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Abstract: Marly limestones from the Lower Silurian sedimentary units of the Tunguska basin (East
Siberia, Russia) underwent metamorphism along the contact with the Early Triassic Kochumdek trap
intrusion. At ≤ 2.5 m from the contact, the limestones were converted into ultrahigh-temperature
marbles composed of pure calcite and sulfide-bearing calcsilicate layers. The sulfide assemblages
in the gabbro and marbles were studied as potential tracers of spurrite-merwinite facies alteration.
The gabbro-hosted sulfides show Fe-Ni-Cu-Co speciation (pyrrhotite and lesser amounts of chal-
copyrite, pentlandite, and cobaltite) and positive δ34S values (+2.7 to +13.1‰). Both matrix and
inclusion sulfide assemblages of prograde melilite, spurrite, and merwinite marbles consist domi-
nantly of pyrrhotite and minor amounts of troilite, sphalerite, wurtzite, alabandite, acanthite, and
galena. In contrast to its magmatic counterpart, metamorphic pyrrhotite is depleted in Cu (3–2000
times), Ni (7–800 times), Se (20–40 times), Co (12 times), and is isotopically light (about –25‰ δ34S).
Broad solid solution series of (Zn,Fe,Mn)Scub, (Zn,Mn,Fe)Shex, and (Mn,Fe)Scub indicate that the
temperature of contact metamorphism exceeded 850–900 ◦C. No metasomatism or S isotope reset-
ting signatures were detected in the prograde mineral assemblages, but small-scale penetration of
magma-derived K- and Cl-rich fluids through more permeable calcsilicate layers was documented
based on the distribution of crack-filling Fe-K sulfides (rasvumite, djerfisherite, and bartonite).

Keywords: contact metamorphism; marble; pyrrhotite; Fe-K sulfides; Zn-Fe-Mn sulfides; trace ele-
ments; sulfur isotope; spurrite-merwinite facies

1. Introduction

Petrological analysis of metamorphic rocks commonly aims to reconstruct peak meta-
morphic conditions and P-T paths from data on rock-forming minerals [1–5]. The scope of
genetically informative minerals in petrology was improved with the application of the rare
earth elements (REE), Ti, and Zr systematics due to the implementation of high-resolution
and isotope geochemical analytical techniques [6,7]. The metamorphic conditions of the
spurrite-merwinite facies are useful for examining the formation of high-temperature
phases that accumulate trace elements [8–10]. Some Ti, U, Zr, Sn, and Sc host phases are
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stable across a large range of thermodynamic conditions and can be potential new proxies
of metamorphic processes [9,11–15]. Accessory phases are suitable for isotope dating
(zircon, monazite) [16], mineral thermometry (Zr-in-rutile, Ti-in-zircon) [17–20] and redox
reconstructions (apatite-group minerals, Fe oxides, Fe sulfides, native elements) [5,21–23].

Previously, metamorphic petrologists showed little interest in the mineralogy of sulfides,
which re-equilibrate faster than silicates and/or oxides [24], and thus are less likely to record
peak metamorphic conditions. Attention to sulfides has been more often focused on their ore
potential and the depositional environments of precursor sediments in regional metamorphic
complexes [25] or on skarn mineralization in low-grade metamorphic rocks [26]. Meanwhile,
sulfide assemblages were recently shown to record changes in metamorphic regimes [27].
Large variations in the major- and trace-element compositions and isotopic δ34S values of
sulfides have implications for the source of material involved in the formation of metamorphic-
hosted sulfides [28]. Sulfides re-equilibrate and re-crystallize rapidly in response to changes in
their growth medium and are thus sensitive to material transport across chemical/geological
interfaces. In this respect, sulfides may be independent sources of information on mass
transfer between sedimentary and igneous rocks during contact metamorphism [3,8], but to
our knowledge have never been used for such purpose.

This idea was tested on the Silurian marly limestones (the Tunguska basin, East Siberia),
which was metamorphosed by the Early Triassic Kochumdek gabbro-dolerite sill. Accord-
ing to available data on critical mineral assemblages and numerical simulations [29,30],
the Kochumdek aureole results from a single brief thermal event of up to 900 ◦C and a
yearlong peak stage of metamorphism. Therefore, thermal history reconstructions for
the Kochumdek area may be relatively simple, more so because it was not subject to any
significant later alteration.

This study addresses several issues related to the diverse sulfide mineralization in
marbles from the Kochumdek River and in the Kochumdek trap intrusion:

• Major- and trace-element compositions of the marble and gabbro-dolerite samples
from the Kochumdek contact aureole;

• Sulfide mineralogy in the marble and gabbro-dolerite samples: diversity, distribution
patterns, morphology and age relationships;

• Mineral chemistry of sulfides, including trace-element signatures;
• Sulfur isotope composition.

The goal of the study is to demonstrate that detailed field examination coupled with
systematic geochemical analyses of representative rocks and mineralogical studies of sulfides
can shed light on the regime of prograde and retrograde igneous-related metamorphism.

2. Geological Background
2.1. General Information

Diverse sulfide mineralization was reported in the spurrite marbles of the Kochumdek
contact aureole [31–35] located in the western termination of the Tunguska basin
(the Podkamennaya Tunguska River catchment, East Siberia) [1,2,30,36]. The Tunguska
basin is composed of thick sequences (3–7 km in thickness) of Middle Proterozoic to Pa-
leozoic volcano-sedimentary rocks (PR2–P2), which are interbedded with mafic sills and
buried under flood basalts over a large part of the basin territory. Continental flood basalt
magmatism produced the large igneous province of Siberian Traps at the Permian-Triassic
boundary [37–39]. The flood basalts cover an area of ~330,000 km2 and are localized mainly
within the Lower Paleozoic (O-S) strata of the Tunguska basin (Figure 1) [37,40,41].
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Figure 1. Distribution area of the Siberian flood basalt province (Siberian Traps), after [42], and 
geological map of the study area (red star and white square), modified after the 1:200,000 State 
Geological Map [43]. Legend corresponds to the 1:1,000,000 State Geological Map [44]. 1–4 = Qua-
ternary sediments (alluvium, fluvioglacial and moraine deposits), 5 = Early Triassic intrusions of 
the Kuz’movsky complex. Sedimentary strata: 6 = Pelyatkinsk Formation (Perm), 7 = Kondrominsk 
Formation (Carboniferous), 8 = Yukta Formation (Devonian), 9 = Tynep Formation (Devonian), 10 
= Nimsky Formation (Devonian), 11 = Lower and upper parts of the Silurian (combined), 12 = Ko-
chumdek, Kulina, Razvilkinsk Formations of the Lower Silurian (combined), 13 = Dolborska (Or-
dovician), 14 = Uststolbovaya and Mangazeya Formations united (Ordovician), 15 = Baikit For-
mation (Ordovician). 16. A = Hornfels, B = Skarny breeds. 17. A = Metasomatic rocks, B = Sulfida-
tion. 18. A = 1981 data, B = 2017 data. Quaternary sediments: 19 = Lake-marsh, 20. A = Water-gla-
cial, B = Glacial. Tectonic contacts: 21. A = Reliable, B = Alleged, C = Reliable, indicating the direc-
tion of incidence of the displacer surface. 

Early Paleozoic sediments in the Deliga-Kochumdek uplift were intruded by the 
Early Triassic Kuz’movsky complex (νβT1kz), which exposed the sedimentary rocks and 
comprises 13% of their area and ≤25% of their volume [44]. The Kuz’movsky complex is 
comprised of sills that range from 120–300 m in thickness, as well as subordinate dipping 

Figure 1. Distribution area of the Siberian flood basalt province (Siberian Traps), after [42], and
geological map of the study area (red star and white square), modified after the 1:200,000 State
Geological Map [43]. Legend corresponds to the 1:1,000,000 State Geological Map [44]. 1–4 = Qua-
ternary sediments (alluvium, fluvioglacial and moraine deposits), 5 = Early Triassic intrusions of
the Kuz’movsky complex. Sedimentary strata: 6 = Pelyatkinsk Formation (Perm), 7 = Kondrominsk
Formation (Carboniferous), 8 = Yukta Formation (Devonian), 9 = Tynep Formation (Devonian),
10 = Nimsky Formation (Devonian), 11 = Lower and upper parts of the Silurian (combined),
12 = Kochumdek, Kulina, Razvilkinsk Formations of the Lower Silurian (combined), 13 = Dol-
borska (Ordovician), 14 = Uststolbovaya and Mangazeya Formations united (Ordovician), 15 = Baikit
Formation (Ordovician). 16. A = Hornfels, B = Skarny breeds. 17. A = Metasomatic rocks,
B = Sulfidation. 18. A = 1981 data, B = 2017 data. Quaternary sediments: 19 = Lake-marsh, 20.
A = Water-glacial, B = Glacial. Tectonic contacts: 21. A = Reliable, B = Alleged, C = Reliable,
indicating the direction of incidence of the displacer surface.

Early Paleozoic sediments in the Deliga-Kochumdek uplift were intruded by the
Early Triassic Kuz’movsky complex (νβT1kz), which exposed the sedimentary rocks and
comprises 13% of their area and ≤25% of their volume [44]. The Kuz’movsky complex is
comprised of sills that range from 120–300 m in thickness, as well as subordinate dipping
bodies and dikes that were emplaced mainly into the horizontally bedded Ordovician and
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Silurian mud rock and carbonate sediments. The igneous rocks are mainly of dolerite and
gabbro lithologies, and are transitional to gabbro-dolerite, olivine dolerite, and ore-bearing
gabbro compositions in the top parts of the intrusions which locally contain pegmatitic
lenses and granophyres [29,42–44].

The Tunguska basin is a classical area of contact metamorphism where trap magma-
tism caused large-scale thermal and/or metasomatic alteration of sediments [1–4,29,45,46].
The interactions of basaltic and sedimentary material produced skarns and calciphyres at
the contacts with fluid-saturated differentiated bodies, pyroxene or hornblende hornfels
facies along the margins of the poorly differentiated sills [1,2,41,42,44,47] and extremely
rare spurrite-merwinite facies (P up to 1.0 kbar and T up to 900 ◦C) rocks [1,4,29,46].

The Kochumdek aureole of contact metamorphism (Figures 1 and 2) results from the
thermal effect of the Kochumdek intrusion (part of the Kuz’movsky complex; νβT1kz) on
Llandovery (S1ln) marly limestones (Rhuddanian stage, Lower Kochumdek Subformation;
S1kč + rs) [1,2,29,30,36,44,46,47]. Most of the intrusions at the Kochumdek site are gently
dipping, poorly differentiated troctolite dolerite sills coexisting with abundant dikes and
veins [43,44].Minerals 2020, 10, x FOR PEER REVIEW 5 of 48 
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Figure 2. Schematic map of sampling site (A) and south outcrop photos (B–E) on the right bank of
the Kochumdek River (2017). (B) Weathered marble surface. (C) Scattered blocks of tilleyite and
wollastonite marbles. (D) Panoramic photo of right bank of the Kochumdek river floodplain (from
south to north). Scattered blocks of recrystallized marly limestones and low-grade marbles from south
contact. The rapids in the background of the Kochumdek River consist of gabbro (E). Cross sections
along lines A-B and C-D see at Figure 4. 1 = Kochumdek trap, 2 = Dyke, 3 = Recrystallized marly
limestones of the Lower Kochumdek Subformation, 4 = Marbles (large and small circles are high-
and low-temperature rocks), 5 = Scattered rock blocks, 6 = Taiga.
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The 62–64 m thick Lower Kochumdek Subformation (S1kč + rs) is composed of lime-
stone with thin (0.1–0.5 cm) siltstone or clay intercalations, which contain disseminated
pyrite, sphalerite, and galena. The base of the subformation is marked by two beds: (1)
dolomitic limestone with layers of bituminous shale, and (2) limestone with rhythmic
marl layers [48]. Contact metamorphism within the Kochumdek aureole affected marly
limestone with characteristic wavy textures imprinted in marbles (Figure 3A,B,E). The per-
centage of clay (mainly kaolinite, subordinate illite, and rare smectite) in the sedimentary
parent rocks varies from 7% to 47%, while the sand fraction is <1%.Minerals 2020, 10, x FOR PEER REVIEW 6 of 48 
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Figure 3. Appearance of recrystallized marly limestones (A–D), marbles (E–G) and gabbro (H–J)
from the Kochumdek contact aureole. Recrystallized marly limestones: (A) Weathered limestone
surface. (B,C) Distribution of carbonate and pelitic layers in limestone. (D) Marly limestone with
partially recrystallized fossil remnants. Spurrite marbles: (E) Typical sample of spurrite marble.
(F) Silicate and carbonate layers. (G) Calcite + Spurrite + Merwinite + Melilite. Gabbro: (H) Gabbro
from the Kochumdek intrusion top. (I,J) Coarse-grained clinopyroxene, with interstitial plagioclase
and olivine. (C,D,F,G,I,J) Optical images in cross-polarized transmitted light. Collection: A-D = 2017,
E-J = 1981. Cal = calcite, Cpx = clinopyroxene, Mll = melilite, Mtc = monticellite, Mw = merwinite,
Ol = olivine, Pl = plagioclase, Spu = spurrite.

2.2. Site Description

The sampled contact aureole is located along the right bank of the Kochumdek River
(62◦27′54.59” N, 91◦55′42.99” E) at an elevation of 107 m above sea level. This is a permafrost
area with a hilly taiga landscape, deeply incised river valleys and flat watersheds that are
partly covered by Quaternary glacial deposits (QII-III). Permafrost degradation in the Holocene
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post-glacial period produced an erosion cutout till at the top of a sill within 15 km in the lower
reaches of the river. An outcrop in the steep river bluffs exposes a continuous sequence of
Ordovician pelitic sediments and Llandovery marly limestone intruded by two concordant
sills at elevations of 280–320 m and 360–410 m (Figures 1 and 2A).

The largest part of the marble-sill contact is inaccessible, being either submerged
below the Kochumdek River level or buried under snow and aufeis. High-grade spurrite-
merwinite marbles [30] were sampled immediately in the river during a low stand from
a horizontal contact between the sill and the overlying carbonate-marl marker bed of the
Lower Kochumdek Subformation. Presumed remnants of a large aureole appear on the
riverside and on a low right-side terrace above the contact as scattered blocks of tilleyite-
wollastonite marble and recrystallized marly limestone (Figure 2A–D), where most of the
blocks have horizontal bedding and appear autochthonous (Figure 2B,C). Their origin from
an aureole, which was destroyed by postglacial erosion but survived in sags of the upper
sill margin, can be inferred from the geological context (Figure 4B).Minerals 2020, 10, x FOR PEER REVIEW 7 of 48 
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of the sill as well as lower-grade marble and marly limestone was sampled in 2017 (Figure 
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Figure 4. Schematic cross sections of sampling site along lines A-B (A) and C-D (B) (symbols
are shown in Figure 2). (A) Temperature zoning of the Kochumdek contact aureole. Dash lines
correspond to outcropping sampling sites. Left vertical axis shows thickness of metamorphic rocks
(m). Zero level is at intrusion top. (B) Simplified profile of the Kochumdek intrusion top. Modified
version after [30]. Grt = garnet, Mll = melilite, Mtc = monticellite, Mw = merwinite, Px = pyroxene,
Rnk = rankinite, Spu = spurrite, Tly = tilleyite, Wo = wollastonite.

The ~4 m thick (Figure 4A) aureole results from prograde metamorphism of marly
limestone by a heat flux rising from the sill, with an initial magma temperature of ~1200 ◦C.
The thermal event produced three high-grade mineral assemblages at progressively closer
distances to the contact: (i) calcite + tilleyite + wollastonite + melilite (Zone 4: 1.5–2.6 m),
(ii) calcite + spurrite + monticellite + melilite + perovskite (Zone 3: 1.0–1.5 m), and (iii)
calcite + spurrite + merwinite + monticellite + melilite + perovskite (± rankinite, bredigite)
(Zone 2: 0.3–0.5 m). The edge of the high-grade contact metamorphic aureole at ~2.6 m
is marked by an abrupt change from tilleyite-wollastonite marble to recrystallized marly
limestone of a similar appearance (Zone 5). The top of the sill is delineated by a very thin
(1–3 cm) and discontinuous skarn of Zone 1 [2,30].

The S-T1 sediments lying over the Kochumdek sill were about 700 m thick at the
time of its emplacement in the Early Triassic, which corresponds to a pressure of 200 bar.
Based on poly-mineral assemblages in the marbles, the intruding magma is inferred to
have heated the sediments to 700 to 900 ◦C [1,2,30]: ≥ 900 ◦C in Zone 2; ≥ 750 ◦C in Zone 3;
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and ≥ 700 ◦C in Zone 4 (Figure 4A); the temperature within Zone 5 recorded in the isobaric
invariant assemblage of calcite + actinolite + K-feldspar + diopside + biotite was no higher
than 450–500 ◦C [49]. The P-T conditions of the Kochumdek contact metamorphism have
been reliably constrained, which makes it a natural reference system suitable for the study
of the ensuing compositional changes.

In general, the aureole is free from evident imprints of closely related metasomatic
changes or net transfer reactions. Deformation signatures are rare or absent. The rocks
appear virtually homogeneous, free from textural effects of deformation and mechanical
mixing (namely, local reorientation or recrystallization of mineral grains, strong preferred
orientation, or crystal size patterns). Both sill and metamorphic or sedimentary rocks near
the contact lack breccias, cataclastics, healed cracks, or veining networks.

3. Material and Methods
3.1. Sampling

About 150 samples of gabbro, marble, and limestone were collected during the field trips
of 1981 and 2017 to the Kochumdek River. The highest-grade spurrite-merwinite marbles
were sampled in 1981 in the dried riverbed by Dr. V.Yu. Kolobov. The very top of the
sill as well as lower-grade marble and marly limestone was sampled in 2017 (Figure 2B–E).
The sampling site was a 1-km-long and 70–100-m wide band from the intrusive contact into
the sediments (Figure 2A). A total of sixty-six representative samples, including gabbro (12),
spurrite (19) and tilleyite (10) marbles, and recrystallized marly limestones (25) were selected
for a detailed mineralogical study.

3.2. Analytical Procedures

Analyses were mostly carried out at the Analytical Center for Multi-Elemental and
Isotope Research (Sobolev Institute of Geology and Mineralogy (IGM, Novosibirsk, Russia))
and at the South Ural Research Center of Mineralogy and Geoecology (SU FRC MG, Miass,
Russia). Major elements in bulk-rock samples were analyzed by the ICP-AES technique
(inductively coupled plasma atomic emission spectroscopy) on a ThermoJarrell IRIS Ad-
vantage atomic emission spectrometer (ThermoJarrell Intertech Corporation, Atkinson, WI,
USA) at IGM (Novosibirsk). The preconditioning procedure included fusion of powdered
whole-rock samples with lithium borate [50]. Trace elements in bulk samples of gabbro,
marble, and limestone were determined by mass spectrometry with inductively coupled
plasma (ICP-MS) on an Agilent 7700x spectrometer (Agilent Technologies, Inc., Santa Clara,
CA, USA) at the SU FRC MG (Miass, Russia). The method was slightly modified from
those reported in [51,52] and is described in detail by Sokol et al. (2020) [53].

Mineral phases (≥1%) were identified by X-ray diffraction analysis (XRD) in powdered
samples. All specimens were analyzed on a Shimadzu XRD-600 diffractometer (Shimadzu
Corporation, Kyoto, Japan) (CuKα radiation with a graphite monochromator, λ = 1.54178 Å).
The scans were recorded from 6–60 ◦2θ at 0.05 ◦2θ increments with 5 s scanning time per
step.

Scanning electron microscopy (SEM) was used to identify minerals and to character-
ize the phase distribution and morphology of sulfides, based on energy-dispersive spec-
tra (EDS), backscattered electron (BSE) images, and X-ray element maps (EDS system).
The measurements were performed at IGM (Novosibirsk) on a TESCAN MIRA 3LMU micro-
scope (Tescan Orsay Holding, Brno, Czech Republic) equipped with an Oxford AZtec Energy
Xmax-50 microanalyses system (Oxford Instruments Nanoanalysis, Abingdon, UK). For SEM
examination, thin sections were sputter coated with ~15 to 25-nm carbon films. EDS analyses
of minerals were run in a high-vacuum mode at an accelerating voltage of 20 kV, a beam
current of 1.5 nA, and a live spectra acquisition time of 20 s. The results were checked against
reference standards of simple compounds and metals for most of the elements.

Electron probe microanalyses (EPMA). The mineral chemistry of sulfides was analyzed
in >10 µm grains on a JEOL JXA 8100 electron microprobe microanalyzer (JEOL, Tokyo,
Japan) in C-coated polished thin sections, at an accelerating voltage of 20 keV, a beam
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current of 20 nA, and a peak counting time of 10 s. The compositions of sulfides were
determined with reference to standards: synthetic FeS for SKα and FeKα, ZnS for ZnKα,
garnet ‘IGEM’ for MnKα, CuFeS2 for CuKα, FeNiCo for NiKα and CoKα, albite for NaKα,
orthoclase ‘359-1’ for KKα, ‘Cl-apatite’ for ClKα, RbNbWO4 for RbLα, CsPrMoO4 for CsLα,
glass Gl-11Ba for BaLα, glass Gl-10 for SrLα, diopside ‘B.D.’ for CaKα. The detection limits
(3σ value) for the elements were 0.02 wt% for K; 0.03 wt% for Na, Ca, Co, and Ni; 0.04 wt%
for Cu, Mn, Rb, and Cl; 0.05 wt% for Fe, Zn, S, and Sr; 0.08 wt% for Ba and Cs.

The trace-element composition of sulfides (pyrrhotite, sphalerite and rasvumite) was
determined by laser ablation mass spectrometry with inductively coupled plasma (LA-ICP-
MS) at the SU FRC MG (Miass, Russia). The LA-ICP-MS analyses were run on a NewWave
Research UP-213 laser ablation system coupled with an Agilent 7700x (Agilent Technologies,
Inc., Santa Clara, CA, USA) plasma mass spectrometer. The procedure is outlined in [54],
with an Nd: YAG UV source, frequency quadruple (wavelength 213 nm) with fluence
settings of 2.5–3.5 J/cm2, helium cell carrier gas and a gas flow rate of 0.6–0.7 L/min.
Polished sections of marble, gabbro, and marly limestone were made using the standard
equipment and following the procedure described in [55]. The texture of the samples was
examined by SEM with a special focus on inhomogeneities in FeS, ZnS and KFe2S3 crystals
(e.g., zoning or mineral inclusions). The large (50–200 µm) grains selected for analyses
were free from visible inclusions or signatures of alteration. The LA-ICP-MS method was of
limited applicability for sphalerite and rasvumite, because they were commonly too small
(only 20 µm across) and often contained sub-micrometer mineral inclusions. The element
contents were calibrated against reference materials of USGS MASS-1 and USGS GSD-1g
using 66Zn as an internal standard for sphalerite, and 57Fe for pyrrhotite and rasvumite,
respectively [56,57]. All mass fractions for USGS MASS-1 and USGS GSD-1g were taken
from the GeoReM base preferred values. The calibration standard was analyzed every
10–15 spots to account for the instrument drift. Data processing was carried out using the
Iolite software package [58].

Raman spectroscopy was used for express diagnostics of ZnS and MnS polymorphic
modifications and to discriminate between djerfisherite and chlorbartonite. Raman spectra
were recorded on a Horiba Jobin Yvon LabRAM HR800 spectrometer (Horiba Jobin Yvon
S.A.S., Lonjumeau, France). The spectra were excited with a 532-nm green line of a
Thorlabs 50-mW power neodymium Nd:YAG laser working at double-harmonic frequency.
The radiated laser power was attenuated with optical filters and the beam power onto
the sample surface in range 1.5–0.05 mW. The scattered light was recorded by an Andor
1024-channel Peltier-cooled CCD detector (Oxford Instruments, Belfast, Northern Ireland)
in a region of 0 to 1000 cm−1 at a resolution of 2 cm−1. The acquisition time for the
Raman spectra varied from 10 to 100 min. The excitation was with Olympus objectives at
magnification of×100 (WD = 0.2 mm) for green line. The Raman spectra were deconvolved
into Voigt amplitude functions using the Model S506 Interactive PeakFit software (2002
Spectroscopy Software, Canberra Industries, Meriden, CT, USA) [59]. For method details
see [33]. The collected spectra were compared with reference spectra from RRUFF databases
(The RRUFF™ Project), as well as with the spectra of synthetic phases.

Sulfur isotopes were measured in hand-picked pyrrhotite monofractions extracted
under a binocular microscope from gabbro, marbles, parent and recrystallized marly
limestones. Stable isotope analyses was performed at the Central Science Laboratory (CSL)
at the University of Tasmania using flash combustion isotope ratio mass spectrometry
(varioPYRO cube coupled to Isoprime100 mass spectrometer). Samples between 0.6 and
3.0 mg of mineral is weighed in tin capsules. Evolved sulfur dioxide is trapped and
subsequently released into the mass spectrometer after a reference gas measurement.
Stable isotope abundances are reported in delta (δ) values, as deviations from conventional
standards in parts per mil (‰) from the following equation:

δX (‰) = ((Rsample/Rstandard − 1) × 1000) (1)

where X = 34S and R = the ratio 34S/32S.
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The δ34S values are reported respective to CDT (Canyon Diablo Troilite). International
standards IAEA-S-1, IAEA-S-2, and IAEA-S-3, IAEA-SO5, NBS 123 and NBS 127 were
used to correct for instrumental drift and for Quality Assurance purposes. The analytical
precision, determined by repetitive measurements of at least three international standards,
was around 0.2‰ for δ34S and 0.25‰ for S contents.

4. Results
4.1. Bulk Rock Chemistry and Mineralogy
4.1.1. Gabbro

The sill at the top of the Kochumdek site consists of fresh, fine-grained (0.5–8 mm)
gabbro-dolerite (Figure 3H), which lacks quench zones but contains coarse-grained (up
to 2 cm) lenses. The rocks show a large range in major oxides (in wt%): 47.43–50.06 SiO2,
1.13–2.03 TiO2, 8.33–16.22 Al2O3, 10.13–13.45 FeO, 5.04–9.97 MgO, 10.20–16.37 CaO, 1.49–
3.12 Na2O, and 0.39–1.37 K2O, and are depleted in MnO (<0.30 wt%) and bulk sulfur
(determined as SO3) <0.14 wt% (Table 1). Iron (Mg# = 41.71–61.93 mol%) and titanium
(1.13–2.03 wt% TiO2) enrichment in most of the Kochumdek samples is greater than at
the top of the Kuz’movsky sill [42]. The Kochumdek gabbro contain 294–474 ppm V, up
to 117 ppm Sc and 241 ppm Cu, moderate amounts of Co (40.7–57.1 ppm) and Ni (40.5–
107 ppm), and average Cr, Sr, and Ba contents comparable with those in the Kuz’movsky
sill (Table 1; Figure 5A,B).

Table 1. Major (in wt%) and trace element compositions (in ppm) of gabbro from the Kochumdek trap and dolerites from
the Kuz’movsky sill.

Locality Kuz’movsky Sill Kochumdek Trap

Sample Mean
(n = 8) S Min. Max. PT-95 PT-95a PT-96 PT-101 PT-114 PK-4-8 PK-7-1 Mean

(n = 7) S Min. Max.

SiO2 49.90 1.00 48.74 51.86 47.43 48.83 48.74 50.06 48.90 48.11 48.35 48.63 0.81 47.43 50.06
TiO2 1.14 0.09 1.00 1.28 2.03 1.81 1.19 1.13 1.60 1.96 1.75 1.64 0.36 1.13 2.03

Al2O3 14.99 0.52 14.11 15.81 9.92 10.28 9.43 8.33 15.91 16.22 14.44 12.08 3.33 8.33 16.22
FeO * 11.22 0.20 10.89 11.47 13.25 12.30 10.13 10.93 12.22 12.64 13.45 12.13 1.21 10.13 13.45
MnO 0.18 0.01 0.17 0.20 0.27 0.26 0.22 0.22 0.20 0.20 0.23 0.23 0.03 0.20 0.27
MgO 9.54 1.22 7.86 11.17 6.13 5.86 8.90 9.97 5.04 5.07 6.30 6.75 1.92 5.04 9.97
CaO 10.11 0.22 9.75 10.40 15.54 15.06 14.83 16.37 11.48 10.26 10.20 13.39 2.65 10.20 16.37

Na2O 2.04 0.15 1.87 2.29 2.00 2.06 2.19 1.49 2.80 3.12 2.72 2.34 0.56 1.49 3.12
K2O 0.75 0.23 0.47 1.18 1.30 1.37 0.87 0.39 0.68 0.84 0.67 0.87 0.35 0.39 1.37
P2O5 0.16 0.03 0.11 0.20 0.24 0.26 0.10 0.10 0.19 0.25 0.19 0.19 0.07 0.10 0.26
SO3 na 0.13 0.10 0.14 <0.03 <0.03 0.14 <0.03 0.13 0.02 <0.03 0.14
LOI na 0.85 0.91 2.42 0.13 0.10 0.22 0.93 0.79 0.81 0.10 2.42
Total 100.02 99.09 99.10 99.16 99.15 99.15 99.03 99.26 99.13
Co 54.1 3.14 50.0 60.0 46.3 45.1 40.7 49.9 43.0 42.2 57.1 46.3 5.62 40.7 57.1
Ni 184 42.11 129 239 43.8 40.5 86.5 85.9 51.6 76.5 107 70.2 25.23 40.5 107
Cu na 136 161 120 88.6 216 241 206 167 55.88 88.5 241
Zn na 85.3 79.0 60.4 67.8 102 263 128 112 70.21 60.4 263
Sc 32.6 2.33 30.0 36.0 79.4 85.2 103 117 44.4 36.2 44.7 72.9 31.69 36.2 117
V 246 28.75 210 300 415 427 435 474 294 364 336 392 63.10 294 474
Cr 110 13.43 98.0 135 38.2 36.4 119 128 169 124 138 108 50.61 36.4 169
Rb na 17.3 25.6 20.2 8.48 12.7 12.2 10.7 15.3 6.03 8.48 25.6
Sr 234 20.01 209 271 482 647 513 181 297 290 268 383 166.50 181 647
Cs na 0.87 0.61 6.68 0.29 0.21 0.47 1.00 1.45 2.33 0.21 6.68
Ba 173 15.82 157 201 215 241 147 80.4 150 596 126 222 173.46 80.4 596

Mg# 60.05 3.03 55.8 63.9 45.22 45.94 61.05 61.93 42.39 41.71 45.51 49.11 8.61 41.71 61.93

Kuz’movsky sill roof rocks (interval 0–35 m), after [42], * = all iron is calculated as FeO, LOI = loss on ignition, na = not analyzed, Mg# =
100*Mg/(Mg + Fe) (mol%), n = number of analyses, Mean = mean value, S = standard deviation, Min = minimum value, Max = maximum value.
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The Kochumdek gabbro consists of ~32–69% plagioclase, ~22–56% clinopyroxene,
and ≤6% olivine (Table 2). The majority of plagioclase are fine-grained, interstitial and
low-silica varieties, while coarser laths are commonly intergrown with olivine or clinopy-
roxene (Figure 3I,J). Other phases include minor amounts of coarse flaky biotite (2–10%), as
well as brown or greenish-blue acicular amphibole (1–5%) and chlorite (1–4%) that replace
pyroxenes. The main accessory minerals are Ti-bearing magnetite, ilmenite, pyrrhotite,
chalcopyrite and Cl-bearing fluorapatite. Titanite and pentlandite are sporadic, whereas
baddeleyite, zircon, allanite-(Y), zirconolite, sphalerite, cobaltite, troilite and pyrite oc-
cur as individual tiny grains (Table 2). Olivine is mostly fayalitic (Fa66–69) with MnO
contents no higher than ≤1.0 wt%. Clinopyroxene commonly occurs as unzoned augite
(En23–43Fs15–39Wol33–45) or rare pigeonite (En25–27Fs62–67Wol7–11) and orthopyroxene
(En47Fs49Wol3) is extremely rare. Plagioclase laths have distinct zonation with An55–
82Ab17–42Or0.5–2.5 cores and An51–63Ab35–46Or1.6–2.7 rims in fine grains and a greater
compositional contrast of An46–68Ab30–52Or1.5–2.7 cores and An1–19Ab79–96Or0.0–2.5
rims in coarse laths. Potassium feldspar (Or75–100Ab0–24An0–3) occurs as antiperthite
in plagioclase or rarely as fine interstitial grains coexisting with Cl-bearing fluorapatite
(0.5–2.8 wt% Cl). Biotite (0.1–4.5 wt% Cl), ferro-hornblende (0.4–1.6 wt% Cl), and chlorite
(0.1–0.5 wt% Cl) are chlorine-bearing. Biotite contains 29–39 wt% FeO and within 4 wt%
TiO2 and 1.2 wt% V2O3. Magnetite is main carrier of titanium (5.0–16.5 wt% TiO2) and
vanadium (0.5–2.4 wt% V2O3).
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Table 2. Mineral assemblages of recrystallized marly limestones, marbles and gabbro from the Kochumdek contact aureole (XRD, SEM-EDS, and EPMA data).

Rock Type Main Phases Minor Phases

Accessory Phases

Oxides, Silicates and
Phosphates

Sulfides

Matrix Inclusions Rims/Cracks

Recrystallized marly
limestones n = 25 Calcite

Clinopyroxene (En28–55),
Plagioclase (An72–78),
K-feldspar (Or80–98),

Amphibole, Grossular,
Biotite, Chlorite, Quartz

Fluorapatite
(F—2.97.4 wt%,

Cl—0.1–0.9 wt%),
Zircon, Titanite

Pyrrhotite *, Troilite *,
Chalcopyrite, Galena,
Pyrite, Arsenopyrite

Pyrrhotite Rasvumite,
Djerfisherite, Bartonite

Marbles,
Zone 4
n = 10

Calcite, Melilite, Tilleyite,
Wollastonite Kalsilite, Cuspidine

Perovskite
Hydroxy-Fluorapatite

(F—0.8–5.3 wt%, Cl—0.2
wt%)

Pyrrhotite *, Troilite *,
Alabandite, Galena,

Acanthite
Pyrrhotite Rasvumite, Djerfisherite,

Bartonite

Marbles,
Zone 3
n = 5

Calcite, Melilite,
Spurrite, Monticellite Merwinite, Bredigite Perovskite, Magnetite Pyrrhotite *, Troilite *,

Alabandite, Sphalerite

Pyrrhotite, Galena,
Acanthite, Rasvumite,
Alabandite, Sphalerite,

Wurtzite

Rasvumite, Djerfisherite

Marbles,
Zone 2
n = 14

Calcite, Melilite,
Spurrite, Merwinite

Monticellite, Rankinite,
Bredigite, Cuspidine

Perovskite, Magnetite,
Baghdadite,

Hydroxyl-apatite
(SiO2—5.6–6.1 wt%,
SO3—2.5–2.6 wt%)

Sc-garnet (Sc2O3—7.7–9.4
wt%)

Pyrrhotite *, Troilite *,
Rasvumite, Alabandite,

Sphalerite

Pyrrhotite, Galena,
Acanthite, Rasvumite,
Alabandite, Sphalerite,

Wurtzite

Rasvumite, Djerfisherite

Gabbro
n = 12

Plagioclase
(An1–82), Clinopyroxene

(En23–43)

Olivine (Fo31–34),
Ortopyroxene (En47),
K-feldspar (Or75–100),

Biotite (Cl—0.1–4.5 wt%),
Ferro-hornblende
(Cl—0.4–1.6 wt%),

Chlorite (Cl—0.1–0.5
wt%)

Ti-Magnetite, Ilmenite,
Fluor-Chlorapatite

(F—1.3–3.8 wt%,
Cl—0.5–2.8 wt%),

Titanite, Baddeleyite,
Zircon, Allanite-(Y),

Zirconolite

Pyrrhotite,
Chalcopyrite, Troilite,
Pentlandite, Sphalerite,

Cobaltite, Pyrite

Main phases (>10 vol%), minor phases (3%–10 vol%) and accessories (<3 vol%): bold = dominant phases and italic = sporadic phases; n = number of samples, * = in exsolution structures. Contents of F and Cl
determined in fluorapatite, chlorapatite; SiO2 and SO3 determined in hydroxyl-apatite; Cl determined in biotite, ferro-hornblende and chlorite; and Sc2O3 determined in garnet by SEM-EDS and electron
microprobe techniques.
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4.1.2. Recrystallized Marly Limestones

Low-grade recrystallized marly limestone has a laminated structure with rhythmically
alternating carbonate (up to 1 cm) and silicate (1–3 mm) layers (Figure 3A,B). Corre-
spondingly, major-element concentrations have large ranges (Table 3), except for Na2O
(<0.5 wt%), K2O (<1.60 wt%) and MnO (≤0.14 wt%) (Figure 6A). The sulfur contents reach
0.52–1.61 wt% SO3. The average loss on ignition (LOI) is 30.2 wt%, mainly due to CO2. With
the exception of a few samples with 112–415 ppm Zn, the rocks have low to moderate con-
centrations of chalcophile elements, though higher than the average in marine Post-Archean
limestone [60]: 0.95–27.7 ppm Cu, 5.54–25.9 ppm Ni, and 2.51–12.6 ppm Co (Figure 6B).
In particular, there are large ranges spanning up to an order of magnitude for Cr (7.73 to
52.0 ppm), Rb (3.54 to 49.1 ppm), V (5.97 to 69.4 ppm), and Sc (2.26 to 16.1 ppm) (Table 3).

Table 3. Major (in wt%) and trace element compositions (in ppm) of recrystallized marly limestones and marbles from the
Kochumdek contact aureole (representative samples) compared with Post-Archean limestone.

Rock Recrystallized Marly Limestones Marbles

Zone 2 Zone 3 Zone 4

Sample 1 2 3 4 5 6 7 8 9 10 11

wt%
SiO2 13.66 10.79 14.34 12.92 22.79 10.58 21.04 9.84 13.53 22.75 10.45
TiO2 0.10 0.19 0.30 0.26 0.41 0.20 0.45 0.19 0.33 0.40 0.14

Al2O3 1.76 3.68 4.64 4.08 7.61 3.27 5.79 2.97 4.56 7.19 2.53
Fe2O3* 0.86 1.54 1.75 1.59 3.14 1.80 3.34 1.83 2.50 2.92 1.31
MnO 0.06 0.07 0.09 0.11 0.14 0.10 0.17 0.12 0.13 0.09 0.05
MgO 10.58 1.37 1.81 1.59 2.54 1.45 2.63 1.43 1.79 2.39 1.38
CaO 34.45 46.94 44.10 45.46 36.99 52.74 51.49 53.60 51.90 44.97 50.76

Na2O 0.17 0.17 0.24 0.30 0.42 0.07 0.14 0.08 0.16 0.70 0.12
K2O 0.62 0.85 1.07 0.90 1.58 0.04 0.05 0.03 0.12 0.50 0.44
P2O5 0.05 0.09 0.15 0.10 0.18 0.11 0.14 0.09 0.11 0.17 0.05
SO3 na 0.77 0.55 1.26 1.31 1.27 1.65 1.54 1.51 1.57 0.69
LOI 37.30 33.60 30.82 31.47 23.01 27.98 12.85 28.28 23.35 16.00 31.83
Total 99.61 100.06 99.86 100.04 100.12 99.61 99.74 100.00 99.99 99.65 99.75

ppm
Co 3.00 4.89 5.91 10.1 12.6 8.03 11.8 6.29 8.21 9.11 2.40
Ni 6.00 11.4 13.4 15.3 23.9 18.1 23.4 17.2 19.1 21.2 6.06
Cu 8.00 6.82 9.14 3.95 27.7 16.7 33.4 11.5 17.3 22.5 7.20
Zn 22.0 415 19.2 19.4 112 38.1 56.2 805 25.0 63.3 7.66
Sc na 13.0 4.47 3.81 11.6 4.08 9.48 16.1 5.57 10.1 1.85
V 20.0 5.97 21.3 14.8 45.3 6.57 16.8 9.00 15.2 19.6 12.2
Cr 9.00 18.3 16.5 16.6 32.3 19.4 37.7 20.0 23.8 37.9 11.2
Rb 17.0 6.46 17.6 16.4 30.3 1.54 1.77 2.86 4.22 5.67 5.95
Sr 245 427 372 373 306 587 385 412 387 495 226
Cs na 0.69 0.37 0.77 0.63 <0.01 <0.01 0.05 <0.01 <0.01 0.25
Ba 178 450 61.8 45.1 500 60.2 46.8 61.2 66.3 60.0 249

1 = Mean composition of the Post-Archean limestone, after [60]; * = all iron is calculated as Fe2O3, LOI = loss on ignition, na = not analyzed.
Samples: 2 = PK-6-1, 3 = PK-4, 4 = PK-5-1, 5 = PK-3-2, 6 = PT-109, 7 = PT-102, 8 = PT-97, 9 = PT-94, 10 = PT-88, 11 = PK-12-1.

The thermal effect caused coarsening of calcite and re-crystallization of fossils in
the carbonate layers, whereas the pelitic layers were converted into fine-grained inter-
growths dominated by Ca-Mg silicates and feldspars (Table 2; Figure 3A–D). The mineral
percentages reach 94–100% calcite, 6% clinopyroxene, and 1% plagioclase in carbonate
layers, and 30% calcite, ~40% clinopyroxene (En28–55Fs4–16Wol29–68), 16% low-silica plagio-
clase (An72–78Ab20–27Or1–2), and 14% K-feldspar (Or80-98An0-14Ab2-6) in metapelites. The
contents of other minor phases in the metapelite layers can reach ~8% actinolite, 7% grossu-
lar, 5% biotite, 4% chlorite, and <1% quartz; amphibole, micas, and chlorite are Cl-free.
Pyrrhotite, a main accessory mineral, is partially replaced by rasvumite and djerfisherite
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(or very rarely by bartonite). Chalcopyrite, framboidal pyrite, galena and arsenopyrite are
very rare.
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4.1.3. Marbles

The Kochumdek marbles are dense fresh rocks with a coarse banded structures consist-
ing of light gray (mainly calcitic) and darker (silicate) bands inherited from the sedimentary
protoliths (Figure 3E–G). Merwinite marbles have the coarsest grains of 0.5–4 mm to 1–2
cm [2]. The marbles share major-element similarity with the precursor Lower Kochumdek
Subformation marly limestone, except for depletions in Na2O and K2O and lower CO2
contents (Table 3; Figure 6A). The contents of other major oxides are controlled by silicate-
to-carbonate ratios. Spurrite-merwinite marbles (Zones 2 and 3) show notable variations
in CaO (50.72–53.67 wt%), SiO2 (7.62–21.18 wt%), and Al2O3 (2.45–5.79 wt%), and have
average LOI as high as 24.90 wt% (largely due to CO2). They have low Fe2O3 total (1.29–3.45
wt%) and MgO (1.17–2.63 wt%), up to 0.20 wt% MnO, Na2O, K2O and P2O5, and up to 2.00
wt% SO3. Wollastonite marbles (Zone 4) bear up to 0.70 wt% Na2O. The Kochumdek mar-
bles are enriched in Zn (up to 805 ppm), contain moderate amounts of Cu (2.92–58.3 ppm),
V (5.77–28.7 ppm), Ni (8.27–26.6 ppm), and Cr (10.9–37.8 ppm), and have low contents
of Cs (0.05–0.49 ppm), Pb (1.04–7.90 ppm), Co (3.04–12.5 ppm), and Sc (3.21–18.1 ppm).
Marbles from all metamorphic zones are depleted in Rb (0.30–7.50 ppm) relative to the
average Post-Archean limestone composition (Table 3; Figure 6B).

The Kochumdek marbles consist predominantly of calcite (~51–82%), Ca silicate-
carbonates and silicates, including spurrite (~ 6–49%), tilleyite (~4–11%), and wollas-
tonite (~5–20%), as well as Ca-Mg silicates, such as melilite (~4–47%), merwinite (~1–17%)
and monticellite (~3–10%), minor amounts of perovskite (≤1%) and sporadic bredig-
ite and rankinite. Calcite contains up to 0.3 wt% of MgO, Na2O and SrO. Tilleyite
(Ca5Si2O7(CO3)2), wollastonite (Ca3Si3O9), as well as rankinite (Ca3Si2O7), have stoi-
chiometric compositions, however, spurrite contains appreciable amounts of P and Na
(Ca4.9–5.0Na0–0.1(Si1.9–2.0P0–0.1O8)(CO3). Bredigite, merwinite, and monticellite show re-
stricted isomorphic substitution of Mg for Fe and Mn. The ranges of the respective solid
solutions are the narrowest for bredigite (Ca7(Mg0.82–0.85Fe0.09–0.11Mn0.02–0.04)(SiO4)4), the
largest for monticellite (Ca(Mg0.59–0.82Fe0.12–0.26Mn0.03–0.07)(SiO4)), and intermediate for
merwinite (Ca3(Mg0.77–0.95Fe0.05–0.21Mn0–0.04)(SiO4)2). The compositions of melilite are
highly variable and are sensitive temperature indicators [34,61]. Melilite from Zone 4 has
high soda-melilite (CaNaAlSi2O7, up to 16 mol%) and åkermanite (Ca2MgSi2O7, up to
68 mol%) contents, whereas that from Zone 2 approaches refractory gehlenite (Ca2Al2SiO7,
up to 80 mol%). The accessories are widespread and randomly distributed, and include
perovskite and Fe, K, Zn, Mn, Pb, and Ag sulfides, which mainly occur in the silicate layers
(Table 2).



Minerals 2021, 11, 17 14 of 43

4.2. Mineralogical and Textural Relations of Sulfides
4.2.1. Gabbro

The gabbro samples from the top of the Kochumdek sill contains minor Fe-Ni-Cu-
(Co) sulfide mineralization (Figure 7; Table 2) with pyrrhotite predominantly enclosed in
rock-forming minerals and/or in mineral interstices (Figure 8A–C). Pyrrhotite forms coarse
>150 µm grains or 150–400 µm intricate intergrowths, which mostly occur together with
chalcopyrite or less often with Ti-bearing magnetite and ilmenite (Figure 8C–E). In turn,
pyrrhotite often encloses thin (≤5 µm) lamellae of pentlandite (Figure 9A,B) or more rarely
tiny cobaltite and sphalerite inclusions (Figure 8C). Occasionally, sphalerite is localized along
the margins of 100–150 µm pyrrhotite-chalcopyrite intergrowths (Figure 9C,D). Troilite occurs
as sporadic 50 to 150 µm inclusions in rock-forming minerals and sometimes hosts ≤25 µm
pyrite grains (Figure 8F).
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pyrrhotite and chalcopyrite. (D,F) Small troilite grain with pyrite inclusion. (A,D) = optical images 
in polarized reflected light; (B,C,E,F) = backscattered electron images (BSE). Samples: (A–C) = PK-
7-1, (D–F) = PK-4-8. An = anorthite, Bt = biotite, Cbl = cobaltite, Ccp = chalcopyrite, Chl = chlorite, 
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Figure 8. Pyrrhotite (Fe1-xS) and troilite (FeS) from the Kochumdek gabbro. (A,B) Individual
pyrrhotite grains. (C) Aggregate of chalcopyrite and pyrrhotite with small cobaltite and sphalerite
inclusions. (D,E) Typical intergrown of accessory phases (Ti-bearing magnetite and ilmenite) with
pyrrhotite and chalcopyrite. (D,F) Small troilite grain with pyrite inclusion. (A,D) = optical images in
polarized reflected light; (B,C,E,F) = backscattered electron images (BSE). Samples: (A–C) = PK-7-1,
(D–F) = PK-4-8. An = anorthite, Bt = biotite, Cbl = cobaltite, Ccp = chalcopyrite, Chl = chlorite, Ilm =
ilmenite, Mag = magnetite, Py = pyrite, Po = pyrrhotite, Sp = sphalerite, Tro = troilite.
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(sample PK-7-1). (A,C) = optical images in polarized reflected light; (B,D) = backscattered electron
images (BSE). An = anorthite, Bt = biotite, Ccp = chalcopyrite, En = enstatite, Pn = pentlandite, Po =
pyrrhotite, Sp = sphalerite.
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4.2.2. Recrystallized Marly Limestones, Zone 5

The recrystallized marly limestone of Zone 5 (Table 2; Figures 7 and 10A–C) contains
abundant sulfide mineralization (six primary and three secondary phases), which is mainly
hosted by the metapelitic layers. Pyrrhotite is the most abundant sulfide occurring as
300–700 µm crystals or anhedral grains with a particular spongy structure that records its
origin by integrated recrystallization (Figure 10B,C). The mineral encloses thin (1–5 µm)
wavy pyrrhotite-troilite exsolution lamellae, with the Fe/S ratio ranging from 0.9 to 1.0
(Table 4). Framboidal pyrite, which is a common phase in the sedimentary protolith, is
very rarely preserved in Zone 5, as well as 3–10 µm inclusions of chalcopyrite, galena
and arsenopyrite. Many pyrrhotite grains bear evidence of dissolution and are rimmed
by secondary djerfisherite and rasvumite. The rims occasionally contain a phase with a
composition resembling Cl-free djerfisherite, which we tentatively interpret as bartonite.
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Figure 10. Backscattered electron (BSE) image showing the distribution and typical
appearance of pyrrho-tite grains in recrystallized marly limestones (A–C) and marbles (D–
F) from the Kochumdek contact aureole. Recrystallized marly limestones: (A) Distribution
and relationship of matrix sulfides (mainly pyrrhotite) hosted by silicate layer. (B,C)
Typical anhedral grains of pyrrhotite with a particular spongy structure, partly replaced
by later K-Fe sulfides (rasvumite and djerfisherite). Pyrrhotite grains are located in fine-
grained silicate layers (calcite + plagioclase + clinopyroxene + K-feldspar). Marbles: (D)
Distribution and relationship of sulfide grains (mainly pyrrhotite) in the matrix, located at
sili-cate layers and on boundary with carbonate layers. (E) Typical euhedral pyrrhotite
grain with thin rasvumite rim. (F) Pyrrhotite grain is overgrown by magnetite. The
boundaries of magnetite rim are roughly parallel and generally mimic the contours of
primary pyrrhotite grain with small alabandite inclusion. Samples: A–C = PK-16-1, D–F
= PT-104. Alb = alabandite, Djer = djerfisherite, Mag = magnetite, Mll = meli-lite, Po =
pyrrhotite, Rasv = rasvumite, Spu = spurrite.
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Table 4. Representative analyses and average compositions of pyrrhotite (Fe1-xS) and troilite (FeS) from gabbro, recrystallized marly limestones, and marbles from the Kochumdek contact
aureole (EPMA data, wt%).

Backscattered Electron
Image

Gabbro

Mineral Pyrrhotite (n = 82) Troilite (n = 14)
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Marbles

Mineral Pyrrhotite (n = 83) Troilite (n = 53)

Sample PT-97 PT-122 Mean S Min. Max. PT-93 PK-16-3 Mean S Min. Max.

Fe 61.27 60.87 61.27 0.51 60.07 62.43 63.09 62.91 63.11 0.51 62.06 64.35
Co 0.12 0.14 0.13 0.01 0.12 0.15 0.09 0.11 0.10 0.01 0.09 0.11
S 37.95 39.11 38.56 0.49 37.53 39.51 36.80 36.51 36.78 0.38 36.00 37.82

Total 99.34 100.12 99.96 99.98 99.53 99.99
(Fe + Co)/S * 0.93 0.89 0.91 0.98 0.99 0.99

* = ∑Me/S ratio calculated in atoms per formula unit (a.p.f.u.), formula based on 1 atom of S, Mean = average value, n = number of analyses, S = standard deviation, Min = minimum value, Max = maximum
value. Marbles: PT-93, PT-122 (Zone 2); PT-97 (Zone 3); PK-16-3 (Zone 4). An = anorthite, Chl = chlorite, Djer = djerfisherite, Py = pyrite, Po = pyrrhotite, Rasv = rasvumite, Tro = troilite.
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4.2.3. Marbles
Sulfides of Merwinite- and Spurrite-Monticellite Zones 2 and 3

The marbles of Zone 2 contain large merwinite grains, along with other ultrahigh-
temperature index minerals, including spurrite, gehlenite-rich melilite and sporadic ranki-
nite, and bredigite. Sediments in this zone were heated to temperatures no lower than 900
◦C. Some marbles from spurrite-monticellite Zone 3, where the temperature was at least
750 ◦C, likewise contain merwinite as relict phases or small inclusions.

Sulfide inclusions in the marbles of Zones 2 and 3 are rare and restricted to silicate
layers. Almost all such inclusions were found in melilite, except for a few trapped in per-
ovskite, spurrite and monticellite (Table 5; Figure 11). In addition to pyrrhotite (2–30 µm),
some melilite grains enclose galena (1–10 µm), acanthite (<1–5 µm), and sporadic Fe-rich
sphalerite (up to 10–15 µm). Sulfides usually occur as tiny inclusions in pyrrhotite, com-
monly in the rim or, very rarely, in the core. Fe-rich MnS (alabandite) similarly occurs as
sporadic fine-grained inclusions in pyrrhotite (Figure 10F).Minerals 2020, 10, x FOR PEER REVIEW 23 of 48 
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Figure 11. BSE image and X-ray elemental maps (Ti, S, Mn, Fe, K) of pyrrhotite pseudo-inclusions
partially replaced by rasvumite and djerfisherite. Elemental maps (S, Fe, K) show the presence of tiny
fractures, which connect such sulfide grains with the host perovskite. Kochumdek marble, Zone 2,
sample PT-99. Alb = alabandite, Djer = djerfisherite, Mag = magnetite, Mll = melilite, Po = pyrrhotite,
Prv = perovskite, Rasv = rasvumite, Spu = spurrite.

Pyrrhotite frequently appears as altered pseudo-inclusions, partly or fully replaced by
rasvumite, that fits the definition of a retrograde phase according to the criteria of Brown
et al. (2014) [27]. The sulfide grains are connected with their melilite or perovskite hosts
by tiny cracks resolvable in SEM images (Figure 11). Many pseudo-inclusions contain
unaltered blebs of galena, acanthite (<1–5 µm) or (Zn, Fe, Mn) S, like the inclusions of fresh
pyrrhotite (Figure 12I).
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Table 5. Sulfide minerals found in marbles from the Kochumdek contact aureole.

Mineral
Rock Type Merwinite Marbles Spurrite-Monticellite Marbles Tilleyite-Wollastonite Marbles

Zone Zone 2 Zone 3 Zone 4

Formula Matrix Inclusions Rims/Cracks Matrix Inclusions Rims/Cracks Matrix Inclusions Rims/Cracks

Pyrrhotite * Fe1-xS N N N N N N
Troilite * FeS N N N

Alabandite (Mn,Fe)S • � • � •
Sphalerite (Zn,Fe,Mn)S • � • �
Wurtzite (Zn,Mn,Fe)S � �
Galena PbS • • �

Acanthite Ag2S • • �
Rasvumite KFe2S3 • � N � N N

Djerfisherite K6(Fe,Ni,Co,Cu)25S26Cl • • •
Bartonite K6Fe21S27 �

N = main phase, • = subordinate phase, � = minor phase, * = in exsolution structures.
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pseudo-inclusion in melilite completely replaced by aggregates of needle-like rasvumite-II; blebs 
of galena and sphalerite are preserved as micro-inclusion in rasvumite matrix. Marbles: A, G, H, I 
(Zone 2), B, C (Zone 3), D-F (Zone 4). Samples: A, I = PT-102, B = PT-97, C = PT-94, D = PT-88, E = 
PT-89, F = PK-16-3, G = PT-107, H = PT-93. Cal = calcite, CHS = Ca-hydro-silicates, Djer = djerfis-
herite, Gn = galena, Kls = kalsilite, Mag = magnetite, Mll = melilite, Mtc = monticellite, Mw = mer-
winite, Po = pyrrhotite, Prv = perovskite, Rasv = rasvumite, Rnk = rankinite, Sp = sphalerite, Spu = 
spurrite, Tly = tilleyite, Tro = troilite, Wur = wurtzite. 

Sulfide inclusions in this zone are mainly <10 μm pyrrhotite grains usually trapped 
in melilite rims. Tiny blebs of alabandite, galena, and acanthite are very rare and are com-
monly enclosed in pyrrhotite (Table 5). Pyrrhotite is the only matrix sulfide and occurs as 
grains up to 500 μm in size with thin lamellae of troilite. In addition, pyrrhotite is occa-
sionally intergrown with up to 100 μm round grains of alabandite (Table 6), but more 
often contains the latter as fine inclusions. 

Retrograde sulfides 
Retrograde sulfides in the Kochumdek marbles include K-Fe minerals, such as abun-

dant rasvumite-II with minor bartonite and K-Fe(± Cu, Ni) sulfide-chloride (djerfisherite) 
(Table 5; Figures 12 and 13). Djerfisherite and rasvumite-II (unlike prograde rasvumite-I) 

Figure 12. Rasvumite and djerfisherite from the Kochumdek marbles (backscattered electron (BSE)
images). (A) Pyrrhotite grain overgrown by rasvumite. This kind of pyrrhotite-rasvumite boundary
is usually even in shape and free from dissolution features. (B–E) Typical double-layered rims, where
rasvumite and djerfisherite compose the inner (adjacent to pyrrhotite) and outer boundaries, corre-
spondingly. Crack-filling djerfisherite in pyrrhotite (C), spurrite (B) and kalsilite (E). (F) Rasvumite
microcrystals in the crack at the contact between replacement rim around pyrrhotite, calcite and
tilleyite. (G,H) Large rasvumite grains with perfect cleavage (60 or 120 ◦ angles between cleavage
directions) and inclusions of wurtzite, perovskite and magnetite. (I) Pyrrhotite pseudo-inclusion in
melilite completely replaced by aggregates of needle-like rasvumite-II; blebs of galena and sphalerite
are preserved as micro-inclusion in rasvumite matrix. Marbles: A, G, H, I (Zone 2), B, C (Zone 3),
D-F (Zone 4). Samples: A, I = PT-102, B = PT-97, C = PT-94, D = PT-88, E = PT-89, F = PK-16-3, G =
PT-107, H = PT-93. Cal = calcite, CHS = Ca-hydro-silicates, Djer = djerfisherite, Gn = galena, Kls =
kalsilite, Mag = magnetite, Mll = melilite, Mtc = monticellite, Mw = merwinite, Po = pyrrhotite, Prv =
perovskite, Rasv = rasvumite, Rnk = rankinite, Sp = sphalerite, Spu = spurrite, Tly = tilleyite, Tro =
troilite, Wur = wurtzite.

Thus, sulfide inclusions in the marbles of high-temperature Zones 2 and 3 are com-
monly of Fe, Pb, and Ag compositions (pyrrhotite, galena, and acanthite), while Mn and Zn
sulfides are limited to a few cases in pyrrhotite, and phases of Cu, Co, and Ni are absent.

Sulfide grains in the matrix are relatively abundant (up to 1%), diverse (Table 5), and
localized in silicate layers or at their boundary with the carbonate layers. No sulfides were
found in the matrix of calcite layers. Sulfide inclusions in calcite (mainly pyrrhotite and very
rare unidentified varieties of ZnS) are extremely rare and restricted to the carbonate-silicate
boundary.
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Matrix sulfides are generally much larger than sulfide inclusions and reach up to
500 µm in size (Figure 10D). These include Fe, Zn, K, and Mn compounds (Table 5),
which are dominated by subhedral or euhedral pyrrhotite (100–500 µm) at the boundaries
of spurrite, melilite and calcite grains (Figure 10E). Pyrrhotite shows typical exsolution
textures with fine (≤10 µm) lamellae and Fe/S ratio ranging from 0.9 to 1.0 (Table 4).
Some pyrrhotite grains in samples from Zones 2 and 3 are overgrown by Mn-bearing mag-
netite containing 0.6 wt% TiO2 and up to 150 ppm V2O5. The inner and outer boundaries
of ≤30 µm magnetite rims are roughly parallel and generally mimic the contours of the
primary pyrrhotite grains (Figure 10F), which indicates overgrowth without replacement
reactions. Some matrix pyrrhotite grains host 10–30 µm inclusions of alabandite, sphalerite
or wurtzite (Figure 10F) and tiny blebs of galena and acanthite. The textural control of their
distribution is independent of lamellae edges.

Alabandite commonly occurs as euhedral inclusions (10–15 µm) near the edges of
large pyrrhotite grains (Figure 10F) or more rarely forms platy inclusions (2–15 µm in width
and 300–400 µm in length) or 50–100 µm round grains intergrown with pyrrhotite.

Sphalerite occurs exclusively in the highest-grade marbles as 80–100 µm anhedral
grains commonly intergrown with pyrrhotite (Table 6). Wurtzite, identified by Raman
spectroscopy, forms sporadic 3–20 µm inclusions in matrix pyrrhotite or less often in coarse
rasvumite-I grains (Table 6; Figure 12G).

The (Mn,Fe)S and (Zn,Fe,Mn)S modifications were identified by Raman spectroscopy.
Wide absorption bands at ~228 and ~342 cm–1 in the Raman spectra of the (Mn,Fe)S phase
represent an α-MnS modification (Fm3m) [62] corresponding to alabandite. Wurtzite is
identifiable from the 348, 419, and 628 cm–1 bands that fit the 350, ~ 418mon, and ~630 cm–1

bands of standard ZnShex [63]. The Raman spectra of Fe-bearing sphalerite show two strong
bands at 301 and 330 cm–1 and match with the 300 and 331 cm–1 bands in the synthetic
compound (Zn0.84Fe0.16S)cub [64].

Up to 400 µm single-phase rasvumite grains with perfect cleavage (i.e., 60 or 120◦

angles between cleavage directions) frequently grow interstitially in merwinite marbles
(Figure 12G,H). They host 10–20 µm inclusions of Zn-Mn-Fe sulfides (mainly wurtzite),
magnetite, perovskite, and rarer submicron blebs of galena. This rasvumite is neither
intergrown with pyrrhotite nor replaced by later djerfisherite. We interpret this rasvumite
as an early generation (rasvumite-I) prograde phase, unlike widespread aggregates of
fine-grained secondary rasvumite-II, which replaces pyrrhotite during retrogression and
commonly coexists with djerfisherite.

Thus, the marbles from high-temperature Zones 2 and 3 share similarities between the
inclusion and matrix assemblages. They mainly consist of Fe, Mn, Zn, Pb, and Ag sulfides
(e.g., pyrrhotite, Zn-Mn-Fe sulfides, galena, and acanthite). Single-crystal rasvumite-I
occurs only in the matrix, whereas rasvumite in inclusions are rather a retrograde secondary
phase that replaces pyrrhotite. Cu, Co and Ni phases are absent and the presence of these
elements was not detected in SEM-EDS point analyses of pyrrhotite or rasvumite-I in both
inclusion and matrix assemblages from the highest-grade metamorphic zones.
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Table 6. Representative analyses and average compositions of Zn-Fe-Mn and Mn-Fe sulfides from the Kochumdek marbles (SEM-EDS data).

Mineral/Backscattered Electron Image Element Fe Mn Zn Cd S Total Fe Mn Zn Cd ∑Me

Sample wt% a.p.f.u.
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PT-102 10.54 52.95 <0.30 <0.30 35.80 99.29 0.169 0.863 0.000 0.000 1.032
PT-97 7.49 56.22 <0.30 <0.30 36.78 100.49 0.117 0.892 0.000 0.000 1.009
PT-88 12.19 50.45 <0.30 <0.30 36.97 99.61 0.189 0.796 0.000 0.000 0.986

PK-16-1 15.68 47.18 <0.30 <0.30 36.31 99.17 0.248 0.758 0.000 0.000 1.006
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a.p.f.u. = atoms per formula unit, formula based on 1 atom of S, Mean = average value, n = number of analyses, S = standard deviation, Min = minimum value, Max = maximum value, ∑ Me = Fe + Mn + Zn.
Marbles: PT-93, PT-102, PT-104 (Zone 2); PT-97 (Zone 3); PT-88, PK-16-1 (Zone 4). Alb = alabandite, Cal = calcite, Djer = djerfisherite, Mag = magnetite, Mll = melilite, Po = pyrrhotite, Rasv = rasvumite, Sp =
sphalerite, Spu = spurrite, Wur = wurtzite.



Minerals 2021, 11, 17 23 of 43

Sulfides of Tilleyite-Wollastonite Zone 4

The pelitic layers of marly limestone in Zone 4 are decarbonated over ~1.5 m from the
contact, with formation of lower-temperature (T ≥ 700 ◦C) assemblages of wollastonite +
Na-enriched melilite + tilleyite + perovskite.

Sulfide inclusions in this zone are mainly <10 µm pyrrhotite grains usually trapped
in melilite rims. Tiny blebs of alabandite, galena, and acanthite are very rare and are
commonly enclosed in pyrrhotite (Table 5). Pyrrhotite is the only matrix sulfide and occurs
as grains up to 500 µm in size with thin lamellae of troilite. In addition, pyrrhotite is
occasionally intergrown with up to 100 µm round grains of alabandite (Table 6), but more
often contains the latter as fine inclusions.

Retrograde Sulfides

Retrograde sulfides in the Kochumdek marbles include K-Fe minerals, such as abundant
rasvumite-II with minor bartonite and K-Fe(± Cu, Ni) sulfide-chloride (djerfisherite) (Table 5;
Figures 12 and 13). Djerfisherite and rasvumite-II (unlike prograde rasvumite-I) are common
in all metamorphic zones but are absent in the sill top. Rasvumite-II commonly occurs
in pyrrhotite reaction rims where the two phases are separated by a dissolution boundary
which has an uneven profile. Pyrrhotite is partly replaced, and rasvumite-II crystallizes
asymmetrically, being thickest on the crack-facing side of pyrrhotite grains. The rasvumite
rims are the thinnest next to the contact melilite and monticellite (up to 15 µm) but reach
50–70 µm at the boundary with spurrite (Figure 12B,C). Many rims of this kind are double-
layered, with a wider rasvumite-II zone adjacent to pyrrhotite and a thin and discontinuous
outer zone of djerfisherite (Figure 12B–E). Rasvumite-II microcrysts are limited to a few cases
where rims have expanded into the open crack space (Figure 12F). Fully replaced pyrrhotite
grains were not observed in the matrix but often appear as pseudo-inclusions (Figure 12I),
while the tiny blebs of galena, (Zn, Fe, Mn) polymorphic modifications, alabandite, and
acanthite remain intact (Figure 13). Less often, rasvumite overgrows around pyrrhotite rather
than replacing it, where it forms rims up to 85 µm thick. This kind of pyrrhotite-rasvumite
boundary is usually even in shape and free from dissolution features (Figure 12A).

Djerfisherite commonly follows and replaces rasvumite-II, or more rarely fills thin
cracks in pyrrhotite and in some adjacent silicates (spurrite, melilite, kalsilite) (Figure 12B–E).
Its identification is based on optical microscopy, SEM-EDS, and Raman spectroscopy data.
The most intense Raman bands of the Kochumdek djerfisherite (98, 118–135, 178, 269, 321
cm−1) are almost identical to those of a synthetic K6Fe24S26Cl (cub) compound: 95, 121–137,
179, 270, and 323 cm−1 [33].

Bartonite is a tetragonal analog of cubic djerfisherite with variable contents of Cl and S,
where Cl may be absent in the ultimate (end-member) case [65–67]. The Cl-free analogs of
djerfisherite in the Kochumdek aureole coexist with secondary rasvumite and djerfisherite
phases in Zones 4 and 5. The identification of bartonite is quite tentative and stems from
the absence of Cl in the SEM-EDS spectra. XRD and Raman analyses were hampered due
to the small grain sizes and intricate intergrowths of bartonite with other K-Fe sulfides.
Retrograde sulfide mineralization is especially abundant in the marbles of Zone 4, where
pyrrhotite is most strongly affected by dissolution and partially-to-completely replaced by
retrograde rasvumite-II, djerfisherite and bartonite (Figure 13).
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4.3. Mineral Chemistry of Sulfides
4.3.1. Gabbro

Most of the sulfides in the gabbro samples from the top of the Kochumdek sill are solid
solutions, except for chalcopyrite and pyrite, which correspond to the ideal compositions.
Pentlandite (Fe3.71–4.92Ni2.79–4.33Co0.49–1.71S8) shows large ranges of Fe (27.10 to 37.32 wt%),
Ni (21.92 to 32.84 wt%) and Co (3.78 to 13.16 wt%). Sphalerite contains 10.63–12.40 wt%
Fe (Zn0.68–0.78Fe0.18–0.32S). Troilite with (Fe + Ni)/S = 0.96–0.99 bears up to 1.17 wt% Ni.
SEM-EDS and EPMA of gabbro-hosted pyrrhotite reveal systematic presence of Ni, Co, and
Cu reaching, respectively, 0.81 wt%, 0.66 wt%, and 0.16 wt% (Tables 4 and 7). LA-ICP-MS
analysis of coarse pyrrhotite grains confirms the concentration of Co (3643–5260 ppm)
and Ni (3027–9230 ppm) and reveals additional impurities of ≤192 ppm Se and <65 ppm
Mn (Table 8; Figure 14). Other chalcophile elements are minor: 1.49 to 6.83 ppm Ag, V,
As, Pb, Hg, Ge, Mo, Zn, and Cu, and 0.20 to 0.69 ppm Os, Ru, Tl, Pd, Bi, Te, Ga, and Sn.
The trace-element compositions of cobaltite (CoAsS), sphalerite, and pentlandite remain
unconstrained because of small grain sizes.
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Table 7. Average compositions of sphalerite, chalcopyrite, pyrite, and pentlandite from gabbro of the Kochumdek trap roof
(EPMA data, wt%).

Mineral
Element

Fe Ni Co Cu Zn S Total

Sphalerite
n = 10

Mean 11.76 0.13 0.23 0.49 53.15 34.02 99.78
S 0.54 0.20 0.06 0.37 0.66 0.13

Min 10.63 0.05 0.16 0.15 52.23 33.87
Max 12.40 0.57 0.33 1.18 54.40 34.25

Chalcopyrite
n = 35

Mean 30.79 <0.03 <0.04 34.01 0.06 34.97 99.83
S 0.29 0.26 0.09 0.21

Min 30.24 33.38 <0.05 34.50
Max 31.42 34.43 0.41 35.43

Pyrite
n = 10

Mean 46.13 0.34 0.13 <0.04 <0.05 52.88 99.49
S 0.67 0.42 0.03 0.35

Min 45.01 0.05 0.07 52.55
Max 46.78 1.14 0.20 53.53

Pentlandite
n = 12

Mean 31.54 28.58 5.60 <0.04 <0.05 33.85 99.57
S 3.25 3.64 2.51 0.52

Min. 27.10 21.92 3.78 33.14
Max. 37.32 32.84 13.16 35.01

Mean = average value, n = number of analyses, S = standard deviation, Min. = minimum value, Max. = maximum value.

Table 8. Average trace element compositions of pyrrhotite from recrystallized marly limestones, marbles, and gabbro from
the Kochumdek contact aureole (LA-ICP-MS data, ppm).

Rock Type Element Mn Co Ni Cu Zn Se Mo Ag

Recrystallized marly
limestones n = 17

Mean 151 485 655 1.72 1.56 6.81 0.49 0.12
S 65.6 14.5 159 1.00 0.63 5.47 0.18 0.18

Min 61.0 465 343 1.02 0.99 2.10 0.23 <0.01
Max 263 517 808 4.10 3.09 23.1 0.97 0.75

Tly-Wo marbles, Zone 4
n = 10

Mean 342 345 909 50.9 9.60 3.35 0.02 0.14
S 235 101 523 41.9 11.1 1.61 0.02 0.14

Min 72.4 186 180 2.35 1.38 3.10 0.01 0.02
Max 733 569 1751 116 34.6 4.40 0.05 0.39

Spu-Mtc marbles,
Zone 3
n = 18

Mean 258 410 242 15.3 17.2 4.96 <0.01 0.08
S 99.4 72.6 276 10.9 12.5 2.63 0.07

Min 135 278 16.7 1.67 0.98 3.70 <0.01
Max 509 515 913 32.1 35.9 6.50 0.22

Spu-Mw marbles,
Zone 2
n = 4

Mean 182 349 7.63 <0.02 1.02 6.00 <0.01 0.04
S 67.2 61.4 2.68 0.54 2.86

Min 112 297 4.57 0.83 3.20 0.04
Max 246 417 9.56 1.22 9.90 0.04

Gabbro
n = 16

Mean 15.8 4422 6051 41.7 6.44 136 6.39 1.71
S 15.2 447 1850 49.6 5.15 16.4 5.20 1.93

Min 3.20 3643 3027 1.67 2.19 121 1.57 0.21
Max 64.9 5260 9230 159 17.9 192 20.7 6.40

Mean = average value, n = number of analyses, S = standard deviation, Min = minimum value, Max = maximum value. Pyrrhotite from
recrystallized marly limestone contains 0.72 ppm Hg, 0.29 ppm Tl; from Tly-Wo marbles (Zone 4) contains 0.13 ppm In, 0.11 ppm Cd and
Tl; from Spu-Mtc marbles (Zone 3) contains 1.41 ppm Cd; and from gabbro contains 6.23 ppm Hg, 0.62 ppm Tl. Mtc = monticellite, Mw =
merwinite, Spu = spurrite, Tly = tilleyite, Wo = wollastonite.



Minerals 2021, 11, 17 26 of 43

Minerals 2020, 10, x FOR PEER REVIEW 28 of 48 

 

4.3. Mineral Chemistry of Sulfides 
4.3.1. Gabbro 

Most of the sulfides in the gabbro samples from the top of the Kochumdek sill are 
solid solutions, except for chalcopyrite and pyrite, which correspond to the ideal compo-
sitions. Pentlandite (Fe3.71–4.92Ni2.79–4.33Co0.49–1.71S8) shows large ranges of Fe (27.10 to 37.32 
wt%), Ni (21.92 to 32.84 wt%) and Co (3.78 to 13.16 wt%). Sphalerite contains 10.63–12.40 
wt% Fe (Zn0.68–0.78Fe0.18–0.32S). Troilite with (Fe + Ni)/S = 0.96–0.99 bears up to 1.17 wt% Ni. 
SEM-EDS and EPMA of gabbro-hosted pyrrhotite reveal systematic presence of Ni, Co, 
and Cu reaching, respectively, 0.81 wt%, 0.66 wt%, and 0.16 wt% (Tables 4 and 7). LA-
ICP-MS analysis of coarse pyrrhotite grains confirms the concentration of Co (3643–5260 
ppm) and Ni (3027–9230 ppm) and reveals additional impurities of ≤192 ppm Se and <65 
ppm Mn (Table 8; Figure 14). Other chalcophile elements are minor: 1.49 to 6.83 ppm Ag, 
V, As, Pb, Hg, Ge, Mo, Zn, and Cu, and 0.20 to 0.69 ppm Os, Ru, Tl, Pd, Bi, Te, Ga, and Sn. 
The trace-element compositions of cobaltite (CoAsS), sphalerite, and pentlandite remain 
unconstrained because of small grain sizes. 

 

Figure 14. Average trace element compositions of pyrrhotite from gabbro, recrystallized marly 
limestones, and marbles from the Kochumdek contact aureole; based on LA-ICP-MS data (Table 
8).

Figure 14. Average trace element compositions of pyrrhotite from gabbro, recrystallized marly
limestones, and marbles from the Kochumdek contact aureole; based on LA-ICP-MS data (Table 8).

4.3.2. Recrystallized Marly Limestones

Impurities in pyrrhotite from the limestone samples are especially diverse, though
the contents of trace elements are low. Coarse pyrrhotite grains are homogeneous, with
minor Mn, Co, and Ni impurities (151–655 ppm in average) and orders of magnitude lower
contents of Ge, V, Mo, Pb, Zn, Cu, and Se (1.27–7.03 ppm). Other minor impurities include
Ag, Sn, Sb, Ga, and Bi (0.12–0.75 ppm) and, locally, up to 0.18 ppm Tl, 0.72 ppm Hg, and
0.94 ppm Te (Table 8; Figure 14). Chalcopyrite, pyrite, and rasvumite (K0.95–0.97Fe1.93–1.97S3)
approach the ideal compositions. Retrograde K-Fe sulfides are devoid of Co and bear the
lowest Ni and Cu concentrations: djerfisherite (K6.04–6.11Fe23.05–23.73Ni0.0–0.83S26Cl0.74–0.90)
contains ≤2.00 wt% Ni, while bartonite (K5.96–6.03Fe20.35–20.92Cu0.17–0.25Ni0.0–0.19S27) in-
cludes <0.50 wt% Ni and ≤0.71 wt% Cu.

4.3.3. Marbles

Pyrrhotite (Fe1-xS) from the highest-temperature merwinite assemblages of Zone 2
(T ≥ 900 ◦C) has a pure composition, with low contents of all trace elements, except for Co
(≤0.15 wt%) and within 246 ppm Mn, 10 ppm Ni and Se, and 1 ppm Zn. Pyrrhotite from
spurrite-monticellite assemblages in Zone 3 (T ≥ 750 ◦C) has comparable contents of Co, Se,
and Ag reaching 515 ppm, 3.70 to 6.50 ppm, and 0.22 ppm, respectively, but contains more Ni
and Mn (up to 913 ppm and 509 ppm, respectively). The contents of Zn (≤36 ppm) and Cu
(≤32 ppm) are about ten times higher than the respective values for Zone 2 (Tables 4 and 8;
Figure 14).

Pyrrhotite from the lower-temperature tilleyite-wollastonite assemblages of Zone 4
(T ≥ 700 ◦C) occasionally shows enrichments reaching 1751 ppm Ni, 733 ppm Mn, and 569
ppm Co, but has low Cu (within 116 ppm), Zn (35 ppm), and Se (4.40 ppm), and negligible
contents of Ag (≤0.40 ppm) and Mo (<0.05 ppm) (Table 8; Figure 14).

Alabandite grains are homogeneous and have a large range of MnS/FeS ratios
(Mn0.76–0.89Fe0.12–0.25S) (Figure 15). The range of (Mn,Fe)S solid solutions narrows down
with increasing temperature of metamorphism. The contents of Fe are especially variable
(7.53 to 15.68 wt%) in alabandite from Zone 4, but is from 8.24 to 11.53 wt% in Zone 2 and
7.49 to 9.99 wt% in Zone 3 (Table 6). The mineral is free from Mg, Cr, and V impurities,
which are common in high-temperature alabandite from meteorites [68].
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variation in wurtzite (n = 7), sphalerite (n = 17), and alabandite (n = 25) compositions from the
Kochumdek marbles. Based on data from Table 6. Crystal system: α = isometric, β = hexagonal,
n = number of analyses.

Sphalerite shows the ranges 17.92 to 21.87 wt% Fe and 4.01 to 7.43 wt% Mn, and the
respective composition is Zn0.55–0.57Fe0.32–0.35Mn0.07–0.10S. These values are higher for Fe but
lower for Mn compared to wurtzite, which contains 7.86–19.06 wt% Fe and 16.00–18.25 wt%
Mn, and has the Zn0.39–0.46Fe0.19–0.31Mn0.28–0.30S composition (Figure 15; Table 6). LA-ICP-MS
analyses of large sphalerite grains from spurrite-monticellite marbles (Zone 3) reveal high
trace-element diversity. The high-Fe sphalerite (170,400–171,100 ppm) also carries significant
concentrations of Mn (41,400–53,160 ppm), moderate Cd (4170–5000 ppm), fairly low Co
(181–293 ppm), as well as trace amounts of Hg (50.0 ppm), In (23.0 ppm), Cu (18.1 ppm), and
Se (5.73 ppm). The concentrations of Ni, Tl, Ge, Mo, Ga, Ag, Au, As, and Sb are below the
detection limits. The trace-element composition of wurtzite remains uncertain because of the
very small grain sizes.

Both prograde and retrograde rasvumite phases are close to KFe2S3 (Table 9). LA-ICP-MS
analysis of coarse rasvumite-I grains reveals a full scope of specific impurities: 559–815 ppm
Rb, 224–858 ppm Ba, 149–293 ppm Na, 31.9–69.0 ppm Cs, and 3.64–19.8 ppm Tl, which
are typical of rasvumite from different alkaline magmatic and metasomatic assemblages
[67,69–72]. The contents of Mn, Zn, and Cd vary by orders of magnitude (104 to 5130 ppm,
22.1 to 1280 ppm, and 0.48 to 12.1 ppm, respectively) and show spikes due to the presence of
(Mn, Fe)S and (Zn, Fe, Mn)S micro-inclusions [34]. Other trace elements are low (in ppm):
Se (11.6–19.5), Ga (4.62–16.9), Te (up to 1.40) and Ag (0.16).

The rims of retrograde rasvumite-II replacing pyrrhotite were too narrow for trace-
element analysis, but the impurities must be low as in prograde rasvumite-I based on the
near 100% totals (Table 9). On the other hand, djerfisherite replacing rasvumite in the rims
shows systematic enrichments in Ni (0.50–11.01 wt%) and Cu (0.25–5.22 wt%) (Table 10).
Persistence of oxygen revealed in X-ray elemental maps of rasvumite in rims and crack-
filling rasvumite-II indicates both replacements by djerfisherite and partial oxidation of
late-generation rasvumite (Figure 16).
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Table 9. Representative analyses and average compositions of rasvumite (KFe2S3) from marbles of the Kochumdek contact aureole (SEM-EDS and EPMA data).

Sample Zone 2 Zone 3 Zone 4 Zones 2–4

PT-104 PT-91 PT-93 PT-94 PT-97 PK-16-3 Mean (n = 30) S Min. Max.

wt%
K 15.22 16.04 15.76 15.27 16.36 16.14 15.42 15.31 15.63 15.52 15.54 0.32 15.15 16.36
Fe 45.11 45.46 44.92 45.20 45.16 45.11 45.57 45.32 44.84 45.08 44.98 0.37 44.34 45.62
S 38.88 37.50 38.80 38.90 38.26 37.95 38.86 38.97 38.76 38.68 38.84 0.56 37.50 39.71

Total 99.21 99.01 99.48 99.37 99.78 99.20 99.85 99.60 99.23 99.28 99.36
a.p.f.u.

K 0.963 1.052 0.999 0.966 1.052 1.047 0.976 0.966 0.992 0.987 0.984
Fe 1.998 2.088 1.994 2.001 2.033 2.047 2.020 2.003 1.992 2.007 1.994

a.p.f.u. = atoms per formula unit. Formula based on 3 atoms of S. Na, Co, and Ni (<0.03 wt%), Cu and Rb (<0.04 wt%), and Cs (<0.08 wt%) are below detection limits for EPMA. Sample PT-104 (Zone 2)—large
rasvumite grains (rasvumite-I), other samples—fine-grained secondary rasvumite (rasvumite-II); Mean = average value, n = number of analyses, S = standard deviation, Min. = minimum value, Max. =
maximum value. Bold = EPMA data, other analyses performed on SEM-EDS.
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Table 10. Representative analyses of djerfisherite (K6(Fe,Ni,Co,Cu)25S26Cl) from marbles of the Kochumdek contact aureole
(EPMA data).

Sample Zone 2 Zone 3 Zone 4

PT-104 PT-107 PT-97 PT-89 PK-16-3

wt%
K 9.52 9.57 8.93 9.39 9.62 9.45 9.50 9.39 9.58
Fe 51.84 42.85 44.67 46.42 47.04 51.42 51.35 52.59 51.47
Ni 0.99 11.01 9.19 6.37 2.54 1.13 1.92 1.77 1.97
Co <0.03 0.66 1.00 0.35 <0.03 <0.03 <0.03 <0.03 <0.03
Cu 0.94 0.94 1.60 1.67 5.22 1.04 1.32 <0.04 <0.04
Mn <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 1.39 1.55

S 34.27 34.30 32.75 34.14 34.00 34.58 33.53 33.08 33.80
Cl 1.55 1.47 1.33 1.43 1.47 1.43 1.55 1.22 1.30

Total 99.11 100.80 99.47 99.77 99.89 99.05 99.17 99.44 99.67
a.p.f.u.

K 5.923 5.948 5.813 5.864 6.032 5.826 6.040 6.052 6.043
Fe 22.578 18.646 20.358 20.295 20.650 22.194 22.858 23.729 22.729
Ni 0.410 4.558 3.985 2.650 1.061 0.464 0.813 0.760 0.828
Co 0.000 0.272 0.432 0.145 0.000 0.000 0.000 0.000 0.000
Cu 0.360 0.359 0.641 0.642 2.014 0.395 0.516 0.000 0.000
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.638 0.698
Cl 1.063 1.008 0.955 0.985 1.017 0.972 1.087 0.867 0.904

∑ Me 23.348 23.836 25.416 23.731 23.725 23.053 24.188 25.126 24.252

a.p.f.u. = atoms per formula unit, formula based on 26 atoms of S, Na (<0.03 wt%), Rb (<0.04 wt%), Ba and Cs (<0.08 wt%) are below
detection limits, ∑ Me = Fe + Ni + Co + Cu + Mn.
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Ni 0.99 11.01 9.19 6.37 2.54 1.13 1.92 1.77 1.97 
Co <0.03 0.66 1.00 0.35 <0.03 <0.03 <0.03 <0.03 <0.03 
Cu 0.94 0.94 1.60 1.67 5.22 1.04 1.32 <0.04 <0.04 
Mn <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 1.39 1.55 
S 34.27 34.30 32.75 34.14 34.00 34.58 33.53 33.08 33.80 
Cl 1.55 1.47 1.33 1.43 1.47 1.43 1.55 1.22 1.30 

Total 99.11 100.80 99.47 99.77 99.89 99.05 99.17 99.44 99.67 
a.p.f.u. 

K 5.923 5.948 5.813 5.864 6.032 5.826 6.040 6.052 6.043 
Fe 22.578 18.646 20.358 20.295 20.650 22.194 22.858 23.729 22.729 
Ni 0.410 4.558 3.985 2.650 1.061 0.464 0.813 0.760 0.828 
Co 0.000 0.272 0.432 0.145 0.000 0.000 0.000 0.000 0.000 
Cu 0.360 0.359 0.641 0.642 2.014 0.395 0.516 0.000 0.000 
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.638 0.698 
Cl 1.063 1.008 0.955 0.985 1.017 0.972 1.087 0.867 0.904 
∑ Me 23.348 23.836 25.416 23.731 23.725 23.053 24.188 25.126 24.252 

Figure 16. BSE image and X-ray elemental maps (O, S, Fe, K, Ni) of pyrrhotite partially replaced
by rasvumite and djerfisherite. Elemental mapping revealed the constant presence of oxygen (O)
in rasvumite, which indicates its partial oxidation. Kochumdek marble, Zone 2, sample PT-107.
Cal = calcite, Djer = djerfisherite, Po = pyrrhotite, Rasv = rasvumite, Spu = spurrite.

Djerfisherite has a highly variable composition, with relatively constant K (8.93–9.90 wt%),
Fe in a range of 42.85 to 53.51 wt%, 1.08 to 1.57 wt% Cl, 32.75 to 34.89 wt% S, and Na content
below the detection limits of both SEM-EDS and EPMA techniques (Table 10). The ranges of
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Ni, Cu, and Co are quite large. Coarse particles of djerfisherite are often compositionally homo-
geneous, though Fe, Ni, Cu, and Co contents in individual grains may differ even within half
of a thin section area (Figure 17). The distribution of djerfisherite enriched or depleted in these
metals shows some pattern: the contents of Ni and Co are the highest (reaching 11.01 wt% and
1.00 wt%, respectively) in djerfisherite near the sill margin in Zone 2 and the lowest (<2.00 wt%
Ni and <0.01 wt% Co) 1.5 m away from the contact in Zone 4. The respective compositions are
K5.81-5.95(Fe18.64–22.57Ni0.41–4.55Cu0.35–0.64Co0.0–0.43)S26Cl0.95-1.07 and K6.0(Fe22.46–23.72Ni0.20–0.83
Mn0.0-0.69Cu0.0–0.52Co0.0)S26Cl0.86–1.08. Djerfisherite in Zone 4 also contains up to 1.55 wt%
Mn and approaches the Fe-endmember composition. Copper variations are less regular and
reach the maximum (5.22 wt% Cu) in djerfisherite from the marbles of Zone 3.

Another retrograde K-Fe sulfide in Zone 4, tentatively interpreted as bartonite ((K,Me2+)
(Fe,Cu,Ni)25-xS26(S,Cl), tetragonal), is Cl-free and has quite a homogeneous composition:
10.10–10.38 wt% K, 45.30–51.45 wt% Fe, 0.37–3.60 wt% Ni, 0.46–1.83 wt% Cu, 0.45–0.53 wt%
Co, and 37.35–38.11 wt% S (K5.82–6.08Fe18.42–21.50Ni0.0–1.45Cu0.0–0.69Co0.0–0.21S27) (Table 11).
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Figure 17. Fe–Ni–Cu diagram (at%) of djerfisherite compositions from the terrestrial rocks of various
genesis and meteorites. Modified version after [31]. Based on data: mantle xenoliths [73–80],
kimberlites [72,78,80,81], alkaline rocks [82–84], skarns [85], meteorites [84,86,87]. Compositional
field of djerfisherite from spurrite marbles plotted using author data.

Table 11. Representative analyses of bartonite (K6Fe21S27) from Tly-Wo marbles (Zone 4) of the
Kochumdek contact aureole (SEM-EDS data).

Element
Sample

PT-88 PT-91 PK-16-1

wt%
K 10.10 10.38 10.19 10.33 10.26 10.14 10.28
Fe 47.04 47.12 46.31 45.30 51.45 50.80 50.04
Ni 2.45 2.48 3.03 3.33 <0.30 <0.30 0.48
Co 0.53 0.52 0.50 0.49 <0.30 <0.30 <0.30
Cu 1.43 1.68 1.68 1.69 <0.30 0.46 0.71
S 37.56 38.03 37.57 38.11 37.35 37.64 38.12

Total 99.11 100.21 99.28 99.25 99.06 99.04 99.63
a.p.f.u.

K 5.953 6.043 6.005 6.001 6.082 5.964 5.971
Fe 19.414 19.205 19.106 18.424 21.351 20.919 20.347
Ni 0.962 0.962 1.188 1.289 0.000 0.000 0.186
Co 0.207 0.201 0.195 0.189 0.000 0.000 0.000
Cu 0.519 0.602 0.609 0.604 0.000 0.166 0.254

∑ Me 21.100 20.969 21.100 20.506 21.351 21.086 20.787

a.p.f.u. = atoms per formula unit, formula based on 27 atoms of S; Na, Ba, Rb, Cs, Mn < 0.30 wt%; ∑
Me = Fe + Ni + Co + Cu. Tly = tilleyite, Wo = wollastonite.
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4.4. Stable Sulfur Isotopes in Pyrrhotite

The sulfur isotope composition was analyzed in hand-picked pyrrhotite fractions
selected from the Kochumdek gabbro, marly limestone, recrystallized limestone (Zone 5),
and marble (Zones 2 and 4) samples (Table 12; Figure 18). Pyrrhotite from both parent and
recrystallized limestones has the lightest sulfur isotope composition with a narrow δ34S
range of –28.68 to –23.3‰ corresponding to common S-bearing organic matter of marine
anoxic sediments [88]. Pyrrhotite from marbles is likewise depleted in 34S, with δ34S in
the –25.36 to –25.18‰ range in Zone 2 and slightly less negative δ34S values in Zone 4
(–15.07‰). Pyrrhotite from gabbro has positive δ34S from +2.68 to +13.10‰, which can
be a sign of different scale contamination of mantle-derived basic sulfides (~0‰) with
evaporitic sulfate (δ34S about +20‰) derived from seawater [88,89].

Table 12. Sulfur isotope compositions of pyrrhotite from recrystallized marly limestones and mar-
bles from the Kochumdek contact aureole, and gabbro from the Kochumdek trap, compared with
stratotype marly limestone of the Lower Kochumdek Sub-formation.

Sample Rock Type δ34 S (CDT)‰

PK-16-5 * Marly limestone –28.25 ± 0.20

PK-2 Recrystallized marly limestone –26.75 ± 0.20
PK-3-2 Recrystallized marly limestone –27.62 ± 0.20
PK-3-3 Recrystallized marly limestone –25.84 ± 0.20
PK-4-7 Recrystallized marly limestone –28.68 ± 0.20
PK-6-1 Recrystallized marly limestone –23.32 ± 0.20

PK-12-1 Tly-Wo marble (Zone 4) –15.07 ± 0.20

PT-117 Mw-Spu marble (Zone 2) –25.18 ± 0.20
PT-122 Mw-Spu marble (Zone 2) –25.36 ± 0.20

PT-95 Gabbro +13.10 ± 0.20
PK-9-2 Gabbro +2.68 ± 0.20
PK-17-4 Gabbro +3.31 ± 0.20

* = stratotype marly limestone of the Lower Kochumdek Sub-formation. Mw = merwinite, Spu =
spurrite, Tly = tilleyite, Wo = wollastonite.
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Figure 18. Sulphur isotope composition of sulfides (mainly pyrrhotite) from recrystallized marly lime-
stones, marbles and gabbro from the Kochumdek contact aureole in comparison with stratotype marly
limestone of the Lower Kochumdek Sub-formation (orange star) (based on data from Table 12) and with
data for S-rich organic matter after [88], mantle after [28], and Cambrian seawater sulfate after [90].

5. Discussion
5.1. General Geochemical Features of Adjacent Igneous and Sedimentary Rocks

The limestones of the Tunguska basin underwent intense phase changes upon inter-
action with the high temperature (at least 1200 ◦C [30]) mafic magma intrusion during
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the Early Triassic. High temperature spurrite-merwinite metamorphism was restricted
to a narrow zone within 2.5–3 m away from the contact. The top of the Kochumdek sill
bears no evidence of auto-metasomatism or vein mineralization, while both the contact
and interior parts of marbles lack breccias or vein stockworks, and skarns are limited to
a 3 cm thick discontinuous zone. In general, the local geology of the aureole records a
regime of thermal metamorphism close to an ideal model of isochemical transformations
with only a minor role of metasomatic agents. In order to find out how much the natural
process matched the model and why such exceptional conditions arose in the Kochumdek
aureole, we compared the geochemical features of the rocks and studied the composition
and distribution of sulfide mineralization.

The contrasting trace-element compositions of the Kochumdek limestone and igneous
samples allow for the use of geochemical tracers to decipher the fluid flow patterns in the
contact area by estimating the relative extent of the fluid flow, as well as the distribution
of sulfide minerals as carriers of fluid components. The Cr, Ni, Co, Cu, V, Sc and Cl
inputs and isotopically heavy sulfur would have left an imprint on the marbles if they
were affected by metasomatic fluids released from the cooling igneous body. However,
no such signatures of element transport would exist in the case of isochemical contact
metamorphism. We focused the study on sulfides in the aureole rocks, largely due to
their diversity where in addition to ubiquitous pyrrhotite, the sulfide assemblage includes
numerous rare phases, each being a potential proxy of growth conditions. Another reason
is that sulfides are sensitive to re-crystallization and re-equilibrate promptly in response to
changes in the growth medium.

The interaction between the gabbro from the top of the Kochumdek sill and marly
limestones exhibits a number of informative geochemical and mineralogical fingerprints.
The Kochumdek gabbro samples correspond to intraplate basalts according to mineralogy,
bulk-rock chemistry and trace-element composition [42,91]. They are marked by Fe-, Ti-, V-
and Sc-enrichments, moderate-to-low Cr, Ni, Co, and Cu contents, and low concentrations
of S, Mn, and Zn. Apatite-group minerals and late phases in the gabbro contain appreciable
amounts of chlorine but lack sulfate sulfur, which is an indication of low oxygen fugacity
in the crystallizing melt [21]. The same conditions, as well as the redox regime of cooling
basaltic magma, controlled the accessory mineral assemblage. Magnetite, common to
these rocks, is enriched in Ti and V and coexists with ilmenite. Sulfide mineralization
is scarce (Fe, Cu, Ni, and Co sulfides), where pyrrhotite is predominant and enriched
in Ni, Co, and Se, depleted in Mn, and contains trace amounts of Mo and Ag (Table 8;
Figure 14). Pyrrhotite from the gabbro is defined by δ34S from +2.68‰ to +13.10‰, which
differs significantly from the isotopically light sulfur in sulfides from the Lower Silurian
limestones and marbles (Figure 18; Table 12).

The variable and higher δ34S of igneous rocks in the Tunguska basin can be attributed
to contamination of basaltic magma with Ordovician limestones that bear gypsum and/or
anhydrite with high δ 34S values (+21.0 to +32.2‰) [92] or Middle and Early Cambrian
evaporates (δ34S from +9 to +2‰). The latter effect is especially prominent in the Norilsk
area in the northern flank of the basin [28,68,93].

Intact and recrystallized marly limestones are depleted in Cr, Ni, Co, Cu, V, and Sc
relative to the gabbro samples, but are notably more enriched in isotopically light sulfur
and Mn, and occasionally show positive Zn spikes (Table 8; Figure 14). Their accessory
authigenic mineralization is largely composed of pyrite (originally As-enriched, typical of
marine anoxic sediments [94–96], As-bearing pyrrhotite, arsenopyrite, as well as unevenly
distributed galena and sphalerite.

5.2. Sulfides in High-Grade Contact-Metamorphic Marbles: Applicability to Thermal History
Reconstructions
5.2.1. Matrix and Inclusion Sulfides

The mineralogy of sulfides and in particular, exsolution textures, are of broad use as a
proxy for reconstructing the cooling history of meteorites [87]. Multiphase and multistage
sulfide assemblages have been documented extensively in skarn deposits [26]. However,
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little is known of the difference between inclusion and matrix sulfide assemblages in
contact metamorphic rocks. In this respect, the zoned Kochumdek aureole may be an
advantageous test site, as it appears to have undergone a relatively simple set of events and
mainly quasi-isochemical metamorphism. There are several key features known about the
aureole which render it a suitable reference: (i) the exact intrusion body, which triggered
thermal alteration of sediments, (ii) the sedimentary precursor rocks, (iii) there was a single
thermal event, and (iv) there are numerical constraints on the duration of heating in each
metamorphic zone [1,2,29,30].

The features and timing relationships of sulfides and their assemblages in the Kochumdek
marbles are interpreted following the ideology of Brown et al. (2014) [27]. Sulfide inclusions
in prograde rock-forming minerals are considered to be isolated and thus unmodified by
subsequent retrograde fluid-mineral interactions. Monomineralic inclusions are considered to
be relics of peak metamorphic conditions (except for possible polymorphic transformations).
They reflect the scope of the respective solid solutions and the trace-element peculiarity of
individual minerals which were stable under those conditions. Polyphase sulfide assemblages
within a single inclusion are either intergrowths of syngenetic high-temperature phases or
decomposition products of complex precursors which broke down upon cooling. The main
isochemical changes in response to temperature drop, with no reaction between sulfide
phases, include: (i) polymorphic transformations, (ii) exsolution (compositional change
of solid solutions), and (iii) the breakdown of high-temperature stoichiometric phases to
multiphase assemblages of the same overall bulk compositions but different stoichiometry
for each newly formed phase [27]. As a consequence, the sulfide assemblages occurring as
inclusions may be different from those originally incorporated under the peak temperature
conditions [97]. However, the bulk chemistry of such multiphase inclusions also remains
invariable and provides information about sulfides that existed at the time of their entrapment
by crystallizing prograde rock-forming minerals [27].

The sulfide inclusions surrounded by tiny cracks or connected via radial cracks
with the matrix were exposed to retrogressive fluids and can be classified as pseudo-
inclusions [27]. Their compositional difference from true (i.e., isolated) inclusions provides
insights into some of the peculiarities of retrogressive fluids (e.g., sulfur activity, major-ion
chemistry and oxygen fugacity patterns).

In long-lived metamorphic complexes in subduction zones, the common and large
matrix sulfides are considered to be late-stage phases that formed after (possibly long
after) the prograde sulfides were trapped as true inclusions [27], and the two groups of
sulfide assemblages often show systematic differences. Matrix sulfides commonly form by
transformation, replacement or alteration of their higher-grade precursors, but may also
result from delayed re-incorporation of sulfur into the metamorphic rocks via cracks or any
other lithological heterogeneities. The small-scale fluid pathways increase rock permeability
and control the precipitation of new sulfide minerals. Major- and trace-element patterns of
early and late sulfide phases, as well as their sulfur isotopic composition, have implications
for the source(s) of fluids, metals, and sulfur, and thus can provide insights into the history
of metamorphic rocks [26,27,98,99].

Crack-filling sulfides and minerals that rimmed and/or replaced earlier sulfides are
attributed to the oldest retrogressive events. They may form long after both inclusion and
matrix sulfides or follow immediately as a response to temperature and pressure drop.

The recrystallized limestones of the Kochumdek aureole retain all geochemical fea-
tures of their sedimentary precursors and bear monotonic sulfide mineralization, with
predominantly pyrrhotite, which has a negative δ34S values (–28.68‰ to –23.32‰) and
contains Mn, Ni, and Co impurities, as well as trace amounts of Se (Figures 14 and 18;
Tables 8 and 12). The morphology of pyrrhotite provides a strong indication that it formed
by integrative recrystallization (Figure 10B,C). Chalcopyrite, galena and arsenopyrite occur
sporadically, mainly as fine inclusions on the periphery of pyrrhotite grains, and thus most
likely record the removal of impurities from the precursor pyrite and/or pyrrhotite during
recrystallization. The sulfides in marbles from Zone 4 also include rare grains of acanthite
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and alabandite. Sulfides occur mostly in the matrix, except for a few pyrrhotite inclusions
in calcite. Thus, the composition of sulfide inclusions in low-grade rocks is distinct from
matrix minerals, where Fe-sulfides are predominant, while matrix pyrrhotite coexists with
Mn, Ag, and Pb sulfides.

The merwinite- and spurrite-monticellite marbles of Zones 2 and 3 demonstrate
geochemical inheritance from the protolith sediments, and their bulk trace-element com-
positions lack any notable signatures of material transport from the sill. The marbles
show moderate enrichment in Mn and Zn and preserve low contents of Cu (≤60 ppm),
Ni (≤30 ppm), and Co (≤15 ppm) (Table 3). However, sulfide assemblages in merwinite
marbles differ from their counterparts from both lower-grade zones and precursor sedi-
ments in terms of greater compositional diversity (Fe, Mn, Zn, Pb, and Ag sulfides) and in
similarity of inclusion and matrix sulfide assemblages.

The trace-element composition and isotopic signatures of pyrrhotite provide convincing
evidence for the isochemical nature of high-temperature metamorphism in the Kochumdek
aureole. Matrix pyrrhotite from merwinite assemblages were analyzed by LA-ICP-MS, and
monofraction samples were selected from the same assemblages for sulfur isotope analysis.
Hypothetically, sulfides from the matrix (unlike those of inclusions) would be better candidates
for recrystallization by fluids released from the cooling magma.
If this were the case, they would store geochemical fingerprints of mafic magma, such
as Ni, Co, and Cu enrichment, as well as reintroduced isotopically heavy sulfur, especially in
pyrrhotite from the merwinite zone. However, matrix pyrrhotite from merwinite marble is
strongly depleted in Ni, Co, Cu, Se, Mo, and Ag and has δ34S values about –25‰ (Figures 14
and 18; Tables 8 and 12).

The obtained results show the compositional features of ultrahigh-temperature sul-
fides occurring under spurrite-merwinite facies conditions during thermal alteration of
marly limestone, which so far has only been achieved for sphalerite from combustion meta-
morphic rocks [53]. Iron is the principal mineral-forming cation in the Kochumdek marble
and, together with Mn, is among main components in the (Zn,Fe,Mn)Scub, (Zn,Mn,Fe)Shex,
and (Mn,Fe)Scub solid-solution series, which coexists with the predominant pyrrhotite.

Alabandite (α-(Mn,Fe)S) is the only proper Mn phase in the Kochumdek marbles.
Its origin is likely attributable to: (i) markedly higher bulk contents of Mn than Zn in
the sedimentary protoliths, and to (ii) restricted storage capacity of pyrrhotite structure
with respect to Mn2+ [65]. The combined action of the two factors prevented total Mn
dissemination in the (Fe,Mn)S or (Zn,Fe,Mn)S solid solutions. It is possible that α-(Mn,Fe)S
formed as a primary high-temperature phase, judging by its presence as inclusions in the
rock-forming minerals from spurrite marbles (Figure 11). On the other hand, the systematic
coexistence of fine and very fine (Mn,Fe)S particles on the boundary of larger pyrrhotite
grains (both inclusions and matrix) indicates that (Mn,Fe)S may have also separated during
high-temperature purification of pyrrhotite. The latter hypothesis is supported by direct
comparison of impurities in pyrrhotite from different metamorphic zones (Figure 14), where
the Mn contents are the highest in pyrrhotite from Zone 4 but low at the top of the sill. The
Mn depletion rules out any notable transfer between the magma and limestone/marble
material, and magma contamination by the latter.

The actual process of Mn fractionation may have been much more complicated.
It is pertinent to note that Mn impurities occur in all Fe-bearing minerals from the
Kochumdek marbles. The amount of Mn in rock-forming Ca-Mg silicates increases
proportionally with increasing Mg:Ca ratio, and peaks at ≈3 wt% MnO in monticellite
Ca(Mg0.59–0.82Fe0.12–0.26Mn0.03–0.07)(SiO4) [30,61]. Manganese is present in magnetite rims
around pyrrhotite (1.33–6.77 wt% MnO) but is absent from all Ca minerals (calcite, tilleyite,
spurrite, rankinite). Its contents are below the detection limit even in wollastonite, which is
known to readily incorporate Mg, Fe and Mn at high temperatures [100]. Tiny inclusions
of Zn(Fe-Mn) and Mn(Fe) sulfides were commonly found trapped in melilite and might
be interpreted as a consequence of Fe uptake during the growth of complex silicates. Less
often, such inclusions are found in Fe- and Mn-free spurrite, but are absent in monticellite



Minerals 2021, 11, 17 35 of 43

which is the main Fe and Mn host silicate phase in the Kochumdek marble. This provides
evidence for efficient crystallochemical fractionation of Mn during ultrahigh-temperature
low-pressure contact metamorphism, as well as for strong Fe-Mn coupling.

The solid solution series (Zn,Fe,Mn)Scub, (Zn,Mn,Fe)Shex, and (Mn,Fe)Scub has pre-
served unusual compositions consistent with equilibration at near extreme temperatures
and thus may have grown at peak metamorphic conditions. Although the rapid kinetics of
re-equilibration under cooling in sulfides [24] limits their use as geothermometers, they
can yield some threshold estimates. At high temperatures, Fe and Mn can more easily
incorporate into both sphalerite and wurtzite structural types [64,101]. Sphalerite from
the ultrahigh-temperature merwinite marbles of the Kochumdek aureole contains about
20 wt% Fe on average and up to 5.9 wt% Mn, while Zn is below 0.6 atoms per formula
unit (a.p.f.u.) (Zn0.55–0.57Fe0.32–0.35Mn0.07–0.10S). The minerals appear homogeneous and
free from exsolution lamellae under SEM magnification (up to 0.5 µm), but intergrowths
might exist on the submicron scale. In the natural environment, iron reaches the highest
contents (25.3–32.1 wt% Fe or 42–50 mol% FeS) in sphalerite from meteorites which form at
temperatures above 900 ◦C (1200 K) [87]. Experiments show that FeS in (Zn,Fe)Scub ranges
from 20 to 55 mol% at 850 ◦C, but its content in (Zn,Fe)Scub equilibrated with pyrrhotite
decreases to ≤13 mol% as the temperature drops to 742 ◦C at 1 bar [26].

The incorporation of large amounts of Mn stabilizes the wurtzite-type structure [101].
In the analyzed samples, wurtzite occurs only as inclusions in melilite from merwinite
assemblages and contains comparable concentrations of Fe (12.0 to 19.1 wt%) and Mn
(16.8 to 18.3 wt%), and anomalously low Zn (Zn0.39–0.46Fe0.19–0.31Mn0.28–0.30S). According
to experimental evidence [102], synthesis of Mn-rich wurtzite is possible at temperatures
no lower than 800 ◦C. The wurtzite inclusions are rare in the Kochumdek marbles and
occur in coarse pyrrhotite grains. Therefore, it remains unclear whether they originated
simultaneously with predominant pyrrhotite at the peak conditions or were separated
while pyrrhotite was expelling Mn and Zn impurities.

Alabandite (MnScub or α-MnS) belongs to the galena (or NaCl) structural type and the
(Mn,Fe)Scub solid solution is more restricted than (Zn,Fe)Scub [65]. The MnS-FeS solid solutions
in the Kochumdek marbles contain up to 15.7 wt% or 0.25 a.p.f.u. Fe (Mn0.76-0.89Fe0.12-0.25S)
(Table 6), or above the Fe-content in α-(Mn,Fe)S from meteorites [87]. This is the highest
amount reported for α-(Mn,Fe)S (Mn0.81Fe0.19)S crystals synthesized by the gas-transport
method in the Fe-Mn-Zn-S system at temperatures ranging from 900 to 800 ◦C [103]. Accord-
ing to [26], the FeS-MnS solid solution has the highest miscibility in the NaCl structure at
800 ◦C. Unfortunately, the alabandite compositions are unsuitable for subtler temperature
reconstructions and in the FeS-MnS diagram [102] they fall into the broad stability field
(1300–600 ◦C) of the alabandite + pyrrhotite assemblage (Figure 19).

The presence of large rasvumite-I grains with perfect cleavage in the matrix of
the highest-temperature merwinite marbles is intriguing, as rasvumite coexisting with
pyrrhotite (in the absence of pyrite) provides a record of increasing activity of potassium
and decreasing fugacity of sulfur in the mineral-forming medium [104–106]. In the context
of our results, sulfur fugacity may decrease because most of the isotopically light sulfur
derived from the authigenic pyrite and S-bearing organic matter of sedimentary protoliths
became immobilized in the earliest ultrahigh-temperature metamorphic sulfides, mainly
pyrrhotite (+(Zn,Fe,Mn)S and (Mn,Fe)S solid solutions). As for the greater potential of K at
peak metamorphic conditions, it may result from crystallochemical fractionation because
no ultrahigh-temperature Ca or Ca-Mg minerals contain K. The K-content is below the
detection limit of EPMA (<0.02 wt% K2O), even in gehlenite-rich melilite which is the only
potential K host among rock-forming minerals [30,61]. Currently, there is no information
on the thermal stability of KFe2S3 phase(s). Based on isostructural with rasvumite (KFe2S3,
space group Cmcm) fibrous thioferrates RbFe2S3 and CsFe2S3 obtained by pyro-synthesis
at 950 ◦C, ambient pressure and flowing nitrogen [107], rasvumite having shorter and
stronger K-S bonds than both Rb-S and Cs-S bonds, could be stable at higher T than 950 ◦C.
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Large crystals of rasvumite-I were analyzed by SEM and LA-ICP-MS only, while
direct structural determination was not possible. Meanwhile, this phase is morphologically
different from needle-like rasvumite-II, and the angle between its cleavage directions,
which are prominent in coarse grains, is 60 or 120◦ rather than 90◦ (perfect cleavage on
{110} for orthorhombic rasvumite) (Figure 12G,H). Therefore, the merwinite assemblages of
the Kochumdek marbles include a previously unknown high-temperature modification
of KFe2S3. In addition to orthorhombic rasvumite (KFe2S3, space group Cmcm), at least
two other polymorphic modifications have been synthesized so far: monoclinic KFe2S3
(C2/m) [108] and low-temperature KFe2Se3 and RbFe2S3 phases that belong to another
orthorhombic group, which break down above 450 ◦C [109].

5.2.2. Crack-Filling (Retrograde) Sulfides

The temperature constraints for the cooling of marbles can be used to reconstruct the
thermal stability limits of crack-filling sulfides. Mineral assemblages in cracks differ drasti-
cally from those in both matrix and inclusions and consist of relatively abundant doublet
or trio K-Fe sulfides, rasvumite + djerfisherite ± bartonite. Their ubiquity is unanticipated
for K-poor calcareous rocks, even more so that such mineralization is absent from gabbro
containing up to 1.4 wt% K2O (Tables 1–3). The first reconstruction of the thermal history
and some chemical parameters of the retrogression processes in the Kochumdek aureole
became possible with reference to recently published experimental results on the stability
limits of various Fe and K sulfide assemblages and individual compounds [105,106,110].
Pyrite-bearing mineral assemblages (pyrrhotite + pyrite + rasvumite + sylvite) and pyrite-
free assemblages (pyrrhotite + rasvumite + sylvite + KFeS2) are stable below and above
513 ◦C, respectively. The absence of pyrite in the sampled marbles indicates that rasvumite
replaced pyrrhotite (forming rims and pseudo-inclusions) at temperatures above 513 ◦C.
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The exposed rocks also lack both KCl and KFeS2 phases because the former is highly
soluble, while the latter is prone to hydrolysis.

The assemblage of pyrrhotite + rasvumite + djerfisherite fills cracks in marbles, as
well as in recrystallized limestones. The same assemblage, plus a KCl phase (sylvite),
was synthesized at 400 ◦C, but turned out to be unstable at 600 ◦C [110]. Djerfisherite
was shown to melt at ambient pressure and temperatures slightly below 600 ◦C, where a
new phase of unknown composition formed [110]. Systems of tiny cracks formed almost
contemporaneously along grain boundaries in the minerals of marble and recrystallized
marly limestone grains within a narrow (≤3.5 m) zone of heating around the cooling
intrusion, apparently due to differences in thermal expansion coefficients of the phases
in contact. The assemblages of silicates in pelitic limestone layers constrain the heating
temperatures to within 450–500 ◦C (Figure 4A), which appears to be the upper limit of
djerfisherite formation in the aureole rocks.

Djerfisherite that replaces rasvumite-II in cracks is the only phase in the Kochumdek
marbles which bears Ni, Cu, Co and Cl typical of gabbro. Its stability is controlled by
the lower activity of sulfur (relative to rasvumite) and higher activity of chlorine in the
fluid phase [67,72,74,80,104]. The distribution of djerfisherite in the Kochumdek marbles
highlights the patterns of the magma-derived fluid flow and permeability in the cooling au-
reole. The localization of djerfisherite within the metapelitic layers reflects the permeability
difference between calcite and Ca-Mg silicate layers. This effect was reference from sites of
contact metamorphism in carbonate-silicate sequences where pure calcite (meta-carbonate)
rocks act as aquitards while metapelitic layers can channel the fluid flow. Consequently,
material transport is aligned with layering rather than being isotropic, and the silicate
layers show distinct signatures of metasomatic alteration, mineral replacement and/or
isotopic resetting [111]. In the case of Kochumdek, neither the calcite layers were infiltrated
nor became the silicate layers affected by Si, Al, Mg and Fe metasomatism or S isotopic
resetting of high-temperature sulfides. Therefore, there was no significant flux of material
from the sill into the marly limestone. The aureole rocks were cracked only during the
final stage of the event, and the deformation was restricted to micrometer-size weak zones
along grain boundaries or, less often, produced tiny cracks in minerals (Figures 11 and 16).
A few healed micrometer cracks contain sporadic ≤10 µm grains of Sc-rich garnet, besides
djerfisherite (Table 2), which provides additional evidence for restricted upward fluid flow
from the Sc-enriched sill into the cooling country rocks.

The filling of tiny cracks, fissures or voids in the marble minerals and at grain bound-
aries consists of retrograde mineral assemblages, which are of limited abundance in the
Kochumdek rocks. These assemblages record minor fluid flow in the aureole and limited
heterogeneous permeability of the marbles during cooling. The formation conditions of
the fluid flow can be inferred from the presence of K-Fe sulfides, especially, djerfisherite.
It is no longer an apparent rare phase due to high-resolution techniques that can detect it
in numerous silica undersaturated lithologies, which include alkaline ultramafic, basic and
syenitic complexes and related metasomatic rocks [82–84]; kimberlites, kimberlite-hosted
mantle xenoliths, and carbonatites, where djerfisherite is frequently localized at sites of
NaCl and KCl or in Cl-bearing nodules [33,72,78–81]; mafic intrusions, with mainly Cu
or Ni djerfisherite varieties [83,112]; skarns, where its presence is commonly attributed
to infiltration of K- and Cl-bearing fluids from plutons [113–115]; and in few contact-
metamorphic marble settings akin to Kochumdek [69]. The formation of djerfisherite in
the Kochumdek marbles, which are depleted in K and Cl and have sedimentary protoliths
devoid of evaporates [48], could be attributed to external fluids enriched in both K and Cl.

Studies of infiltration patterns and phase composition changes in fluids from cooling
contact aureoles [49,116] demonstrate that brines should release inevitably from the fluids
at temperatures below the second critical point. For the case of impure marbles with thin
calcareous argillic bands (Bufa del Diente contact aureole, Mexico), these authors showed
that CO2-rich fluid produced by decarbonation of limestone escaped as an immiscible
low-density CO2-H2O fluid (with XCO2 ≥ 0.5). According to the suggested model [49,116],
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light internal fluid leaves its parent rock and rises into the overlying strata via grain-edge
flow, while the residual lower-temperature evolved fluid (mainly external hypersaline
(Na-K-Cl) brine of magmatic origin) becomes locked in metapelite layers which acts as
a contact-metamorphic aquifer, unlike the largely impervious thick-bedded pure calcite
marble acting as a specific aquitard.

The cooling marbles of the Kochumdek aureole were infiltrated by externally-derived
saline fluids (with Ni, Co, Cl and Sc tracers) that separated from crystallizing magma.
Modest amounts of such fluids can be inferred from low fluid saturation of poorly dif-
ferentiated bodies of the Kuz’movsky complex, which is consistent with the absence of
skarns within the aureole. The mechanically strong massive marbles in the contact zone
acted as an aquitard, while highly restricted penetration of brines and their migration via
silicate layers was only possible through a system of small cracks that formed during the
cooling. The fluid distribution pattern and the limited scale of the event are evident from
the distribution of djerfisherite in SEM elemental maps (Figure 12B,E and Figure 16).

6. Conclusions

1. The Kochumdek aureole of spurrite-merwinite marbles, though being almost free
of skarn features, is a locality with an exceptional diversity of sulfide minerals (fifteen
mineral species). The chemical difference of sulfides from marbles (Fe,K,Mn,Zn,Pb,Ag) and
gabbro (Fe,Ni,Cu,Co), as well as contrasting δ34S values, indicate that the high-temperature
(750–900 ◦C) contact metamorphism of marly limestone was nearly isochemical, without
transport of isotopically heavy sulfur and metals (Cu,Ni,Co) across the gabbro-sediment
interface. Such transport was impeded by limited amounts of fluid in the igneous body, as
well as the massive structure of the host marly limestone which was originally free from
weak zones as potential fluid conduits and thus acted as a specific aquitard during the
brief period of prograde metamorphism.

2. The data on studied sulfides have implications for the conditions of spurrite-
merwinite metamorphism. Broad solid solutions of (Zn,Fe,Mn)Scub and α-(Mn,Fe)S, as well
as the discovery of a (Mn,Fe)-rich wurtzite in the Kochumdek marbles, record unusually
high peak temperatures of metamorphism at the intrusion contact to at least 850–900 ◦C.
These temperature estimates, mainly from matrix sulfide data, are consistent with those
based on silicate mineral assemblages [30]. Based on the similarity of sulfide assemblages
in the matrix and in the inclusions, along with the compositional similarity of individual
minerals, these texturally different sulfide assemblages in high-grade zones formed within
a short time under comparable temperatures. According to numerical constraints [30], the
hottest conditions (T ≥ 830 ◦C) near the intrusion margins (Zone 2 or merwinite marbles)
were maintained for six to eight months. This brief thermal event has changed the micritic
marly limestone into quite coarse marble. The similarity of the matrix and inclusion sulfide
assemblages may be attributed to the brevity of geological processes. Restricted infiltration
of magma-derived saline fluids (with specific Ni, Co, Cu and Sc geochemistry) took place
during retrogression and led to the formation of crack-filling assemblages of K-Fe sulfides
with sporadic Sc-garnet.

3. LA-ICP-MS examination of pyrrhotite, sphalerite, and rasvumite has provided the
first evidence that spurrite-merwinite metamorphism of a carbonate protolith can induce
crystallochemical fractionation and accumulation of chalcophile (Ni, Cu, Co, Zn, Mn, Cd,
Tl, Hg, In, Se), as well as some incompatible large-ion (Rb, Cs, Ba) elements. Under the peak
temperature (T > 900 ◦C), the majority of iron was incorporated into the pyrrhotite and
sphalerite structural types, but only small amounts incorporated into the galena structural
type, whereas Mn became preferably concentrated in the galena and wurtzite structural
types. The selective accumulation of other elements was: Rb, Cs, Tl, Ba and Se in the
KFe2S3 phase (Rasv-I); Cd, In, and Hg in sphalerite; and Ni and Co in pyrrhotite.
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