatively, one can use the 3D periodic crystalline bulk
systems as an initial guess structure for the MD simulation. For these cases, one obtains
a 3D periodic amorphous bulk system, in which the slab cut procedure defines different
amorphous surfaces. An example of this procedure is shown in Figure 3B, for the forsterite
(Mg2SiO4) surfaces [118].
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Figure 3. (A) Generation of an amorphous H2O P-ice slab surface model by running molecular
dynamic (MD) simulations at 300 K using the corresponding crystalline (010) slab model as the
initial structure. (B) Generation of amorphous Mg2SiO4 surfaces through a two-step process: (i)
running MD simulations at 1800 K using as initial structure the crystalline Mg2SiO4 bulk system to
reach an amorphous Mg2SiO4 bulk structure, and (ii) application of the slab-cut procedure onto the
amorphous Mg2SiO4 bulk to obtain the (001) and (010) amorphous slab surface models.
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The same procedure can be adopted to simulate IS dirty ices (see above, Section 1).
The pristine pure amorphous water ice is made further defective, since a certain number of
water molecules are substituted by other volatile molecules, such as CO, NH3 or HCN. A
possible strategy to model surfaces of this kind is achieved by: (i) replacing some water
molecules by the volatile species in the crystalline structure of pure water ice (please note
that this should be done in agreement with the chemical composition present in the IS ices);
(ii) running MD simulations to amorphize the dirty ices; and (iii) defining the slab-cuts
to obtain the desired surfaces. An example of this sequence is shown in Figure 4 for the
generation of a model surface corresponding to a mixture of H2O:CO (ca. 75%:25%) [119].

3.2. Free and Embedded Cluster Systems

The cluster approach (CA) consists of using a finite (i.e., a molecule) system to model a
surface. At variance with the periodic approach, in the CA, an extended system is reduced
into a finite number of atoms representing, in principle, the physico-chemical features of
the local region of interest of the surface. In this approach, two methods are possible to
prepare the cluster models: the top-down and the bottom-up.
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Figure 4. Stepwise strategy to obtain an amorphous surface as a model for a dirty ice mantle
consisting of H2O:CO (75:25). Step (i) replacement of H2 molecules of the crystalline water P-ice bulk
system by CO molecules (according to the H2O:CO ratio). Step (ii) running MD simulation at 300 K
on the H2/CO crystalline-like system to amorphize the structure. Step (iii) slab-cut procedure on
the amorphous H2O/CO bulk structure to reach an amorphous H2O/CO slab surface model as a
final product.
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3.2.1. Top-Down Approach

Figure 5A shows the top-down strategy to construct a cluster model for a water P-ice
surface. The cluster is generated by taking out a molecular piece from the crystalline
periodic 3D bulk structure [120]. However, reconstruction effects, particularly severe at
the frontier of the cluster, may cause large geometry distortions of the initial structure,
leading to final systems that significantly differ with respect to the original ones [19,26]. To
cope with the frontier problem, nuclei at the exterior part of the cluster can be fixed to the
pristine bulk material positions to enforce the structural memory of the original system. It
is worth mentioning that in this top-down procedure, the type, size and surface features of
the cluster are a subjective choice of the modeler.
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Figure 5. (A) Generation of a cluster model for water P-ice by adopting the top-down approach of
extracting a molecular portion from the bulk system. (B) Nanoparticles of Mg2SiO4 obtained by
using the Wulff-construction procedure (top structures). Running MD simulations at 1800 K leads to
amorphization of the original structures (bottom structures).
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Another less subjective top-down strategy is to be guided by the Wulff construc-
tion [121], frequently adopted to design structural nanoparticle (NP) models. In practice,
by exploiting the Gibbs–Wulff theorem [122], the final morphology of an NP is dictated by
the relative surface energy of the crystal faces defining the NP shape. Figure 5B shows two
different in-size Wulff-constructed NP models of forsterite (Mg2SiO4) [123]. NPs based on
the Wulff-construction procedure have been successfully modelled for metallic systems
(e.g., [121,124,125]) as well as for binary ionic systems (e.g., [126–129]). For these latter
systems, however, a rigorous control of the stoichiometry is mandatory, requiring in most of
the cases manual manipulation (normally removal/addition of the excess/missing atoms).
An automatic procedure is encoded in the BCN-M software (version 1.0) [130]. This tool
is capable to automatically generate both stoichiometric and charge electroneutral NPs
for ionic systems, without human post-processing operations, avoiding bias and mistakes.
Interestingly, the Wulff-constructed NP structures can be amorphized by the usual hot/cool
MD procedure. Figure 5B (amorphous NPs) shows the effect of this step for the forsterite
NP [123].

3.2.2. Bottom-up Approach

The bottom-up strategy consists of building the cluster systems by joining atoms,
molecular units or even small clusters in such a way that the clusters grow in size upon
successive joining. In the case of water, cluster growth takes place by a water-by-water
addition, this way forming the dimer, trimer, tetramer, etc. (see Figure 6A [131]). Due to
the intrinsic relevance of water, the lowest-energy structures of water clusters of increasing
size have already unambiguously determined up to sizes of 20 water molecules [132,133].
However, since within this strategy the structures are not derived from the crystal bulks
(and accordingly they are not constrained to be bulk-like), an explosive number of possible
final candidates emerges. In these situations, searching the global minimum of the potential
energy surfaces (PES) is a very challenging task. This can currently be solved by applying
global optimization techniques, which are algorithms that allow us to explore the complex
potential energy maps to identify the most stable systems.

To achieve that, genetic algorithms [134–138] and Basin-Hoping Monte Carlo (BHMC)
algorithms are the most common modelling strategies to seek the global minimum [139–142].
The BHMC method combines Monte Carlo with local optimization techniques, providing a
picture of the energy landscape of the considered molecular clusters. Therefore, application
of BHMC allows us to locate different low-energy minima, hopefully including the most
stable one. The BHMC algorithm has been successfully used to locate the lowest-energy
Mg2SiO4 nanoclusters of different formula units (see Figure 6B) [143]. It has also been
applied to study the growth of silicate nanoclusters by successively adding atoms and/or
molecular units, this way providing a path associated with the nucleation and condensation
of IS silicates [144,145]. Interestingly, execution of BHMC simulations using a DFT approach
can be extremely computationally expensive and in practice, it is only affordable for small
clusters. Thus, for larger systems, a two-step process is generally used. First, the global
optimization is carried out with less expensive methods, normally classical interatomic
MM or semi-empirical potentials, and then the manifold minimum-energy structures are
subsequently reoptimized at the higher levels of theory to refine the final energy ranking
within the original manifold. In this line, the GFN-xTB family of semiempirical methods (see
above, Section 2) have demonstrated to be actually cost-effective as far as the modelling of
large water clusters is concerned, providing comparable results (structure and energetics)
with the CCSD(T) ones [146]. Again, efficiency and improvement in GA and basin-hopping
may result in the clever application of ML techniques, as highlighted in a recent work by the
Hammer’s group [147].
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3.2.3. Embedded Clusters

The free cluster approach suffers by the entirely lost memory (both electronic and
structural) of the bulk solid from which it has been derived. Atoms and molecules (for the
icy models) at the border of the cluster feel a very different environment with respect to the
companions at the interior of the cluster. A very effective way to restore, at least partially,
the “memory” of the surroundings from which the cluster was cut out is the IMOMM
method, originally proposed by F. Maseras and K. Morokuma as “integrated molecular
orbital molecular mechanics”, in which the interesting zone of the cluster was treated at
a higher level (quantum mechanics) while adopting a low level (classical force fields) for
the external part [148]. The method then evolved in the ONIOM (Our own N-layered
Integrated molecular Orbital and Molecular mechanics), where the low level is no longer
restricted to be a classical-based force field but can be any quantum mechanical method.
ONIOM has been popularized by its incarnation as an option in the Gaussian program [149].
The method is, therefore, ideal to treat a large portion of the material of interest (for instance,
a large chunk of water ice, either crystalline or amorphous) treated at a low level of theory (a
large number of force fields for water are available), while the zone of chemical interest for
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adsorption of iCOM or reactivity can be limited to a smaller portion of the system treated
at high quantum mechanical level. The ONIOM method has been recently reviewed [150].
Relevant applications of the ONIOM approach in astrochemistry are the study of adsorption
at the icy surfaces, mimicking the exterior of an icy grain using a crystalline slab of water ice.
To achieve good performance while maintaining the accuracy high, the authors proposed
to adopt as a low level method the sophisticated polarizable force field AMOEBA09 [151],
as defined in the Thinker program [152]. The ONIOM(QM:AMOEBA09) approach was first
tested for the self-adsorption of water molecules on a crystalline water Ih ice slab and then
extended to treat radical species (OH, HCO and CH3), adsorption, a particularly difficult
task due to the open shell nature of the system [153]. In summary, we believe the ONIOM
approach can be quite successful when dealing with the simulation of local chemical
phenomena (adsorption, reactivity, etc.) occurring at the grain surfaces. The possibility of
using any level of theory for the low-level method through a scripting tool included in
the Gaussian program opens up a very interesting perspective when the Grimme’s new
suite of semiempirical (xTB-GFN0,1,2) [101–103] and force field (GFN-FF) [154] methods
are adopted, due to their excellent performance in treating non-covalent interactions which
dominate the iCOM adsorption features.

3.3. Surface Models with Surface Defects

How IS ices grow is still a subject of deep debate. Grains do not grow by a stepwise
addition of water molecules: instead, the water molecules are formed in situ by a series
of elementary surface reactions involving H and O atom-derived species (e.g., O, O2,
OH, etc.). Therefore, little is known about the way in which the water heat of formation
re-models the underlying ice grain structure. Clearly, the above-described strategy to
simulate the amorphous icy grain structures, i.e., starting from a crystalline ice followed by
a hot/cool MD procedure, seems far away from the real physicochemical steps leading to
ice formation. A different and clever strategy for modelling the accretion of an icy grain by
subsequent reactive steps involving H and O atoms has been proposed by Garrod [52]. The
simulation envisages diffusive and reactive steps towards the formation of the final H2O
molecule (and also O2, H2 and H2O2 as a by-products). By tuning the simulation empirical
parameters related to the energy of the attached atom and its diffusivity, very large grains
have been obtained exhibiting different degrees of internal porosity, revealing sites where
H2 can be trapped. The beauty of the approach lies in its simplicity and full control of the
physical conditions. The main limit is in the water–water interactions, completely ignoring
the specific hydrogen bond features which, through its complex 3D web of intermolecular
bonds, can fully affect the porosity and density of the final grain. The Garrod’s group has
further contributed to our understanding of the icy grain chemistry and structure in a
subsequent series of papers [52,155–159]. As an alternative to render the icy grain structure,
the presence of surface defects of various nature can be introduced in the computer model.
In this case, surface defects are imperfections of the regular arrangement of the atomic
positions in the external surfaces. These sites exhibit enhanced instability compared with
the non-defective analogues and accordingly may be particularly reactive. For water ice,
surface defects are usually dangling bonds of undercoordinated water molecules (i.e.,
surface H or O atoms that can act as H-bond donors or acceptors, respectively), presence
of radicals (e.g., OH, generated by UV and/or cosmic rays’ irradiation) and cavities or
pores of nanometric size in their morphology, as revealed by porosity of the IS ices. For
amorphous silicates, surface defects are usually point (i.e., local) defects, and the most
common are undercoordinated metal ions (the valences of the metals are not fully satisfied),
vacancies (missing atoms) and substitutions (for IS silicates normally Fe2+ replacing Mg2+)
but also oxygen anions may behave as powerful nucleophilic centers with respect to CO2
and CH3CN [160].

Some of these surface defects can already be generated by means of the periodic
and cluster surface modelling approaches. This is, for instance, the case of surface dan-
gling bonds (see the crystalline P-ice (010) surface in Figure 2B or the amorphous slab in
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Figure 3A) or the case of undercoordinated Mg atoms (see the outermost Mg atoms of the
crystalline Mg2SiO4 (010) surface of Figure 2A or of the amorphous Mg2SiO4 surfaces of
Figure 3B). Relatively simple defects require a straightforward manipulation of the “initial”
structures. For instance, the presence of surface OH radicals in ices can be formed by
removal of H atoms from one H2O molecule belonging to the ice [131], or the presence
of Fe2+ in surface silicates by simple substitution of Mg2+ for Fe2+ in Mg2SiO4-based sur-
faces [161]. The modelling of surfaces exhibiting specific morphologies is more problematic
(cavities, pores) as these defects involve a relatively large portion of the entire surface to be
represented. An effective strategy to model surfaces with cavities is the bottom-up one, in
which clusters of different sizes and morphologies are joined together to achieve basin-like
regions mimicking cavities or pores. Examples of this procedure are shown in Figure 7
for water ice. Additionally, the ice structure resulting from merging smaller clusters can
become the unit cell content of a periodic 2D amorphous water ice surface exhibiting a
cavity morphology [113]. This last step requires extra care to ensure a proper H-bonding
between the content of the unit cell with the neighbor cells.
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4. Summary and Perspectives

The present work addresses the various procedures to construct and model surfaces
for systems mimicking solid-state interstellar (IS) grains, either core or mantle, by means of
state-of-the-art methods, techniques and strategies of computational chemistry.

The work highlights the strategies and problems to be overcome to construct repre-
sentative structurally atomistic surface models for IS grains suitable for computational in-
vestigations of their physico-chemical properties. Indeed, several astrochemically relevant
reactions only occur in the presence of the grains, which, alongside the gas-phase-based
reactions, feed the rich chemical diversity and complexity present in the Universe. More-
over, such a molecular complexity is linked to the different physical phases involved in
the formation of Solar-like planetary systems, in which grain particles (from interstellar,
protoplanetary and interplanetary origin) play a central role in the formation of molecular
species detected in each phase. However, the specific role in each reaction-type is not fully
understood. Obtaining structural models for cosmic grain surfaces is the very first step to
subsequently simulate grain surface reactions of different nature. Thus, to simulate these
processes accurately, a proper construction and description of the electronic structure of
the grain models is fundamental.

As the grain surface modelling is grounded on computational chemistry techniques,
brief descriptions of the methods belonging to this realm are provided, in particular those
based on quantum chemistry (HF, post-HF, DFT) and classical mechanics (Force Field).
Limits and merits of each class of method are briefly illustrated. Molecular dynamics,
either using FF or in the AIMD incarnation, is a key tool to amorphize crystalline material
through hot/cooling cycles.

Finally, the key materials covering most of the IS core (silicates) and mantle (dirty ice)
composition have been described as paradigmatic cases. The following surface modelling
items are presented and exemplified: (i) periodic and cluster approaches, (ii) construction
of periodic surfaces adopting the slab-cut procedure, (iii) construction of cluster systems via
“molecule” extraction from the periodic bulk, (iv) generation of clusters and nanoparticles
adopting the Wulff-construction scheme, (v) generation of nanoclusters adopting the global
optimization algorithm of Monte Carlo Basin Hoping or ML techniques, (vi) generation of
amorphous systems by applying the hot/cool MD procedure on crystalline-like systems
also by ML to overcome time evolution bottleneck, (vii) construction of defective surfaces,
in particular those presenting point defects and those exhibiting cavities/pores. We are
facing the new challenge of ML which is revolutionizing computational chemistry; at the
same time, ML still faces some subtle problems, namely, the choice of suitable molecular
descriptors (see [162] for discussion on this topic), and the difficult replication of the results
outside the laboratory where a specific trained NN has been developed; this latter point is
reminiscent of computational chemistry before the comparison of highly engineered, stable
and reliable quantum chemistry computer programs, in which research groups relied on
in house developed codes. Nevertheless, we are confident that ML will grow steadily in
the immediate future, opening the route for the simulation of micrometric sized grains
for both the silicate core and the water ice mantle. ML can also be crucial to leverage the
high cost related to the prediction of iCOM infrared spectra at the grain surfaces, allowing
the comparison with the James Webb (JWST) space telescope observation expected in the
immediate future.

As mentioned in the Introduction, these surface modelling strategies are usually
adopted in topics of surface science and/or heterogeneous catalysis, especially the periodic
approach for crystalline systems. Their applicability, however, contrasts significantly with
the few works focused on astrochemistry, in which water ices and silicates are by far the
most modelled materials. However, materials belonging to these families have not been
fully exploited for astrochemical purposes. For silicates, several structural models are
available for olivines, but not for pyroxenes. It is worth bearing in mind that pyroxenes
present a lower amount of Mg/Fe cations than olivines, which can affect their adsorptive
features, and hence their chemical activity. Thus, a systematic and comprehensive investi-
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gation of the differences in the physicochemical properties between olivine and pyroxene
surfaces is of high relevance, which will firstly require the construction of pyroxene surface
models. In relation to ice mantles, the interstellar and cometary ones consist mainly of
water (and hence commonly modelled by pure water), but traces of other components
are also present. However, surface models of true dirty ices (i.e., H2O mixed with traces
of CO, CO2, NH3, CH3OH, etc.) are still to be proposed. Models of this kind are very
important, because the interaction of these minor species with water ice molecules can
lead to their activation, increasing their propensity to react. Such an activation effect is
usually investigated by modelling the gas–ice complexes (i.e., the minor species being
adsorbed on top positions of pure water ice surfaces). However, the degree of activation
can be different if the minor species forms part of the ice network, as different interactions
with the surrounding molecules are established. Indeed, these minor iced molecules are
attributed to be raw reactive species that trigger chemical reactions leading to an increase
in molecular complexity (e.g., formation of iCOMs). Thus, realistic models for dirty ice
mantles are highly demanded, the construction of which can be conducted by adopting
similar approaches as for water ice.

The reason why water ice and silicates are the most common materials to study grain
surface chemical reactions is that they are the most abundant ones in the IS medium. How-
ever, other materials are also available and relatively abundant in this and other astrophysical
media, which can indeed play roles in building-up the chemistry present in space. This
is undeniably the case of the rocky materials belonging to comets and meteorites. These
asteroidal bodies present a wide variety of minerals, the most usual ones being silicates,
aluminosilicates, metal oxides, metal sulfides and carbonates. On terrestrial Earth, some
of these materials exhibit catalytic properties, which can operate efficiently in space. Thus,
investigations of the synthesis of organic compounds detected in comets and found in mete-
orites and the role of the minerals in these processes are of fundamental relevance, not only
for the astrochemistry field but also for the prebiotic chemistry one, since these minerals were
also present on the primordial Earth’s crust [163,164]. Therefore, the modelling of surfaces for
materials belonging to these mineral families is mandatory to conduct these investigations.
Modelling of these systems can certainly be conducted by means of the strategies presented
in this perspective, but in this case with some caution, as these minerals differ significantly
to silicates and, especially, to ice mantles—that is, cometary and meteoritic minerals are
undoubtedly more complex in terms of their nature (pure ionic or hybrid ionic/covalent
systems), composition (more chemical species), structures (different crystalline and amor-
phous systems) and electronic structure (i.e., open-shell systems such as radical ones or those
containing Fe2+).

Therefore, for all the exposed above, there is indeed a fertile and unexplored ground
for theoreticians and modelers dedicated to the primordial chemical evolution and origin
of life’s studies.
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