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Abstract: Massive amount of highly contaminated mining residual materials (MRM) has been left
unattended and has leached heavy metals, particularly lead (Pb) and zinc (Zn) to the surrounding
environments. Thus, the performance of three immobilizers, raw dolomite (RD), calcined dolomite
(CD), and magnesium oxide (MO), was evaluated using batch experiments to determine their ability
to immobilize Pb and Zn, leached from MRM. The addition of immobilizers increased the leachate
pH and decreased the amounts of dissolved Pb and Zn to different extents. The performance of
immobilizers to immobilize Pb and Zn followed the following trend: MO > CD > RD. pH played an
important role in immobilizing Pb and Zn. Dolomite in RD could slightly raise the pH of the MRM
leachate. Therefore, the addition of RD immobilized Pb and Zn via adsorption and co-precipitation,
and up to 10% of RD addition did not reduce the concentrations of Pb and Zn to be lower than the
effluent standards in Zambia. In contrast, the presence of magnesia in CD and MO significantly
contributed to the rise of leachate pH to the value where it was sufficient to precipitate hydroxides of
Pb and Zn and decrease their leaching concentrations below the regulated values. Even though MO
outperformed CD, by considering the local availability of RD to produce CD, CD could be a potential
immobilizer to be implemented in Zambia.

Keywords: mine waste; contamination; batch experiments; lead; zinc; immobilization; remediation;
Kabwe; Zambia

1. Introduction

Kabwe District was one of the most important mining regions in Zambia for almost a century
(1902–1994). It was regarded as Southern Africa’s principal lead (Pb)-zinc (Zn) producer, producing
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over 1.8 and 0.8 Mt of Zn and Pb, respectively [1]. While in operation, no pollution laws were enforced
to regulate the discharge from wastes of the mine; therefore, operations of the mine have left Kabwe
with a massive amount of unattended mining residual materials (MRM), which still contain elevated
amounts of heavy metals, particularly Zn, Pb, and iron (Fe). Weathering of MRM causes heavy metals
to transport from the contaminated sites to the surrounding environments (groundwater, surface water,
and soil) [2]. In particular, the redistribution of heavy metals through solute transport processes
has been reported to be one of the most dangerous pathways, which invokes harmful effects on
water sources of nearby ecosystems and health-threatening to the nearby residents [3–9]. Therefore,
the remediation of heavy metals in and around the mine is necessary.

In our recent studies, several potential remediation techniques have been investigated to remediate
the contaminated site in Kabwe. Silwamba et al. (2020) [10,11] have proposed the concurrent dissolution
and cementation method. The method shows promising results in terms of Pb removal and recovery.
However, Zn could not be effectively recovered from the extraction solution, and further investigation is
needed. Biocementation by locally available bacteria has been studied by Mwandira et al. (2019) [12,13].
The results indicate that the biocemented material can be effectively used as a covering layer to prevent
airborne contamination of metallic dust and infiltration of water into the waste. In the present study,
chemical immobilization is introduced as an alternative and practical method to remediate the site.

Remediation techniques for heavy metals polluted sites can be classified into two main categories,
in-situ and ex-situ. In general, ex-situ treatment has high efficiency; however, it is less cost-effective
than in-situ remediation due significantly to the costs for excavation and transport of large quantities
of contaminated materials. In-situ remediation avoids the excavation and transportation costs because
of on-site treatments of contaminants. Various kinds of in-situ remediation techniques have been
developed to immobilize or extract the heavy metals in the contaminated sites. Among them, chemical
immobilization is cheap, easy to implement, and quick in execution [14,15]. Thus, this is the most
promising technique, especially to be applied in one of the developing countries.

In in-situ chemical immobilization, the leaching potential of heavy metals from contaminated soils
is reduced via sorption and/or precipitation processes by adding chemical agent (immobilizer) into the
contaminated area. The performance of a variety of immobilizers, including carbonates, phosphates,
alkaline agents, clay, iron-containing minerals, and organic matters, has been evaluated [14–23].
However, most of the studies have been conducted to remediate contaminated soil samples in which
they generally contain much lesser metals contents than those in MRM. Moreover, because of the
complex interactions between solutes and immobilizers, the definite efficiency of the immobilizer
remains site-specific. In other words, there is no guarantee on the effectiveness of a particular
immobilizer implemented on different contaminated sites. Therefore, the objective of this study was
to evaluate and compare the performance of selected potential immobilizers (e.g., locally available,
low-cost) to reduce the mobility of Pb and Zn leached from the highly contaminated sample (MRM).

It is necessary to apply immobilizers that is low cost and abundant in nature for remediating
contaminated areas. Hence, in this study, raw dolomite (RD) was selected as one of the potential
candidates because it is naturally available in a large quantity in Zambia [24]. It is a carbonate mineral;
therefore, it can increase and buffer pH of MRM, leading to more adsorption and precipitation of
cationic heavy metal ions [25–27]. In the present study, calcined dolomite (CD) was also used as an
immobilizer. The heat treatment was performed to change the carbonate property of dolomite to be
more alkaline [28]. As a result, the immobilizer was expected to strongly increase the pH of MRM,
favoring the immobilization of heavy metals by hydroxide precipitation in addition to adsorption and
precipitation of other secondary minerals. At the same time, commercially available alkaline-based
agent, magnesium oxide (MO), was also tested to compare the ability of RD and CD on immobilizing
heavy metals in MRM. The current study will provide meaningful information for the development of
chemical immobilization to remediate heavy metals contaminated sites in Zambia.
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2. Materials and Methods

2.1. Solid Sample Collection, Preparation, and Characterization

MRM was collected from the dumping site of Pb-Zn mine wastes in Kabwe, Zambia. The sampling
was done using shovels at random points within the area shown in Figure 1. This leaching residual was
selected as one of the representative wastes because the leaching concentrations of Zn and Pb from the
waste were higher compared with the other wastes. Moreover, the storage size of this waste occupies
more than 50% of the total dumping area. The sample was stored in vacuum bags and transported
to the laboratory in Japan with permission by the Ministry of Agriculture, Forestry, and Fisheries of
Japan. In preparation, it was air-dried under ambient conditions, lightly crushed, sieved using a 2 mm
aperture screen, and kept in a polypropylene bottle before use. Particle sizes of less than 2 mm were
chosen to follow the Japanese standard for the leaching test of contaminated soils [29].
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Three types of immobilizing agents were selected to immobilize Zn and Pb in the waste: raw
dolomite, calcined dolomite, and magnesium oxide denoted as RD, CD, and MO, respectively. RD was
taken from a dolomite quarry source near the MRM storage site, while CD was prepared by burning
RD with particle sizes of less than 2 mm in a furnace at 700 ◦C for 2 h. MO was commercially available,
purchased from Ube Industry, Japan. The same preparation procedure as that for MRM was also
applied to these materials.

Chemical and mineralogical properties of all solid samples were characterized on the pressed
powder of finely crushed samples (<50 µm) using an X-ray fluorescence spectrometer (XRF) (Spectro
Xepos, Rigaku Corporation, Tokyo, Japan) and X-ray diffractometer (XRD) (MultiFlex, Rigaku
Corporation, Tokyo, Japan), respectively. Sequential extraction was conducted to evaluate solid-phase
heavy metals speciation of MRM. The procedure used in this study was modified from two well-known
procedures, Tessier et al. (1979) [30] and Clevenger (1990) [31]. The modification was done by
Marumo et al. (2003) [32], and it was widely used to extract the tailings sample, mineral processing
wastes, and leaching residues [10,33–36]. The process can divide solid-phase heavy metals bounded
to solid into five different phases, including exchangeable, carbonates, Fe-Mn oxides, sulfide/organic
matter, and residual. The details of the extraction procedure are summarized in Table 1. The extraction
was done on 1 g of the <2 mm MRM sample. Between each step, the extractant solution of the previous
step was retrieved by centrifugation of the suspension at 3000 rpm for 40 min to separate the residue out
of the leachate. The residual was then washed with 20 mL of deionized water. Finally, the washing and
extractant solutions were mixed, diluted to 50 mL, filtrated through 0.45-µm Millex® filters, and kept
in polypropylene bottles prior to chemical analysis.
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Table 1. Sequential extraction for heavy metals speciation.

Step Extractant pH
Liquid to

Solid Ratio
(mL/g)

Temperature
(◦C)

Duration
(h)

Mixing
Speed (rpm) Extracted Phase

1 1 M MgCl2 7 20/1 25 1 120 Exchangeable
2 1 M CH3COONa 5 20/1 25 5 120 Carbonates

3 0.04 M NH2OH·HCl
in 25% acetic acid 20/1 50 5 120 Reducible

4
0.04 M NH2OH·HCl

in 25% acetic acid;
30% H2O2; 0.02 M

HNO3

36/1 85 5 120 Oxidizable

5 Calculated Residual

2.2. Batch Leaching Experiments

Batch leaching experiments were performed using 250 mL polypropylene Erlenmeyer flasks
with a lateral reciprocating shaker (EYELA Multi Shaker MMS, Tokyo Rikakikai Co., Ltd., Tokyo,
Japan). All batches were conducted under ambient conditions by mixing 15 g of solid sample to
150 mL of deionized water (1:10 solid-to-liquid ratio) at 200 rpm for 6 h. Five replications of the
leaching tests of MRM were conducted, while a single run of every immobilization experiment was
done. The reason is that in immobilization tests, we adjusted the addition of immobilizers and did
not control the pH of the suspension. In other words, pH is determined by the complex chemical
and physical interactions between immobilizer and MRM. Thus, a variation of pH can be easily
observed even though the same mixing ratio between MRM and immobilizer and the conditions is
employed. To avoid the uncertainty of the variation of pH at the same immobilizer:MRM mixing
ratio, we varied the immobilizer:MRM mixing ratios at 1:100, 3:100, 1:20, and 1:10 to evaluate the
performance of immobilizers. After 6 h of shaking, the pH, electrical conductivity (EC), redox potential
(ORP), and temperature were immediately measured. The leachates were collected by first centrifuging
the mixtures at 3000 rpm for 40 min to separate the suspended particles. The supernatants were then
filtered with 0.45-µm Millex® filters (Merck Millipore, Burlington, MA, USA) and kept in air-tight
polypropylene bottles prior to chemical analysis.

2.3. Chemical Analysis of Liquid Samples

Inductively coupled plasma atomic emission spectrometer (ICP-AES) (ICPE-9000, Shimadzu
Corporation, Kyoto, Japan) and inductively coupled plasma atomic emission mass spectrometry
(ICP-MS) (ICAP Qc, Thermo Fisher Scientific, Waltham, MA, USA) were used to quantify the
dissolved concentrations of heavy metals and coexisting ions. The analyses were performed on the
pretreated liquid samples in which 1% by volume of 60% nitric acid (HNO3) was added to the liquid
samples. The acidification was done to make sure that all target elements were in a dissolved form.
The non-acidified samples, on the other hand, were used to determine alkalinity or acid resistivity.
This parameter is generally reported as bicarbonate concentration (meq/L), quantified by titration
of a known volume of sample with 0.01 M sulfuric acid (H2SO4) until pH 4.8. All chemicals used
were reagent-grade.

2.4. Geochemical Modeling

An aqueous geochemical modeling program, PHREEQC (Version 3, U.S. Geological Survey,
Sunrise Valley Drive Reston, VA, USA) [37], was used to aid in the interpretation of the experimental
results. The program can determine the parameters that may affect the mobility of heavy metals from
MRM, such as stability of minerals and chemical species. The input data included temperature, pH,
ORP, and concentrations of heavy metals and other coexisting ions. Thermodynamic properties were
taken from the WATEQ4F database.
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3. Results and Discussion

3.1. Properties of Solid Samples

The mineralogical and chemical compositions of MRM and immobilizers, including RD, CD,
and MO, are listed in Tables 2 and 3, respectively. MRM was composed of anglesite (PbSO4) as a
primary mineral; zinkosite (ZnSO4) and quartz (SiO2) as the second-highest; and goethite (FeOOH),
hematite (Fe2O3), and gypsum (CaSO4·2H2O) as the miner minerals. Anglesite and zinkosite are
commonly found as the weathering products of Pb- and Zn-sulfides under natural oxygenated
environments [38,39]. Therefore, the presence of these two minerals indicates that MRM has already
been exposed to the surface environment for a long time before the sampling was done. It can also be
expected that other than goethite and hematite, MRM also contained amorphous iron-(hydr)oxides
and iron-sulfate salts (e.g., melanterite, coquimbite) since goethite and hematite were found as the
miner minerals but Fe2O3 content was the highest among all compositions detected. The contents of
Pb and Zn in MRM were 10.9% and 8.1%, respectively. The values of both metals were extremely high
and exceeded the permissible limit in soil, 600 mg/kg for Pb and 1500 mg/kg for Zn [40]. However,
this does not guarantee that MRM can release significant amounts of Pb and Zn since their mobility
also depends significantly on the chemical speciation. Sequential extraction was then performed,
and the result showed that around 40% of the total contents of Pb and Zn were in mobile fractions
(exchangeable, carbonates, and oxidizable) under surface environments (Figure 2). This confirms that
MRM could be a potential source contaminating the surrounding environment with Pb and Zn.

Table 2. Mineralogical composition of solid samples.

MRM RD CD MO

Quartz ++ - - -
Gypsum + - - -
Anglesite +++ - - -
Zinkosite ++ - - -
Hematite + - - -
Goethite + - - -
Dolomite - +++ +++ -

Calcite - - + -
Magnesia - - + +++

+++: Strong; ++: Moderate; +: Weak; -: None.

Table 3. Chemical composition of solid samples (the unit is in wt%).

MRM RD CD MO

SiO2 20.9 0.39 0.37 <0.01
TiO2 0.35 <0.01 <0.01 <0.01

Al2O3 1.91 0.24 0.11 <0.01
Fe2O3 45.8 0.52 0.68 <0.01
MnO 1.59 0.46 0.43 <0.01
MgO <0.01 36.9 33.3 100
CaO 4.64 60.7 62.4 <0.01

Na2O <0.01 <0.01 <0.01 <0.01
K2O <0.01 0.15 0.16 <0.01
P2O5 <0.01 0.14 <0.01 <0.01
SO3 2.71 0.15 0.2 <0.01
Pb 10.9 <0.01 <0.01 <0.01
Zn 8.1 <0.01 <0.01 <0.01

The most dominant mineral found in RD was dolomite (CaMg(CO3)2). Magnesium (Mg) and
calcium (Ca) oxides contents accounted for more than 95% with a molar ratio of Ca to Mg of 1.2.
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This indicates that RD adequately consisted of pure dolomite. Burning RD at 700 ◦C for 2 h generated
the new type of immobilizer, CD. Calcite (CaCO3) and magnesia (MgO) were detected in addition to
dolomite. With almost the same molar ratio of Ca to Mg in CD compared with that in RD, it clearly
indicates that the calcination process transformed dolomite into calcite and magnesia. MO composed
only of magnesia with 100% MgO content, which shows pure magnesia.Minerals 2020, 10, x FOR PEER REVIEW 6 of 17 
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3.2. Leaching Characteristic of MRM

Table 4 shows the leaching characteristic of MRM. The experimental values were reproducible with
high precision since the standard deviations of all parameters were quite small. Four heavy metals, Pb,
Zn, cadmium (Cd), and copper (Cu), were leached at the concentrations falling within the instrument
detection limits of ICP-AES and -MS. Among these heavy metals, the leaching concentrations of only
Pb (2.1 mg/L) and Zn (365 mg/L) exceeded the effluent standard in Zambia (0.5 mg/L for Pb and
1 mg/L for Zn) [41]. Therefore, this study focused only on the mobility of these two metals. PHREEQC
simulation on the saturation indices of all possible Pb- and Zn-minerals showed that with the given
conditions and components in MRM leachate, only saturation index of anglesite fell within a common
error interval used to indicate saturation equilibrium (±0.2) (Table 5). The result indicates that the low
solubility of anglesite restricted the dissolved concentration of Pb, while no restriction by means of
precipitation was observed on the leaching of Zn. This can explain why 4.51% of the total Zn content
was leached from MRM, while only 0.02% was observed in the case of Pb leaching.

Table 4. Leaching characteristic of MRM (n = 5).

MRM Reg. Value * (mg/L)

pH 5.26 ± 0.04 -
ORP (mv) 300 ± 36 -

EC (mS/cm) 2.7 ± 0.09 -
Pb (mg/L) 2.1 ± 0.008 0.5
Zn (mg/L) 365 ± 18 1
Cd (mg/L) 0.21 ± 0.009 0.5
Cu (mg/L) 0.08 ± 0.01 1.5

Ca2+ (mg/L) 547 ± 48.2 -
Mg2+ (mg/L) 27.7 ± 3.1 -
SO4

2− (mg/L) 1907 ± 36.8 -
Si (mg/L) 13 ± 0.5 -

* Regulated value in mg/L specified by the Environment Management Act (2013) [40].
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Table 5. Calculated saturation indices of possible Pb- and Zn-minerals in MRM leachate.

Mineral Saturation Index

Anglesite −0.2
Cerussite −2.25
Pb(OH)2 −3.4

Smithsonite −2.45
Willemite −3.62
Zn(OH)2 −3.82

Hydrocerussite −8.41
Hydrozincite −3.08

Calcium ion (Ca2+) and sulfate ion (SO4
2−) were the major ions in the leachate, accounting for

more than 85% of the total dissolved ions. These ions were likely to be enriched by the dissolution
of soluble phase minerals, such as gypsum and zinkosite [42,43]. However, the dissolution of these
two minerals might not only be the sources of SO4

2− since the molar ratio of Ca2+ and Zn to SO4
2−

was lower than one. The sulfide fractions of both metals in MRM (Figure 2), together with the slightly
acidic pH (5.2) and positive ORP (300 mV) of the leachate, suggest that the oxidation of sulfide minerals
(e.g., pyrite, galena, sphalerite) and dissolution of iron-sulfate salts (e.g., melanterite, coquimbite) also
occurred and attributed to the enrichment of SO4

2−, even though they were not detected by XRD.
This could also partly contribute to the enrichment of Pb and Zn in the leachate.

3.3. Potential of Immobilizers

3.3.1. Effects of Addition of Immobilizers on pH and Coexisting Ions

Changes in the pH of the leachate as a function of the amounts of addition of RD, CD, and MO
are shown in Figure 3. The pH increased from 5.2 to 6.7, 8.2, and 9.8 with increasing RD, CD, and MO
addition from 0 to 10%. When the same amount of immobilizer was added, the performance of the
immobilizers to increase the leachate pH followed the order: MO > CD > RD. The results clearly
showed the improvement of the alkaline property of CD over RD. The variation in pH could mainly be
attributed to the liming effect(s) of dolomite (Equation (1)) in RD treatments, of dolomite (Equation (1)),
of calcite (Equation (2)), and of magnesia (Equation (3)) in CD treatments, and of magnesia (Equation (3))
in MO treatments [44–47].

CaMg(CO3)2 + 2 H+
⇔ Ca2+ + Mg2+ + 2HCO3

−, (1)

CaCO3 + H+
⇔ Ca2+ + HCO3

−, (2)

MgO + H2O⇔Mg(OH)2⇔Mg2+ + 2OH−. (3)

Figure 4a–c illustrates the leaching concentrations of major coexisting ions, Ca2+, magnesium
(Mg2+), and SO4

2−, as a function of the amount of immobilizer added. The dissolved concentrations of
Ca2+ and Mg2+ in RD treatments were higher than those in MRM and increased with the increasing
addition of RD, indicating the simultaneous leaching of Ca2+ and Mg2+ from the dissolution of dolomite
(Equation (1)). In CD treatments, Ca2+ and Mg2+ were also leached at higher concentrations than
those in MRM leachate. At the same amount of CD and RD addition, the leaching concentration
of Mg2+ in CD treatment was higher than that in RD treatment, while almost the same dissolved
concentration of Ca2+ was observed in both treatments. This, together with the result that CD contained
less dolomite and more calcite compared to those in RD, suggest the occurrence of hydration of
magnesia (Equation (3)) in addition to the dissolution of carbonate minerals (Equations (1) and (2)) in
CD treatments. Moreover, the difference in the leaching concentration of Mg2+ between CD and RD
treatments became more significant as the addition of immobilizers increased, which indicates that as
pH increased, the hydration of magnesia (Equation (3)) played a more important role in controlling
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pH. In MO treatments, the concentration of Mg2+ increased with higher addition of MO, while almost
no change in the concentration of Ca2+ from that in MRM was observed. This result suggests the
occurrence of hydration of magnesia (Equation (3)) in MO treatments.
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amount of SO3 content in all immobilizers, the results suggest that MRM should be the source of SO4
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by the addition of immobilizer. Figure 5 illustrates the correlation between the leaching concentration
of SO4

2− vs. pH. The SO4
2− concentration exhibited a strong positive correlation with pH (correlation

coefficient (r) = 0.92, p < 0.01), suggesting that SO4
2− level could mainly be influenced by pH due

possibly to the following mechanisms: (1) desorption, (2) production by oxidation of sulfide minerals,
(3) common-ion of between calcite, dolomite, and gypsum, and (4) dissolution of anglesite. The pH
increase led to a higher negative surface potential of MRM, thereby decreasing the affinity of SO4

2−

toward the surface of MRM. However, Tabatabai (1987) [48] reported that since the adsorption of SO4
2−

was only flavored under strongly acidic conditions, the amount of adsorbed SO4
2− became almost

negligible under weakly acidic pH. This means that the desorption might not be a viable explanation in
this study since all leachates’ pH ranged from weakly acidic (5.2) to moderately alkaline (9.8). Therefore,
the fact that the oxidation rate of sulfide minerals, such as pyrite and galena, increases with pH becomes
the potential reason contributing to the higher leaching concentration of SO4

2− [49,50]. However,
the enrichment of SO4

2− could be restricted by the solubility of gypsum because the saturation index of
gypsum was within the equilibrium condition range of ±0.2 in all leachates. This could explain why the
leaching concentration of SO4

2− slightly increased with pH at lower pH region where the dissolution
of dolomite containing in RD and calcite and dolomite containing in and CD tended to control the pH
(Equations (1) and (2)). In other words, Ca2+ produced from the dissolution of calcite and dolomite
precipitated with SO4

2− to form gypsum, thereby restricting SO4
2− concentration. Meanwhile, as pH

became more alkaline, the concentration of SO4
2− increased rapidly. This could be attributed to the less

contribution of calcite and dolomite dissolution (Equations (1) and (2)) to control the leachate pH in the
case of CD addition, conjointly in MO treatments, only hydration of magnesia (no production of Ca2+)
(Equation (3)) was found to control the pH of the leachates. The pH-dependent solubility of anglesite
could also be attributed to the rapid increase of SO4

2− concentration under alkaline conditions since
anglesite was originally contained in MRM and is unstable under alkaline pH [51].
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3.3.2. Effects of the Addition of Immobilizers on Mobility of Heavy Metals

In this study, the performance of immobilizers was evaluated based on the solubility of Pb
and Zn. Figure 6a,b shows the changes in Pb and Zn concentrations as a function of the amount
of addition of immobilizers. In general, the leaching concentrations of Pb and Zn exponentially
decreased with an increase in the dose of immobilizers. Figure 7a,b illustrates the correlation between
leaching concentrations of Pb and Zn vs. pH. The mobility of heavy metals was strongly influenced
by pH, indicated by significant negative correlations of Pb-pH (r = −0.92) and Zn-pH (r = −0.87)
at the 0.01 significance level (2-tailed). Coupled with the results of the leaching concentration of
SO4

2− and the characteristic of immobilizers, as well as the leaching condition used in the current
study, the major modes of Pb and Zn attenuation could be either one or more of the following
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mechanisms: precipitations of metal-sulfate, -carbonate, and/or -hydroxide, co-precipitation of metal
with iron-(oxy)hydroxides, and metal ion adsorption to immobilizer. The formation of low soluble
anglesite under acidic conditions was expected since the leaching concentration of SO4

2− was high
and increased with pH (Figure 5) [52,53]. The carbonate property of RD and CD might result
in the precipitation of cerussite (PbCO3), hydrocerussite (Pb3(CO3)2(OH)2), smithsonite (ZnCO3),
and hydrozincite (Zn3(CO3)2(OH)2) [35,54–56]. The carbonate precipitations of Pb and Zn are also
expected to occur in MO treatments since the experiments were done under atmospheric conditions in
which carbon dioxide (CO2) in the atmosphere was freely dissolved [57]. However, the simulation results
by PHREEQC showed that except hydrozincite in 3% addition of MO treatment, the precipitations of
anglesite, cerussite, hydrocerussite, smithsonite, and hydrozincite were thermodynamically unfavorable
(saturation index < −0.2) regardless of the type and amount of immobilizer added (Table 6). Therefore,
the possible immobilization mechanisms of Pb and Zn in all types of immobilizers could be narrowed
down to the hydroxide precipitation, adsorption, and co-precipitation.Minerals 2020, 10, x FOR PEER REVIEW 11 of 17 
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represent the effluent standards of Pb and Zn in Zambia).

To verify the dominant mechanism(s), pH-dependent solubility diagrams of Pb- and Zn-hydroxides
were plotted (Figure 8a,b). Points in the figures represent the relationship between the logarithmic
activity of divalent heavy metal and pH in each batch test. The solid lines demonstrate the solubility of
heavy metal hydroxides. Therefore, any point located on or close to the line implies the hydroxide
precipitation-controlled sequestration process.
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Table 6. Calculated saturation indices of anglesite, cerussite, hydrocerussite, smithsonite, and
hydrozincite in leachates with the addition of RD, CD, and MO.

Treatment
Saturation Index

Anglesite Cerussite Smithsonite Hydrocerussite Hydrozincite

RD treatments

1% −0.4 −1.15 −1.63 −5.63 −1.82
3% −0.49 −1.13 −1.21 −4.28 −1.35
5% −0.55 −0.98 −1.13 −3.68 −1.17

10% −0.41 −0.48 −1.01 −2.11 −1.01

CD treatments

1% −0.6 −0.78 −0.87 −3.19 −0.98
3% −0.92 −0.27 −0.44 −1.56 −0.48
5% −0.99 −0.23 −0.66 −1.58 −0.79

10% −2.39 −0.3 −1.24 −0.64 −0.64

MO treatments

1% −1.13 −0.38 −1.16 −1.57 −1
3% −4.36 −1.6 −1.16 −3.31 0.22
5% −4.72 −1.86 −2.19 −4.05 −0.78

10% −5.49 −2.52 −2.99 −5.16 −1.02
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In the case of RD addition, a discrepancy from the equilibrium line for Pb and Zn was observed.
This means that at pH from weekly acid to neutral, hydroxide precipitation was not the main mechanism
controlling the mobility of Pb and Zn. Therefore, Pb and Zn were suspected to be immobilized by
sorption and co-precipitation with iron-(oxy)hydroxides. The sorption was likely to occur since
dolomite, major mineral in the immobilizer, can adsorb Pb and Zn [58,59]. Besides, adding more of
this immobilizer induced the leachate pH increase. This could change the surface charge of goethite,
hematite, and iron-(hydr)oxide compounds in MRM to more negative, thereby increasing their
adsorption ability against cationic divalent Pb and Zn [58–63]. During the neutralization process under
ambient conditions, iron-(oxy)hydroxides precipitate from the oxidative dissolution of pyrite and
dissolution of iron-bearing salts [63–66]. The precipitations of iron-(oxy)hydroxides have been reported
by many studies to induce co-precipitation of divalent metals, including Pb(II) and Zn(II) [50,67,68],
and thus the co-precipitation of Pb and Zn with iron-(oxy)hydroxides was also expected in RD
treatments. From the above explanations, adding more RD should reduce the leaching concentration
of both metals. However, leaching concentration of Pb increased from 0.98 mg/L to 1.4 mg/L when RD
rose from 5% to 10% (Figure 6a). This could be attributed to the stability of Pb(II) species as a function
of pH. Theoretically, as pH increases under acidic region, more of free Pb(II) ion tends to complex with
OH- and CO3

2−, generating larger ion with lower charge (Pb(OH)+ and PbCO3), which lowers the
affinity of Pb to the surface of the potential adsorbents and inhibits the co-precipitation [69–71].
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On the other hand, adding CD and MO made most of the logarithmic leaching activities of
Pb2+ and Zn2+ to approach their solubility product lines. This means that hydroxide precipitation
is the dominant mechanism of attenuating Pb and Zn. Regardless of the type of immobilizer, at low
pH, the logarithmic activities of both metals were slightly lower than their equilibrium lines and
then tended to stay on or be slightly higher than the lines afterward. This probably indicates that
at low pH, adsorption and co-precipitation with iron-(oxy)hydroxides also occurred in addition to
the precipitation, but as pH got higher, they diminished. There are two probable explanations for
this phenomenon as follows: (1) competition with strong competing ion (Mg2+) and (2) change in
specification of the dissolved metals. The pH alteration mechanisms of CD and MO appeared to
generate Mg2+ as a by-product (Equations (1) and (3)). Because of this, the concentration of Mg2+

significantly increased with pH with a correlation coefficient of 0.97, p < 0.01(Figure 9). Therefore,
as pH increased, high concentration of Mg2+ could compete for Pb and Zn for adsorption sites and for
co-precipitation with iron-(oxy)hydroxides, attributing to the less contribution of the adsorption and
co-precipitation on the immobilization process. Increasing pH could also result in the redistributions
of Pb(II) and Zn(II) species. The fraction of free Pb(II) and Zn(II) reduces as pH increases since they
are thermodynamically preferable to be hydrolyzed forming -(OH)+, -(OH)2, and -(OH)3

− [69–72].
Moreover, since the systems contained high dissolved carbonate, the formation of carbonate complexes
of Pb(II) and Zn(II) was also expected [69,73]. Once these complexes are formed, their abilities to get
adsorbed and co-precipitated are inhibited by the larger size and lower positive potential they become.
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3.3.3. Performance of Immobilizers

When the same amount of immobilizer was added, the dissolved concentrations of Pb and Zn
were the highest in RD treatment, second highest in CD treatment, and the lowest in MO treatment
(Figure 6a,b). As previously mentioned, adsorption, co-precipitation, and hydroxide precipitation
were the major sink of Pb and Zn, and their mobilities depended strongly on pH. Because of the
carbonate property of dolomite, RD could not raise the pH of MRM leachate to the value favoring
the precipitations of Pb- and Zn-hydroxides. Therefore, RD treatments remediated Pb and Zn by
adsorption and co-precipitation in which it was insufficient to reduce the leaching concentrations of Pb
and Zn down below their regulated values. On the other hand, magnesia in CD and MO played a
significant role in increasing the leachate pH of MRM into the alkaline region. Lead and Zn were then
mainly immobilized by precipitation as hydroxides. Thus, metal concentrations as high as 368 mg/L
for Zn and 2.1 mg/L for Pb released from MRM were reduced to the values below their regulated
concentrations. Efficiency-wise, MO was the most effective immobilizer in immobilizing Pb and Zn
since it contained the highest MgO content. However, CD could be the immobilizer of choice since
it can be produced from the naturally abundant material in Zambia (RD), and its performance was
almost the same as that of MO.
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4. Conclusions

The leachate of MRM was slightly acidic (pH 5.2) and contained high concentrations of Pb
(2.1 mg/L) and Zn (365 mg/L), exceeding those of Zambian regulation. When immobilizers were
introduced, the leachate pH increased, and the leaching concentrations of Pb and Zn decreased.
Lead and Zn immobilized by RD were interpreted by the adsorption and co-precipitation mechanisms.
On the contrary, chemical immobilization using CD and MO suppressed Pb and Zn leaching mainly
by the hydroxide precipitation. Of the immobilizers investigated, only CD and MO decreased the
dissolved Pb and Zn concentrations to below their regulated values, in which MO had a higher
performance than CD. The results show that heat treatment on RD to produce CD drastically improved
the immobilizing performance of Pb and Zn. Even though MO provided the highest efficiency,
Pb and Zn could also be effectively immobilized by giving an adequate amount of CD. Therefore,
by considering the availability of CD in the local area, CD could be the most promising chemical agent
to be implemented in Zambia.
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