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Abstract: In this contribution, we report the metasomatic characteristics of a lamprophyre dyke–marble
contact zone from the Hongseong–Imjingang belt along the western Gyeonggi Massif, South Korea.
The lamprophyre dyke intruded into the dolomitic marble, forming a serpentinized contact zone.
The zone consists of olivine, serpentine, calcite, dolomite, biotite, spinel, and hematite. Minor F
and Cl contents in the serpentine and biotite indicate the composition of the infiltrating H2O-CO2

fluid. SiO2 (12.42 wt %), FeO (1.83 wt %), K2O (0.03 wt %), Sr (89 ppm), U (0.7 ppm), Th (1.44 ppm),
and rare earth elements (REEs) are highly mobile, while Zr, Cr, and Ba are moderately mobile in the
fluid. Phase equilibria modelling suggests that the olivine, spinel, biotite, and calcite assemblage
might be formed by the dissolution of dolomite at ~700 ◦C, 130 MPa. Such modelling requires
stable diopside in the observed conditions in the presence of silica-saturated fluid. The lack of
diopside in the metasomatized region is due to the high K activity of the fluid. Our log activity K2O
(aK2O)–temperature pseudosection shows that at aK2O~−40, the olivine, spinel, biotite, and calcite
assemblage is stable without diopside. Subsequently, at ~450 ◦C, 130 MPa, serpentine is formed due to
the infiltration of H2O during the cooling of the lamprophyre dyke. This suggests that hot H2O-CO2

fluids with dissolved major and trace elements infiltrated through fractures, grain boundaries,
and micron-scale porosity, which dissolved dolomite in the marble and precipitated the observed
olivine-bearing peak metasomatic assemblage. During cooling, exsolved CO2 could increase the
water activity to stabilize the serpentine. Our example implies that dissolution-reprecipitation is
an important process, locally and regionally, that could impart important textural and geochemical
variations in metasomatized rocks.

Keywords: dyke–marble contact; metasomatism; dissolution-precipitation; phase equilibria; H2O-CO2

fluid; K activity

1. Introduction

Metasomatism is the alteration of rocks by hot, chemically active fluids that infiltrate or diffuse
through the rocks, causing recrystallization and compositional change [1]. Heat and fluids released
by the crystallizing magma could pervasively interact with the rocks regionally or locally, generating
metasomatized zones/aureoles [2,3]. On a regional scale, infiltration by H2O-CO2 brines causes
metasomatic alterations in the lower crust and the mantle [4–6]. During metasomatic alteration,
metal concentrations in fluids can lead to the genesis of ore deposits that are economically important [7].
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Significant changes in mineralogy, geochemistry, and rheology evolved through fluid–rock interactions
are important in evaluating geodynamic processes over time [8]. Metasomatic changes through the
introduction of fluid from an external source adds and removes materials in solution by infiltration
metasomatism [9,10]. The chemical potential of perfectly mobile components depends not only on
their concentration but also on the influence of inert (immobile) components in the system during
the infiltration metasomatism, where the chemical potentials of perfectly mobile components differ
from those in the external medium in contrast to diffusion processes [9]. Our understanding of such
processes is limited because of the lack of fluid properties under high pressure (P) and temperature (T)
conditions, and the absence of fluid phase preserved in these samples. Important advances are made by
the constraining of our understanding of fluid properties [11]. Further textural and geochemical studies
of metasomatic zones are very useful in understanding metasomatism and the dissolution-precipitation
process, and can deliver more information about the chemical composition of fluids and mobility of
different components in it with respect to the external conditions [12].

Our understanding about metasomatism in natural systems comes from outcrop-scale observations
of such phenomena due to magmatism in rocks [13–17]. The metasomatism of marble attracted wide
attention because of sharp changes in mineralogy between metasomatized and unmetasomatized
sections compared to metasomatized igneous or other metamorphic rocks [13–15]. A simple chemical
system includes the formation of metasomatic products and their well-defined thermodynamic
properties [13]. Such metasomatized zones in marble are commonly characterized by the replacement
of dolomite by olivine. The formation of the infiltration-driven olivine-bearing metasomatic zone by
the silicification of dolomite could be represented by the following Reaction [13]:

Dolomite + SiO2 (aq) = Forsterite + 2Calcite + 2CO2. (1)

Nevertheless, the Equation (1) requires an aqueous fluid with an activity of SiO2 of less than
one in order to form forsterite at the observed pressure (P) and temperature (T) conditions [14–20].
In silica-saturated fluids, forsterite cannot be formed by a direct reaction between dolomite and
silica-saturated fluid [13]. If fluid is silica-saturated, forsterite can be formed by Equation (2), where the
initial silica activity is reduced by the formation of diopside [21–26].

Diopside + 3Dolomite = 2Forsterite + 4Calcite + 2CO2. (2)

Several other possibilities have been proposed for the formation of forsterite during the contact
metamorphism of carbonate rocks, suggesting that metasomatic olivine in dolomitic marble could be a
source of silica other than diopside if the reaction occurred far from equilibrium/disequilibrium [25–28].
Here, we investigate an infiltration metasomatic zone developed on a dolomitic marble by lamprophyre
dyke intrusion. The formation of an olivine-bearing serpentinized metasomatic zone developed on
dolomitic marble is examined through textural study, geochemical information, and phase equilibria
modelling. We also provide geochemical variation in elements, which might be an important factor in
characterizing the mobility of different elements during such an infiltration process. Thus, the main
objective of this study is to expand our understanding of geochemical variations during infiltration
metasomatism by taking an example of metasomatism caused by a lamprophyre dyke–marble contact
zone from the southwestern Korean Peninsula.

2. Geological Setting and Sampling

In the southwestern Korean Peninsula, the Hongseong-Imjingang belt (Figure 1), which is also
called the Gyeonggi marginal belt [29], along the western Gyeonggi Massif has been considered
as part of the most plausible collisional belt in the Korean Peninsula. The belt is correlated to
the Qinling-Dabie-Sulu belt between the North and South China cratons in terms of collisional
tectonics [30–43]. Our samples are from a lamprophyre dyke–marble contact zone exposed in
the southern part of the Hongseong-Imjingang belt. Such dykes (predominantly quartz porphyry,



Minerals 2020, 10, 828 3 of 18

lamprophyre, andesite, and felsite) in the study area are reported to have formed mostly in the Jurassic
times [44]. Lamprophyre dykes are considered as a tectonic marker of late orogenic transtension [45].
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Figure 1. (a) Simplified tectonic map of East Asia. (b) Geologic map of the western part of the Korean
Peninsula, showing the location of the lamprophyre dyke–marble contact zone (modified form [30] and
references therein).

The medium-grained dark-colored ~1 m-width lamprophyre dyke intruded the dolomitic marble
of ~10 m exposure. The dyke consists of dark to brown biotite and amphibole crystals of ~2 to
5 mm in size, indicating a relatively slow cooling during their crystallization because of insulation
by the surrounding marble. The light-greenish ~70 cm-width metasomatic area is formed within the
marble along the dyke–marble contact (Figure 2a). This area displays well-defined mineralogical zones
with a light greenish to dark-colored highly serpentinized area and light brownish-colored partially
serpentinized olivine-bearing portions (Figure 2b). The serpentinized area is relatively fine-grained
(<1 mm) compared to the medium-grained (2–3 mm) olivine-bearing portions. As we move further
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towards the unmetasomatized marble region, there are alternating mm-scale thin layers of olivine
and calcite that could have been formed by the self-organization of minerals driven by grain growth
(Figure 2b) [46].
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Figure 2. Representative field photos of the lamprophyre dyke–marble contact from the south-western
Korean Peninsula in the Hongseong-Imjingang belt. (a) Light greenish metasomatized region at the
contact zone. (b) Enlarged photo of the contact zone showing a light greenish to light brownish partially
serpentinized olivine-enriched region. The highly serpentinized area (with minor olivine) is relatively
fine-grained and appears dark compared to the medium-grained olivine-bearing portions.

A total of nine samples were systematically collected from a road-cut outcrop, exposing a
metasomatized zone comprising a lamprophyre dyke ~1 m in width (Figure 3). Three samples of
lamprophyre dyke were collected from this dyke at distances 0.5 m apart (Figure 3a). We avoided
sampling close to the contact zone in order to obtain the original composition of the lamprophyre
dyke. Three olivine-bearing samples (0.5 m apart from one another) were also collected from the
partially serpentinized, olivine-enriched area (Figure 3b). Again, three marble samples were collected,
0.5 m apart, ~1 m away from the metasomatized region (Figure 3c). From these samples, petrographic
observation was carried out on thin sections to investigate the changes in mineralogy and bulk rock
chemistry during the metasomatic processes. Because of the consistency in the mineral assemblage of
each group, one sample from each group is considered representative for the further investigation using
both the electron microprobe and bulk rock chemistry to assess the variations in mineral chemistry as
well as the major, trace, and rare earth element (REE) abundances, respectively.
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Figure 3. Hand specimens and thin section photographs of the three representative samples collected
for this study. (a) Dark, medium-grained lamprophyre dyke sample. (b) Olivine-bearing sample
from the partially serpentinized area. (c) Marble sample collected away from the metasomatized area.
Scale given for panel c is same for all panels. (d–f) Thin section photographs of lamprophyre dyke,
metasomatized marble, and dolomitic marble, respectively. Bt—Biotite; Ilm—Ilmenite; Pl—Plagioclase;
Amph—Amphibole; Atg—Antigorite; Ol—Olivine; Cal—Calcite; Dol—Dolomite.
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3. Petrography

3.1. Lamprophyre

All the three lamprophyre samples are mineralogically similar and show minor grain size
variations. The lamprophyre sample consists mainly of amphibole, biotite, and plagioclase (Figure 3a,d
and Figure 4). Biotite and amphibole are present in similar amounts and constitute most of the sample
(Figure 4a). Plagioclase covers ~20% of the sample. A minor amount (1–2%) of quartz is present
occasionally. Biotite appears as mm-size, elongated laths, and is mainly present as a group of three
to four laths. The amphibole shape is wider and bigger compared to biotite. It also exists as a group
of grains in the plagioclase matrix. Few amphiboles have apatite inclusions (Figure 4b) that are not
observed in the matrix. Plagioclase forms subhedral grains that are mostly interconnected. The major
opaque mineral is ilmenite, and it is present dispersed in the matrix, as inclusions, and as discrete
grains on the grain boundaries of amphibole and biotite.
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Figure 4. Back-Scattered Electron (BSE) images of the lamprophyre dyke sample, showing the
biotite, amphibole, plagioclase, and ilmenite assemblage (a), and the biotite, amphibole, plagioclase,
and ilmenite assemblage with apatite inclusions in amphibole (b). Bt—Biotite; Ilm—Ilmenite;
Pl—Plagioclase; Amph—Amphibole; Ap—Apatite.

3.2. Metasomatized Intermediate Marble

Three intermediate metasomatized partially serpentinized marble samples consist of dolomite,
calcite, olivine, serpentine (antigorite), biotite, spinel, and hematite (Figure 3b,e and Figure 5). Most of
the dolomite has a resorbed texture with an irregular boundary. They are mostly replaced by calcite and
serpentine in a large area in the metasomatized thin section (Figure 5a). Serpentinization appears as
large pods in association with calcite and minorly resorbed dolomite. Few olivine grains are preserved
within the serpentinized pods with resorbed olivine in them (Figure 5b). They might be former olivine
grains that were replaced during a later hydration event. Only two biotite grains are observed in the
entire thin section (Figure 5c). They appear along the contact between the calcite and serpentinized
pods. Biotite has a thick blade-like texture compared to the elongated ones in the lamprophyre.
Minor euhedral spinel is present along the dolomite–calcite contact (Figure 5d). The major oxide
mineral is hematite, and Ti is absent. It is easily distinguished by their polished surface compared
to the rough surface that is commonly observed in magnetite. Hematite forms as micro-meter-sized
grains dispersed along the grain boundaries of serpentinized pods (Figure 5e). They appear like the
oxidation texture formed on earlier olivine grains. They are also present as veins and discrete grains,
well-dispersed in the calcite dolomite matrix. Replacement calcite precipitation also occurs along the
cleavage planes of dolomite grains (Figure 5f).
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Figure 5. Back-Scattered Electron (BSE) images of an intermediate metasomatized sample, showing
dolomite dissolution to form olivine, calcite, and serpentine (a); resorbed olivine grains within the
serpentinized pods (b); biotite present along with the serpentinized olivine-bearing pods, calcite,
and dolomite assemblage (c); euhedral spinel present along the dolomite and calcite contact (d);
hematite forms as micrometer-sized grains dispersed along the grain boundaries of the serpentinized
pods, as veins and as discrete grains (e); replacement calcite precipitation along the cleavage planes of
dolomite grains (f). Bt—Biotite; Ilm—Ilmenite; Pl—Plagioclase; Amph—Amphibole; Atg—Antigorite;
Ol—Olivine; Cal—Calcite; Dol—Dolomite; Sp—Spinel.

3.3. Marble

All the three marble samples consist mostly of dolomite (Figure 3c,f and Figure 6). Near the contact
zone, where metasomatism occurred, veins of serpentine and calcite were formed in the dolomitic
marble (Figure 6). Here, both a serpentine vein with precipitated calcite (Figure 6a) and a calcite vein
with precipitated serpentine (Figure 6b) occur simultaneously, in all three samples. There are no calcite
grains observed in the marble sample other than those created in the vein filling fractures.
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Figure 6. Back-Scattered Electron (BSE) images of the dolomitic marble sample, showing calcite veins
and serpentine precipitation in the dolomitic matrix (a), and serpentine veins and calcite precipitation
in the dolomitic matrix (b). Dol—Dolomite; Cal—Calcite; Atg—Antigorite.
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4. Analytical Techniques

4.1. Electron Probe Micro Analyzer (EPMA)

The mineral compositions of three representative samples of the lamprophyre dyke,
the intermediate metasomatized zone, and the dolomitic marble were analyzed using a JEOL JXA-8100
Superprobe, Electron Probe Micro Analyzer (EPMA), housed at the Earth System Sciences, Yonsei
University, Seoul, Korea. Analyses were performed using an accelerating voltage of 20 kV, beam current
of 20 nA, and counting time of 10 s. Care has been taken to analyze mineral core compositions in
order to obtain compositions that might be present during peak crystallization/metasomatic conditions.
An electron beam spot size of 5 µm is used for the analysis of biotite, amphibole, ilmenite, olivine,
serpentine, calcite, dolomite, spinel, and hematite and 15 µm for plagioclase. Natural and synthetic
silicates and oxides supplied by JEOL and ASTIMEX standards Ltd. (Saint-Hubert, QC, Canada),
were used for calibration. The data were reduced using the ZAF correction procedures supplied by JEOL.
Apatite standardization and offline interference corrections have been carried out based on suggestions
from [47]. An electron beam spot size of 15 µm is used for the apatite analysis. The standards for
apatite and REEs are generously provided by Dr. Daniel Harlov, GFZ, Postdam, Germany.

4.2. Bulk Chemistry

A whole-rock analysis of three representative samples of the lamprophyre, the intermediate
metasomatized zone, and the dolomitic marble were carried out for the major, trace, and rare earth
element (REE) abundances at Activation Laboratories, Ltd., Ancaster, ON, Canada. The lithium
metaborate/tetraborate fusion ICP method was used for the major and trace elements. Samples were
run for major oxides and selected trace elements on a combination simultaneous/sequential Thermo
Jarrell-Ash ENVIRO II ICP or a Varian Vista 735 ICP. Calibration was performed using 14 prepared
USGS and CANMET-certified reference materials. One of the 14 standards was used during the
analysis for every group of 10 samples. Totals should be between 98.5% and 101%. If the results
came out lower, the samples were scanned for base metals. Low reported totals may indicate sulphate
being present or other elements such as Li, which would not normally be scanned for. Samples
with low totals, however, were automatically re-fused and reanalyzed. Option 4B1 was used for
accurate levels of the base metals Cu, Pb, Zn, Ni, and Ag. In-lab standards (traceable to certified
reference materials) or certified reference materials were used for quality control. Samples were
analyzed using a Varian Vista 735 ICP. Option 4B-INAA (Instrumental Neutron Activation Analysis)
for the As, Sb, high W > 100 ppm, Cr > 1000 ppm, and Sn > 50 ppm (for details, please visit
https://actlabs.com/geochemistry/lithogeochemistry-and-whole rock analysis/).

5. Results

5.1. Mineral Chemistry

5.1.1. Lamprophyre Dyke

Primary minerals analyzed in the lamprophyre dyke include biotite, amphibole, plagioclase,
ilmenite, and apatite (Supplementary Materials Table S1). Here, biotite and amphibole have higher
TiO2 contents of 4.7–5 wt % and 2.1–2.4 wt %, respectively. The F and Cl values of biotite range from 0.0
to 0.14 and 0.04 to 0.07, respectively. In the amphibole, the F and Cl values range from 0.0 to 0.48 and
0.01 to 0.05, respectively. Mineral compositions show that biotite has XMg = 0.41–0.42, amphibole has
XMg = 0.45–0.52, and plagioclase has XAn = 0.30–0.33. Most of the amphiboles are pargasitic, but one
has hornblende in its composition. Ilmenite (XIlm = 0.97–0.98) contains minor pyrophanite (XPyr = 0.02).
The F and Cl values of apatite range from 2.04 to 3.71 and 0.13, respectively. The chondrite normalized
REE values in apatite show a slight enrichment in the HREE.

https://actlabs.com/geochemistry/lithogeochemistry-and-whole
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5.1.2. Metasomatized Intermediate Marble

Olivine, serpentine (antigorite), spinel, biotite, calcite, dolomite, and hematite are analyzed
from the metasomatized intermediate marble sample (Supplementary Materials Table S2). Olivine
composition has XMg = 0.94 with 5–7 wt % FeO in them. The F and Cl values of serpentine and biotite
are negligible (~0.01 wt %). Serpentine has XMg = 0.94 with 1–4 wt % FeO. It is identified as antigorite
based on its non-fibrous texture and has both FeO and MgO content in it. Biotite has a phlogopite
composition with XMg = 0.94–0.95. Spinel has XMg = 0.86, XFe = 0.14, and XCr = 0.007. Hematite
has a 0.003 XCr component. Dolomite consists of ~21 wt % MgO and ~31 wt % CaO, with minor
FeO ~0.9 wt %. Calcite has ~54 wt % CaO, with minor MgO (~3 wt %) and FeO (~0.3 wt %).

5.1.3. Marble

Serpentine, calcite, and dolomite are analyzed in the marble sample (Supplementary Materials
Table S3). Serpentine has XMg = 0.99, with a very small content of FeO (~0.97 wt %) compared to
that in the metasomatized zone. In the serpentine, the F and Cl values are ~0.3 wt % and ~0.01 wt %,
respectively. Calcite has ~52 wt % CaO, with a small amount of MgO (~1.38 wt %) and FeO (~0.04 wt %)
compared to the metasomatized zone. Dolomite consists of ~20 wt % MgO and ~30 wt % CaO with
minor FeO ~0.15 wt %.

5.2. Bulk Chemistry

The bulk chemistry results of the representative samples of lamprophyre dyke, the metasomatized
intermediate marble, and the marble are given as Supplementary Materials Table S4. The lamprophyre
dyke has an SiO2 content of 49.19 wt % and a total CaO + Na2O + K2O content of 11.62 wt %. Both marble
and metasomatized marble has a CaO of 30–31 wt % and MgO of 18–20 wt %. Metasomatized marble
is comparatively enriched in SiO2 (14.67 wt %), FeO (2.13 wt %), and K2O (0.3 wt %) compared to the
marble (Figure 7a–c; Supplementary Materials Table S4).
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during metasomatism. Compositional diagrams showing the SiO2 and FeO enrichment (wt %) in the
metasomatized marble (a), Major element variations (wt %) (b), SiO2 variation (wt %) (c), FeO variation
(wt %), and (d), moderately enriched elements variation from the representative samples (ppm).
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Trace element composition of the representative samples are divided into three groups based on
their enrichment in the metasomatized marble compared to the marble (Supplementary Materials
Table S4). Zr, V, Cr, Y, Ba, LREE, Sr, U, and Th are enriched in the metasomatized marble compared
to the marble (Figure 7d; Figure 8a–c). Among the elements, Zr, V, Cr, Y, and Ba are moderately
enriched, and have values less than that of the lamprophyre dyke (Figure 7d). The primitive mantle
normalized REE values [48] show that they are high in the lamprophyre dyke compared to the marble
(Figure 8a). The REE pattern shows that LREEs are comparatively depleted compared to HREEs in the
dyke sample (Figure 8a). LREEs in the marble are slightly enriched compared to HREEs (Figure 8a).
In the metasomatized marble, LREEs are highly enriched, and HREEs show a flat pattern comparable
to the marble (Figure 8a).
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The Sr, U, and Th in the metasomatized marble are very high compared to both the lamprophyre
dyke and the marble (Figure 8b). There are no other elements except these three elements that show
such a high enrichment compared to the other two samples. Among the elements, Sr shows the
highest enrichment of ~600 ppm, and U and Th are moderately enriched. Most of the other analyzed
elements such as Be, Rb, Ni, Cu, Zn, Ag, Nb, Ta, W, Pb, Ge, Sc, Co, Ga, Cs, and Hf have high
contents in the lamprophyre dyke. These elements are not particularly enriched in the metasomatized
marble. All these elements have comparatively similar values in both the metasomatized and the
un-metasomatized portions of the marble.

5.3. Phase Equilibria Modelling

The petrologic pseudo-sections were computed using PERPLE_X 6.7.9 version available at
http://www.perplex.ethz.ch [49–51] using the hp02ver.dat database [52]. An H2O-CO2 fluid equation
of state [53] is used to model these phase diagrams. The bulk chemistry data of the intermediate
metasomatized marble (Supplementary Materials Table S4) is used for the modelling. The P2O5, Na2O,
and TiO2 concentrations were not considered due to their low contents (<0.5 wt %). The total loss
on ignition (LOI) in this sample is 32.88. The H2O content is assumed to be 0.1% of this total LOI.
The value of CO2 is 30.25 wt % and of H2O is 2.5 wt %. The solid solution models used for the modelling
are olivine (O(HP)) [52], serpentine (Atg; ideal), calcite (Cc(AE)) [54], dolomite (Do(HP)) [52], biotite
(Bio(TCC)) [55], and spinel (Sp(HP)) [52].

In the first calculation, we attempted to vary the pressure (P) between 30 and 200 MPa and
temperature (T) between 300 and 800 ◦C. The result shows that olivine, diopside, dolomite, calcite,
and CO2 are stable in this window, where the dolomite to calcite transition occurs above 500 to 650 ◦C
(Figure 9a). We have not observed any diopside in our sample. In addition, we have not observed
stable biotite or serpentine in the phase diagram at the first attempt.
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Figure 9. Pseudosection calculations showing stable minerals at different conditions. Bulk chemistry
used for the calculation is given above the diagram. (a) The results with varying pressure and temperature
from (a) 30 to 200 MPa and 300 to 800 ◦C and (b) 30 to 200 MPa and 300 to 800 ◦C at logfO2 = −14.
Pink arrow representing the possible evolutionary path followed by the metasomatized marble
zone. OI—Olivine; Dol—Dolomite; Cal—Calcite; Di—Diopside; Mt—Magnetite; Hem—Hematite;
Atg—Antigorite; Tr—Tremolite; Clin—Chlorite; Sp—Spinel; An—Anorthite.

Because of the hematite that is present as oxidation rims on the serpentine pods, vein-filled
fractures, and discrete grains, we assumed an oxygen fugacity of ~log fO2 = −14 with a magnetite

http://www.perplex.ethz.ch
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to hematite transition at 600–800 ◦C [56] in the second run. This result is more comparable to our
petrologic observation except for the stability of diopside (Figure 9b). The second run successfully
generated olivine, serpentine, biotite, spinel, calcite, dolomite, and hematite. Here, olivine, biotite,
and calcite are stable everywhere in the phase diagram. The mineral composition of olivine shows
XMg = 0.94. We have computed the isopleths for the XMg variation in olivine in the phase diagram.
Our isopleth calculation shows that the olivine XMg is increasing towards the lower temperature
portion in the phase diagram. An XMg of 0.94 is present towards ~750 ◦C. Since we observed spinel
in the sample, we have computed the isopleths for XMg variation in spinel as well in the phase
diagram. Spinel in our sample has an XMg of 0.86. This composition is also present near ~750 ◦C.
Above ~130 MPa, spinel is absent and anorthite is stable. Therefore, the phase diagram result suggests
a maximum pressure of ~130 MPa. Serpentine and hematite are stable towards the low-temperature
portion at ~450 ◦C. Now, the major question is why we could not get any diopside in our sample.
Our phase diagram calculations suggest that diopside is stable in the pressure-temperature conditions
considered for these calculations.

Since we neither have observed any diopside inclusions in olivine nor have seen any possibility of
low silica activity at out-of-equilibrium conditions, the K2O activity has changed during the third run.
The absence of diopside at high concentration of K is shown by the experimental results on granodioritic
samples [57,58]. Furthermore, we have observed stable biotite in our sample, which makes it possible
to consider varying K2O activity during the phase diagram modelling. We have varied the log activity
of K2O from −80 to −30, and the temperature from 300 to 800 ◦C, with a pressure of 130 MPa. The result
shows that with a high K2O activity and at ~750 ◦C, olivine, spinel, biotite, and calcite are stable
without diopside (Figure 10). Diopside will present only below a log aK2O > −40, and above this
condition all the phases observed in the metasomatized zone are stable.
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5.4. Isocon Method

To evaluate the percentage of addition or subtraction of mobile elements during metasomatism,
we have applied the isocon method [59,60]. The density of metasomatized and un-metasomatized
marble is measured, using conventional methods by measuring the mass and volume of the samples.
The density of the unmetasomatized and metasomatized samples is 2.75 g/cm3 and 2.74 g/cm3,
respectively. This defines an isocon for the elements, as shown in the formula of Equation (3) below:

CMM = 1.0036 × CM, (3)

where CMM is the concentration of oxide or element in the metasomatized sample and CM is the
concentration of oxide or element in the unmetasomatized sample. The percentage difference in the
mobile elements or oxides from this isocon can be calculated using Equation (4):

% difference = (CMM
− CM)/CM

× 100. (4)

These values are given in the Supplementary Materials Table S5. The deviation of each oxide or
element from the isocon is represented in Figure 11. In the major elements, SiO2 (552%), FeO (610%),
and TiO2 (487%) show maximum enrichments (Figure 11a). Al2O3, MnO, and K2O are moderately
enriched (~200–300%). CaO, MgO, and Na2O are the least mobile or depleted (−33–4%) (Figure 11b).
All the REEs are highly enriched in the metasomatized marble sample (>400%) (Figure 11c,d).
Trace elements such as Th (576%), Cs (400%), Y (361%), U (304%), V (220%), Sr (167%), Zr (125%),
Ba, and Nb (100%), and Cr (50%) also show a high enrichment compared to the unaltered sample
(Figure 11c,d).
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Figure 11. Deviation of major and trace elements and REEs from the isocon (straight line). (a) Deviation
of SiO2, FeO, MgO, CaO; (b) Deviation of Al2O3, MnO, Na2O, K2O, TiO2; (c) Deviation of LREE’s and
Zr, V, Cr, Y ; (d) Deviation of HREE’s and U, Th, Nb, Cs.

6. Discussion

The intrusion of hot magma into country rocks is a common phenomenon, and is important
in understanding the process of the exchange of heat and fluids between cooling magma and cold
country rocks [16,17,61–63]. Fluid infiltration and heating around the boundaries of a hot magmatic
intrusion cause chemical and mineralogical alterations to nearby rocks [15–17,27]. Such altered rocks
are typically called skarn [61–66]. Different types of rocks such as limestone, dolostone, marble,
granite, basalt, conglomerate, tuff, and shale can be transformed into skarn by metasomatism [64–66].
Skarns can form on both sides of a contact between a magma body and its surrounding rock [64–66].
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Those formed on igneous side of the contact are known as endoskarns, while those formed on the
country-rock side of the contact are known as exoskarns [64–66]. In this study, we provide the
characteristics of formation of such a metasomatized zone (exoskarn) developed at the contact between
the intruded lamprophyre dyke and the dolomitic marble. We have not observed any effect of a reverse
process in the outcrop, with the fluids entering the hot lamprophyre dyke and metasomatizing it.
Our petrographic observation shows that most of the biotite and amphibole have not undergone any
alterations/dehydration due to inflow of CO2 from the country rocks to dyke. The Ca and Mg (main
elements in the marble) bearing CO2 expulsion towards the dyke could have generated dry minerals
by dehydration of amphibole/biotite in the dyke because of the high volume of CO2 in the marble.
However, such alterations are not observed in the lamprophyre dyke.

In our example, the lamprophyre dyke intruded the marble producing the development of the
metasomatized marble zone characterized by olivine, serpentine, biotite, spinel, calcite, dolomite,
and hematite. As the intruding magma cools down, it releases heat and fluid. Fluid expelled from
the magma acts like a solvent that might have ability to dissolve and re-precipitate new minerals
in the neighboring rocks [67,68]. Fluid released from the crystallizing intrusion infiltrates through
interconnected fracture networks, pores, and along mineral grain boundaries [15,16,61–64,68]. Equation
(1) shows that the olivine and calcite-bearing metasomatized marble region could be formed by the
infiltration of silica-saturated fluid that dissolved existing dolomite in the marble. Our phase diagram
result, in the first run, suggests that olivine, diopside, dolomite, calcite, and CO2 are stable in the
bulk chemistry of the metasomatized marble, where the dolomite to calcite transition occurs above
500 to 650 ◦C (Figure 9a). However, this result could not generate all the minerals observed in the
metasomatized marble, such as biotite, spinel, and hematite.

Our detailed observations revealed that hematite acts as a major oxide mineral in the metasomatized
marble. Serpentine pods bearing resorbed olivine have an oxidation rim of hematite around them.
This rim could have formed initially on olivine grain boundaries before serpentinization occurred.
The formation of the rim could be represented by the following reaction:

2 Fe2SiO4 (olivine) + O2 = 2 Fe2O3 (hematite) + 2 SiO2. (5)

We have not observed any graphite in the metasomatized marble, where the presence of graphite
would represent reduced conditions. For these reasons, we calculated the new pseudosection at an
oxygen fugacity of ~log fO2 = −14 (magnetite to hematite transition at 600–800 ◦C) [56] in the second
run. Our new calculations show that biotite and spinel is stable at a high temperature with a high
oxygen fugacity (Figure 9b). The comparison of the mineral chemistry data of the olivine and spinel
with that of the isopleths for them in the P-T conditions indicates that the olivine, biotite, calcite, spinel
and diopside assemblage could be formed at ~750 ◦C and 130 MPa. Spinel is absent, and anorthite
is stable beyond this pressure. Serpentine is stable towards the low temperature side (Figure 9b).
Serpentine formation can be explained by the increase in water activity due to the escape of exsolved
CO2 at low temperature or the influx of a second round of water from the cooling dyke.

If the dolomite was dissolved by the infiltration of silica saturated fluid, diopside should have
formed prior to olivine (Figure 9). Previous studies on the variation in SiO2 vs. CO2 activity have
expected the formation of diopside + calcite by Equation (2) earlier than olivine + calcite forms by
Equation (1) [13]. They also predict approximately 10 times more diopside-bearing rock than the
current assemblage. Their model fluid flow also suggests that olivine + calcite forms only if the silica
in the initial fluid has been removed after formation of diopside by Equation (2) upstream. Our sample
has stable biotite formed along with the olivine, spinel and calcite assemblage. The effect of the
K concentration on the stability of clinopyroxene is observed in the experiments on granodioritic
rocks [57,58]. Therefore, we considered the effect of K activity on the stability of minerals in our third
pseudosection calculation. In this attempt, K2O is considered as an independent mobile component
in the system. Our result suggests that at ~750 ◦C and 130 MPa, the biotite-bearing olivine, spinel,
and calcite assemblage is stable above log aK2O~40 (Figure 10). The diopside-bearing assemblage is
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stable below this activity. The result suggests that K2O activity instead of SiO2 has a major role in
destabilizing diopside in the silica-saturated infiltrating fluid.

Our geochemical data and Gresens analysis using the isocon method show that major elements
such as SiO2, FeO, and a minor amount of K2O are mostly infiltrated from the fluid expelled from
the lamprophyre dyke (Figures 7 and 11). No/minor addition of CaO or MgO occurred in the
metasomatized marble compared to the normal marble. The presence of hematite and biotite shows
that infiltrating fluid was relatively oxidizing. LREEs, U, Th, and Sr are the main trace elements
highly dissolved in the infiltrating fluid (Figures 8 and 11). HREEs show enrichment and a flat pattern
comparable to the dolomitic marble. Most of the other trace elements show no particular enrichment
in the metasomatized marble. However, Zr, V, Cr, Y, and Ba show a slight enrichment (Figure 11).
Our example shows that Si, Fe, K, Sr, U, Th, and REEs are highly mobile during the infiltration
metasomatic event (Figures 8 and 11).

In the metasomatized marble, fluid infiltration occurs along mineral grain boundaries, through
fracture networks in the dolomite, and by generating nano-scale porosity in the dolomite. Depending
on the existing pressure-temperature conditions, dissolved chemical components in the fluid eventually
get saturated and precipitate new minerals [68]. This process would last until an equilibrium
established between minerals and fluid composition [68]. This study is an example of geochemical
and thermodynamic changes that might happen during metasomatic processes at a local scale. Many
such studies explain how the breakdown or dissolution of carbonate assemblages occurs in skarn
deposits, calcareous sandstones, and many hydrothermally altered rocks [15–17,61–64,68]. In this
study, we have shown the importance of K activity in the infiltrating fluid, which could control the
mineralogy of the metasomatized marble. Experimental studies show that CO2 solubility is highly
dependent on various cations, such as Ca, Na, and K, in the fluid/melt [69–71]. Although much is
understood about fluid occurrence in the absence of high P-T constraints [70,71], we mainly extrapolate
fluid properties at more familiar low-pressure conditions to study the implications of such process in a
regional-scale (lower crust/mantle) metasomatism [71,72]. In a regional scale, fluid–rock interactions
play an important role in the evolution and properties of the crust/mantle [3–6]. A high abundance of
C-bearing phases in mantle is obvious from studies of mantle xenoliths, carbonatites, nephelinites,
and melilitites [72–75]. Our study is important in further expanding our knowledge about the capacity
of solute-bearing H2O-CO2 fluids to change the geochemistry and mineralogy of the rocks that they
are in contact with. Our example shows that Si, Fe, K, Y, V, Sr, Nb, U, Th, and REEs are highly mobile
in such fluids. Most of these elements are main components of exploring geochemical evolution of
rocks in crust/mantle. The middle crust is composed of rocks at amphibolite facies P-T conditions with
a granodioritic bulk composition containing significant amounts of K, Th, and U [8]. The results from
this study will help us to understand the possible regional effects of such fluid interactions during
crustal/mantle interactions.

7. Conclusions

(1) The intrusion of the hot lamprophyre dyke into the dolomitic marble generated the metasomatized
marble zone containing an olivine, serpentine, biotite, spinel, dolomite, calcite. and hematite
assemblage.

(2) Fluid infiltration is the main cause of metasomatic alteration in the dolomitic marble at ~750 ◦C/

130 MPa.
(3) The fluid composition was mainly CO2, with minor H2O, Cl, and F during the initial stage. As the

dyke cooled and crystallized, water released from the dyke serpentinized the assemblages that
were formed during the initial stage.

(4) If the dolomite was dissolved by the infiltration of silica saturated fluid, diopside should have
formed first instead of olivine. Our log activity (K2O)-temperature pseudosection shows that K
activity in the infiltrating fluid caused the absence of diopside in the metasomatized marble at a
log activity (aK2O) ~−40.
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(5) Si, Fe, K, Y, Sr, Nb, U, Th, and REEs are highly mobile in the infiltrating H2O-CO2 fluid.
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dolomite in the intermediate metasomatized sample; Table S3: Representative EPMA results of serpentine, calcite,
dolomite in the marble sample; Table S4: Bulk chemistry results of lamprophyre dyke, intermediate metasomatized
zone and dolomitic marble; Table S5: Isocon method using bulk-chemisty data and density of metasomatized and
unmetasomatized samples.
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