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Abstract: This study investigated the effect of NaOH concentration on the assemblage, crystallinity,
and dimension of crystalline phases in hydroxyapatite–zeolite composites made with blast furnace
slag. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy measurement, scanning
electron microscopy (SEM), and nitrogen adsorption–desorption tests were conducted to characterize
the synthesized composites. In addition, the cesium adsorption potential of the synthesized compos-
ites was evaluated to assess the feasibility of using hydroxyapatite–zeolite composites synthesized
from blast furnace slag. The composite samples using a 3 M NaOH solution showed the formations
of Na-P1 and Faujasite (FAU) zeolites along with hydroxyapatite, which led to the highest adsorption
capacity for cesium (44.90 mg/g).

Keywords: hydroxyapatite; hydrothermal synthesis; blast furnace slag; NaOH concentration; zeolite

1. Introduction

Zeolites, which have a chemical formula of Am[AlmSinO2(m+n)]·xH2O (where A repre-
sents alkali metals), and hydroxyapatite (Ca10(PO4)6(OH)2) are widely used materials in
various fields, especially in the field of environmental engineering and for medical appli-
cations [1–4]. In particular, zeolites and hydroxyapatite have been used as adsorbents for
water purification because of their high ion exchangeabilities with a high specific surface
area [5–9]. It is well known that zeolites have a particular affinity towards cation adsorption,
because of their cation exchangeability [10,11]. On the other hand, the Ca2+ and OH− ions
of hydroxyapatite can be replaced by the other cations and anions, respectively [6,12–16].
Many studies have removed Cl−, F−, NO3

−, and AsO4
3− using this phenomenon [6,12–16].

Moreover, Ozeki and Aoki [17] reported that hydroxyapatite has a better adsorption ca-
pacity for strontium than zeolite, while zeolite has a better adsorption capacity for cesium
than hydroxyapatite, meaning that zeolites and hydroxyapatite have different adsorption
capacities for certain cation ions. Therefore, zeolites and hydroxyapatite can compensate
for each other’s drawbacks when used simultaneously.

Blast furnace slag is an industrial byproduct, rich in calcium, silicon, and aluminum
components. About 400 million tons of slag are produced annually worldwide as a
byproduct of the steelmaking process [18,19]. A major portion of the generated blast
furnace slag is used as a supplementary cementitious material in the concrete industry
in an effort to reduce environmental impacts that occur from the use of Portland cement
[20–24]. Several studies have utilized blast furnace slag for the synthesis of adsorbents,
yet these studies were not able to fully utilize calcium content in the blast furnace slag for
increasing the adsorption performance, considering the high calcium availability in blast
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furnace slag [25–27]. It has been reported recently that zeolites and hydroxyapatites can be
simultaneously synthesized from blast furnace slag under hydrothermal conditions [8,13].
Kuwahara et al. [1,13] synthesized zeolites and hydroxyapatite using blast furnace slag,
observing the formation of these phases over time. Ryu et al. [8] investigated the effects
of the reaction temperature on the hydrothermal synthesis of zeolites and hydroxyapatite
using blast furnace slag. It was found that hydroxyapatite was solely synthesized under
90 ◦C, while both zeolites and hydroxyapatite were synthesized above 90 ◦C [8]. Moreover,
hydroxysodalite was formed above 120 ◦C at the expense of zeolites [8].

It has also been reported in literature that the initial alkalinity of the mixture also
played important roles in the hydrothermal synthesis of zeolites and hydroxyapatite using
fly ash and deoxycytidine diphosphate (C9H15N3O10P2), respectively [28,29]. Earlier works
on the hydrothermal synthesis of hydroxyapatite reported that the high initial pH of the
mixtures led to the formation of high crystalline hydroxyapatite with large particles of
more than 20 µm [28,30,31]. However, previous studies revealed that the crystallinity
and particle size of hydroxyapatite synthesized by the hydrothermal treatment reduced
as the initial pH of the mixture increased beyond the proper level [32,33]. This indicates
that a certain pH range should be used to obtain the appropriate crystallinity and particle
size of hydroxyapatite [34]. The structure, morphology, and particle size distribution of
the synthesized zeolites are also deeply affected by the NaOH concentration of the initial
mixture [29].

The effects of the initial NaOH concentration on the synthesis of hydroxyapatite using
blast furnace slag have not, to the best of our knowledge, been reported in the literature.
In this study, thus, the effect of NaOH concentration on the assemblage, crystallinity, and
dimension of crystalline phases in hydroxyapatite–zeolite composites synthesized from
blast furnace slag was investigated. To characterize the synthesized composites, X-ray
diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy measurement, scanning
electron microscopy (SEM), and nitrogen adsorption–desorption tests for Brunauer-Emmett-
Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses were conducted. The cesium
adsorption potential of the composite was also evaluated so as to assess the feasibility of
using hydroxyapatite–zeolite composites synthesized from blast furnace slag.

2. Experimental Program
2.1. Sample Perparation

The chemical compositions of blast furnace slag (produced from Hyundai Jecheol, Dan-
gjin, Korea) measured using the X-ray fluorescence test are listed in Table 1. The composite
samples were synthesized as follows: a suspension composed of 30 g of blast furnace slag
and 200 mL of phosphoric acid (H3PO4, 85%, Samchun Pure Chemical Co., Ltd., Pyeong-
taek, Korea) solution was stirred at 350 rpm for 2 h. It should be noted that the Ca/P molar
ratio of the suspension was fixed at 1.7, as recommended in previous works [1,8,13,31].
In this step, dicalcium phosphate dihydrate (CaHPO4·2H2O) is synthesized [13].

Ca2+ + H+ + PO4
− + 2H2O = CaHPO4·2H2O (1)

Subsequently, 350 mL of NaOH (97%, Daejung Chemicals and Metals Co., Ltd., Sihe-
ung, Korea) solution with specific concentrations of 0.5, 1, 2, 3, 4, or 5 M were added to the
suspension for the alkaline activation; thereafter, the samples were stirred at 450 rpm for 2 h.
From this step, dicalcium phosphate dihydrate is slowly changed into hydroxyapatite [13].
The mechanism details of the formation of hydroxyapatite and zeolite from blast furnace
slag can be found in Kuwahara et al. [1,13]. The samples activated with 0.5, 1, 2, 3, 4, or
5 M were denoted as HZ-0.5, HZ-1, HZ-2, HZ-3, HZ-4, and HZ-5, respectively. Thus, the
liquid to solid phase ratio was 550 mL/30 g in this study. In this step, the pH of mixtures
was measured to be 12.3, 12.8, and 13.1 for HZ-0.5, HZ-1, and HZ-2, respectively, while it
was more than 14 for the remaining samples. The samples were poured into fully sealed
Teflon bottles and then heated at 90 ◦C in an oven for 48 h. After heating, the samples were
washed and filtered, followed by drying at 90 ◦C overnight to obtain white powders.
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Table 1. Chemical compositions of blast furnace slag measured from X-ray fluorescence test.

Composition Proportion (wt.%)

CaO 67.60
SiO2 18.20

Al2O3 7.50
SO3 3.10

Fe2O3 1.00
TiO2 0.95
K2O 0.76
MnO 0.44
ZrO2 0.08
CuO 0.05
NiO 0.04
SrO 0.02

2.2. Characterization

The crystalline phases of the synthesized composite samples were characterized by
XRD using a PANalytical X’Pert PRO-MPD at the Korea Basic Science Institute (Daegu,
DA107). The composite samples were scanned at a 2θ 5–50◦ scan range with a 0.2◦/min
scanning rate. The reference intensity ratio (RIR) method was used to estimate the possible
quantities of the crystalline phases estimated by XRD patterns of the synthesized composite
samples [35]. The FT-IR measurements using 6300FV and IRT5000 devices (JASCO, Tokyo,
Japan) were taken in a range of 1900–450 cm−1 under a vacuum state. SEM tests using
HITACHI SU5000 (Hitachi, Ltd., Tokyo, Japan) were conducted to explore the crystal
morphology and the size of the synthesized composite samples. Before the SEM tests, the
surfaces of the synthesized samples were coated with Pt to increase the visibility of the
morphologies. Nitrogen adsorption–desorption tests were conducted using Tristar II 3020
(Micromeritics, Atlanta, GA, USA) to measure the specific surface area and the pore size
distributions of the composite samples using the BET/BJH methods.

2.3. Batch Test

To investigate the cesium adsorption capacities of the synthesized composite samples,
200 mL of 0.01 M CsCl solution, approximately equal to 1329 ppm for Cs+, was prepared
for each synthesized composite sample. It should be noted that the concentration of Cs+

for the batch test was referenced from Ozeki and Aoki [17], in which the Cs+ adsorption
experiments were conducted using zeolite and hydroxyapatite. Before the batch test, the
synthesized samples were powdered to pass through a 64 µm sieve. Next, 2 g of the sieved
composite samples were added into the CsCl solution and were shaken at 120 rpm until
the extraction of the solutions. The batch composite samples were taken at 1, 3, 10, 30,
and 60 min, and were immediately filtered using a 2 µm syringe filter. The residual Cs+

concentration taken from the batch composite sample was measured using an inductively
coupled plasma mass spectrometer (ICP-MS, Agilent ICP-MS 7700S, Agilent, Santa Clara,
CA, USA).

3. Crystallin Characteristics and Microstructures of the Composites
3.1. Crystalline Characteristics

The XRD patterns of the raw slag and the synthesized composite samples are shown in
Figure 1. The presence of calcite (CaCO3; PDF# 00-005-0586), portlandite (Ca(OH)2; PDF#
00-037-1496), and anhydrite (CaCO4; PDF# 01-072-0916) were detected in the XRD pattern
of the raw slag, along with an amorphous feature. The HZ-0.5, HZ-1, and HZ-2 samples
solely showed peaks corresponding to the hydroxyapatite (Ca10(PO4)6(OH)2, PDF# 01-074-
0565) phase. On the other hand, the HZ-3 sample contained hydroxyapatite, Na-P1 zeolite
(typically referred to as Na6Al6Si10O32·12H2O PDF# 01-071-0962), and faujasite (FAU) zeo-
lite (typically referred to as Na56Al56Si136O384 PDF# 00-012-0246) phases. The XRD pattern
of the HZ-4 and HZ-5 samples showed hydroxyapatite, Na-P1 zeolite, and hydroxysodalite
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(generally denoted in Na8Al6Si6O24 PDF# 00-042-0216) phases. This indicates that zeolite
phases cannot be produced when the concentration of the NaOH solution is lower than 3 M.
The initial pH of the HZ-0.5, HZ-1, and HZ-2 samples were 12.3, 12.8, and 13.1, respectively,
whereas the initial pH of the HZ-3 sample was beyond 14. It should be noted that the
possible measurement range of the pH level was limited to 14 in this experiment. On the
other hand, hydroxysodalite, which is a zeolite-like material but has a lower specific surface
area than that of zeolites, was formed in the HZ-4 and HZ-5 samples [8,25].
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The crystallinities and quantitative contents of the phases of the synthesized composite
samples as measured from the XRD patterns in the RIR method are listed in Table 2. It is
clear that the crystallinity of the synthesized composite samples was influenced by the
NaOH concentration of the initial mixture. The crystallinity increased significantly as the
molarity of NaOH increased from 0.5 to 3 M. However, a further increase in the NaOH
molarity did not have a significant effect on the crystallinity. The measured hydroxyapatite
contents of the HZ-0.5, HZ-1, HZ-2, HZ-3, HZ-4, and HZ-5 samples were 25, 40, 55, 54, 48,
and 52 wt.%, respectively. The hydroxyapatite content tended to be increased significantly
as the concentration of the NaOH solution increased from 0.5 to 2 M. However, a further
increase in the NaOH molarity did not promote the formation of hydroxyapatite. Zeolite
phases were produced in the composite samples made with a NaOH solution possessing a
concentration higher than 2 M. The 1 wt.% of FAU zeolite was produced only in the HZ-3
sample. The amount of Na-P1 zeolite, which has a higher adsorption capacity than FAU
zeolite and hydroxysodalite, was approximately 9 wt.% in the HZ-3 sample. On the other
hand, the HZ-4 and HZ-5 samples contained 13 wt.% and 10 wt.% of hydroxysodalite,
respectively, whereas the hydroxyapatite and Na-P1 zeolite contents in these samples
decreased compared with those of the HZ-3 sample. It is surmised that a further increase
in the NaOH solution concentration decreases the crystallization of the Na-P1 zeolite. This
result is similar to previous studies [36–38]. The difference in the formed crystalline phases
for each composite sample is possibly associated with the Na+ and OH− concentration in
the initial sample mixture and the solubility of Si and Al in different alkaline conditions.
Si and Al are known to be soluble in alkali conditions [6,17,28,30,33]. According to Wang
et al. [29], the change in the amount of dissolved Al with an increasing NaOH concentration
was negligibly small compared with the changes in the amount of dissolved Si. The
amount of dissolved Si increased considerably with increasing the NaOH concentration [29].
Zeolite formation usually needs a high Si content than Al [29,39]. This phenomenon led
to satisfying the SiO2/Al2O3 molar ratio required for zeolite formation, by increasing
the NaOH concentration. Moreover, The formation of hydroxysodalite requires a higher
SiO2/Al2O3 molar ratio (2-∞) than that of the FAU (2-3) and Na-P1 zeolites (2-9) [40], hence
it was formed only in samples HZ-4 and HZ-5.

Table 2. Crystallinities and quantitative contents of the phases of the synthesized composite samples
measured from XRD patterns using the reference intensity ratio (RIR) method.

Sample ID Crystallinity (%) Phase Quantitative
Content (wt.%)

HZ-0.5 25 Hydroxyapatite 25

HZ-1 40 Hydroxyapatite 40

HZ-2 55 Hydroxyapatite 55

HZ-3 66
Hydroxyapatite 54

Na-P1 zeolite 9
FAU type zeolite 1

HZ-4 67
Hydroxyapatite 48

Na-P1 zeolite 7
Hydroxysodalite 13

HZ-5 67
Hydroxyapatite 52

Na-P1 zeolite 5
Hydroxysodalite 10

The FT-IR spectra of the composite samples are shown in Figure 2. Most of the adsorp-
tion peaks of the PO4

3− groups are overlapped with those of the silica groups (466, 963, 1037,
and 1093 cm−1) [1], whereas the peaks at 566 and 603 cm−1 solely denote PO4

3− groups
in hydroxyapatite [1]. The 747–732 cm−1 peak reveals the formation of zeolite phases [1].
The peaks at 1417 and 1467 cm−1 represent CO3

2− groups, which are usually detected from
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hydroxyapatite synthesized in the air, because CO3
2− can partially replace PO4

3− for the
synthesis of hydroxyapatite [1,41,42]. Although the HZ-2, HZ-3, HZ-4, and HZ-5 samples
had these peaks, the HZ-0.5 and HZ-1 samples did not have them. This might be because the
amount of the synthesized hydroxyapatite in these samples was low. In samples HZ-2, HZ-3,
HZ-4, and HZ-5, CO3

2− was used to synthesize hydroxyapatite. Alternatively, PO4
3− would

be sufficient to synthesize the hydroxyapatite in the HZ-0.5 and HZ-1 samples because of
the lower amounts of synthesized hydroxyapatite (≤40%).
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3.2. Morphology and Particle Size

The SEM images of hydroxyapatite (captured from the HZ-5 sample), FAU zeolite
(captured from the HZ-3 sample), Na-P1 zeolite (captured from the HZ-5 sample), and
hydroxysodalite (captured from the HZ-5 sample) are shown in Figure 3. The SEM images
of hydroxyapatite, Na-P1 zeolite, and hydroxysodalite were captured from the HZ-5
sample, as the HZ-5 sample had the highest crystallinity among the samples. On the
other hand, the SEM image of the FAU zeolite was captured from the HZ-3 sample, as
only the HZ-3 sample had it. The hydroxyapatite crystals in the HZ-5 sample (Figure 3a)
resemble bundles of needles [43]. The spherical-shaped FAU zeolite crystals in the HZ-3
sample (Figure 3b) had a diameter of approximately 90 µm, with a hierarchical pore system
and rectangle shape [44]. The diamond-like Na-P1 crystals with a red circle in Figure 3,
approximately 18 µm in size, were also detected in the HZ-5 sample (Figure 3c) [27]. In
Figure 3d, hydroxysodalite crystals with an approximately 90 µm diameter and rectangle
shape are shown [45].
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The SEM images of the hydroxyapatite crystalline with needle-like shapes captured
from the HZ-0.5, HZ-2, HZ-3, and HZ-5 samples are shown in Figure 4. The hydroxyapatite
crystals in the composite samples were denoted by red circles in Figure 4. Figure 4 indicates
the effect of NaOH concentration on the synthesized hydroxyapatite crystals. As the
initial concentration of NaOH increased, it was found that the size and crystallinity of the
hydroxyapatite crystals increased. The hydroxyapatite crystals with a needle-like shape
in the HZ-0.5 sample were not clear enough to measure the crystal sizes, as the crystals
were too small and could not easily be identified. In addition, the sizes of hydroxyapatite
crystals in the HZ-2 sample were longer and thicker than that of the HZ-0.5 sample, but
the size was confirmed to be up to a length of approximately 1 µm. On the other hand, the
crystals of the HZ-3 sample were identified as needle-like shaped hydroxyapatite, and the
length ranged from 1 to 3 µm. It was confirmed that the HZ-5 sample had well-developed
hydroxyapatite, which could be easily identified from the other crystals, because of their
length of 2–7 µm and the bundle of needle shapes.

Nevertheless, as the concentration of the alkali activator increased, and the aggrega-
tions of the hydroxyapatite crystals intensified. As reported by Hansen et al. [46], it was
found that as the pH of the initial mixture increased, the aggregation of the synthesized
hydroxyapatite crystals increased, which resulted in a decrease in both the specific surface
area and adsorption capacity [47]. This phenomenon could be as a result of the surface
energy of hydroxyapatite crystals [46,48]. The higher alkaline condition led to a higher
surface energy of hydroxyapatite crystals, and it led to the aggregation of hydroxyapatite
crystals [46,49].
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3.3. Pore Structures

To investigate the specific surface area and pore structures of the synthesized com-
posite samples, a BET/BJH test from the nitrogen adsorption–desorption test result was
conducted. The BET/BJH test results and the pore size distributions of the synthesized
composite samples measured from BJH tests are shown in Table 3 and Figure 5, respec-
tively. Among the synthesized composite samples, the HZ-3 sample had the highest BET
specific surface area (143.32 m2/g), followed by the HZ-0.5 sample (102.81 m2/g), while
the HZ-2 sample had the lowest BET specific surface area (32.12 m2/g). An increase in
NaOH concentration led to a decrease in the specific surface area of the synthesized com-
posite sample for the HZ-0.5, HZ-1, and HZ-2 samples, which solely had a hydroxyapatite
phase. The changes in the specific surface area of the samples were not linear, because the
crystal phases were changed for each alkali condition. This is attributed to the increased
aggregation of the hydroxyapatite crystals, as also indicated in the SEM images [47]. The
aggregation of the hydroxyapatite crystals could result in a disconnection of the pore con-
nection system in hydroxyapatite crystals, and this phenomenon could lead to a reduction
in the specific surface area of the hydroxyapatite crystals. Because of the formation of
zeolite phases (FAU and Na-P1 zeolite) with a high specific surface area [8], the HZ-3
sample had the highest specific surface area. The specific surface area of the HZ-4 sample
was much lower than that of the HZ-3 sample because of the formation of hydroxysodalite,
which has a lower specific surface area than that of the Na-P1 zeolite and FAU zeolite [27].
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Table 3. BET/BJH results of the synthesized composite samples.

Sample ID HZ-0.5 HZ-1 HZ-2 HZ-3 HZ-4 HZ-5

Specific surface area (m2/g) 102.81 50.51 32.12 143.32 59.39 72.07
BJH cumulative pore volume

(cm3/g) 0.32 0.18 0.18 0.17 0.14 0.17

BJH adsorption average pore
diameter (nm) 12.71 13.87 10.21 7.37 8.68 8.80

BJH adsorption cumulative specific
surface area of pores (m2/g) 101.27 51.32 69.94 90.12 66.72 79.30
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Figure 5. The pore size distributions of the synthesized composite samples measured from the BJH tests.

Khalid et al. [27] reported that the relatively small pores make the hierarchical connec-
tion system of pores in crystals, and the more relatively small pores lead to a high specific
surface area in the synthesized samples. In this study, the BJH adsorption average pore
diameter of the samples generally tended to be inversely proportional to the specific surface
area of the samples. This means that the specific surface area of the sample increases, as the
relatively small pores contain more than the large pores, because the relatively small pores
establish a hierarchical connection system of pores. Although the distribution of large
pores in the sample is small, in Figure 5, it can be seen that the specific surface area of the
sample with many small pores is in Figure 5. Similarly, Liu et al. [47] reported that a smaller
ratio of microporous area/specific surface area led to an increase in the specific area.

4. Cesium Adsorption Capacities of the Composites

The cesium adsorption capacities of the synthesized composite samples measured
from the ICP-MS tests are shown in Figure 6. The HZ-3 sample showed the highest
adsorption capacity (44.90 mg/g) because of the formation of FAU and Na-P1 zeolites,
followed by the HZ-0.5 sample (37.31 mg/g). The formation of zeolites led to a higher
specific surface area and ionic forces. The adsorption test results revealed that both zeolite
and hydroxyapatite have a high potential for Cs+ adsorption; however, it is better to use
hydroxyapatite–zeolite composites compared with pure hydroxyapatite for adsorbents.
Thus, it is recommended to synthesize both hydroxyapatite and zeolite from blast furnace
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slag to remove Cs+. However, HZ-4 and HZ-5 had lower adsorption capacities than that of
HZ-0.5, HZ-1, and HZ-2, although they had the Na-P1 zeolite. This could be due to the
intensified aggregation of hydroxyapatite crystals and the formation of hydroxysodalite.
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Figure 6. Cesium adsorption capacities of the synthesized composite samples measured from the ICP-MS tests.

For the samples containing hydroxyapatite solely (the HZ-0.5, -1, and -2 samples), the
adsorption capacities tended to decrease as the NaOH concentration of the initial sample
mixture increased. This is a result of the high concentration of NaOH, leading to the aggre-
gation of hydroxyapatite crystals. The aggregation resulted in a decrease in the specific
surface area, which could prevent the diffusion of Cs+ ions into the crystal (see Table 3).
Thus, Ca2+ ions located deep inside the hydroxyapatite crystals might not undergo ion
exchange with Cs+ ions. This phenomenon ultimately led to a reduction in the adsorption
capacity of the synthesized composite sample. For further insight, the adsorption capacities
of the synthesized composite samples against the BET surface area are shown in Figure 7.
Regarding the HZ-0.5, HZ-1, HZ-2, and HZ-3 samples, the adsorption capacity increased
with the specific surface area. On the other hand, hydroxyapatite–hydroxysodalite (the HZ-
4 and HZ-5 samples), which was synthesized with a high concentration of alkali activator,
had a relatively low adsorption capacity (11.72 and 13.03 mg/g) against the specific surface
area compared with the other composite samples. This is ascribed to hydroxysodalite
having a lower adsorption capacity than FAU zeolite and Na-P1 zeolite. Moreover, the
intensified aggregation of hydroxyapatite crystals possibly led to the decreased adsorption
capacity of the hydroxyapatite, as mentioned above [47,50].

Overall, increasing the alkali activator concentration augmented the aggregation of
hydroxyapatite crystals, thereby reducing their specific surface area [46,47]. On the other
hand, the HZ-3 sample showed the highest adsorption capacity because of the high specific
surface area resulting from the formation of Na-P1 and FAU zeolite [1]. The specific surface
area and adsorption capacity of the HZ-4 and HZ-5 samples were greatly decreased because
of the formation of hydroxysodalite and the intensified aggregation of hydroxyapatite
crystals [47,50].
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5. Concluding Remarks

In this study, the effect of the NaOH concentration on the hydrothermal synthesis
of hydroxyapatite–zeolite made with blast furnace slag was investigated. The composite
samples synthesized with different concentrations of NaOH solutions were characterized
by XRD, FT-IR, SEM, and BET/BJH analyses. The adsorption capacities of the synthesized
composite samples for Cs+ were investigated. The results of this study can be summarized
as follows:

(1) As the NaOH concentration increased from 0.5 to 3 M, the overall crystallinity in-
creased from about 25% to about 66%. However, a further increase in the NaOH
concentration did not affect the overall crystallinity. Instead, the crystalline phases
and their content varied.

(2) The composite samples synthesized with a 0.5, 1, or 2 M NaOH solution contained
an increasing content of the sole crystalline phase, i.e., hydroxyapatite. Nevertheless,
the specific surface area and adsorption capacity of the composite samples for Cs+

decreased in these composite samples because of the aggregation of hydroxyapatite
crystals as the concentration of the NaOH solution increased from 0.5 to 2 M.

(3) The composite sample synthesized with 3 M of the NaOH solution had the highest spe-
cific area and adsorption capacity for Cs+ among all of the composite samples in this
study, because of the formation of Na-P1 and FAU zeolites along with hydroxyapatite.

(4) A further increase in the NaOH molarity (more than 4 M) resulted in a reduced
specific surface area and adsorption capacity for Cs+ because of the formation of
hydroxysodalite and the intensified aggregation of hydroxyapatite.

In conclusion, the optimal concentration for the NaOH solution is around 3 M, at
which zeolite phases can be formed, resulting in an improved adsorption capacity for the
slag-based adsorbents. Research on the particle size before and after synthesis needs to be
conducted in the future.
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