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Abstract: At present, many mines adopt the filling method. It is particularly important to solve
the problem of the long-distance transportation of slurry during the filling process. Based on the
high-density filling material of Sanning mine, the experiments were designed to add sodium abietate
(SA), triterpene saponin (SJ) and sodium dodecyl sulfonate (K12) with concentrations of 0.0%, 0.2%,
0.4% and 0.6%, respectively, which were used as air entraining agents (AEA). The filling body with
the curing age of 7 and 28 days was prepared for various tests, including nuclear magnetic resonance
(NMR), and alternating current (AC) impedance tests. The effects of the air entraining agent and
curing time on the physical properties, pore structure and AC impedance properties of the filling
were obtained. The results show that: (1) within the frequency range of 10−1–105 Hz, the variation
trend of AC impedance of the filling body cannot be changed by adding the air entraining agent,
and the filling body with the same ratio had a similar topological structure. (2) The filling body with
different AEA and curing times can be represented by the same equivalent circuit model, while the
maximum chi-square coefficient was 0.46%. (3) Under the condition of a high frequency of 105 Hz,
the porosity and uniaxial compressive strength of the filling body with 7 day curing age were linearly
correlated with the AC impedance. However, the porosity and uniaxial compressive strengths of the
filling body with 28 days curing time were affected by the type of AEA at a high frequency of 105 Hz.

Keywords: alternating current impedance; equivalent circuit; air entraining agent; filling body;
nuclear magnetic resonance

1. Introduction

Similar to other rock masses, backfill has a complex internal structure. Cement tailings or macadam
cement tailings consolidation fill not only has solid particles, but also has water and air. The strength
of the filling body is related to the nature of solid particles, the liquid phase of the filling body, and the
distribution of the liquid phase in the filling body. Since the first application of electrochemical AC
impedance to study the microstructure characterization of filling [1], some scholars have paid more
attention to researching this field of engineering [2,3]. Due to the limitations of early testing techniques,
AC impedance testing is performed only within the kilohertz (kHz) range [4,5]. With the development
of AC impedance testing equipment and electrochemical measurement technology, the AC impedance
can be measured in the high frequency range [6,7]. Previous studies had shown that the AC impedance
spectrum can characterize the changes in pore structure during the hydration process of the filling body.
Shi et al. (1998) [8] studied the influence of various admixtures on the ionic concentration of concrete’s
pore solution and pore structure, and showed that the conductivity of concrete can be reduced by
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adding auxiliary cementing materials instead of Portland cement. The AC impedance spectrum can
well reflect the microstructure of cement-based materials. Furthermore, the intersection point between
the high-frequency area and the real axis can obtain the resistance of pore solution in the hardened
cement slurry. Additionally, the radius of the semicircle in the high-frequency zone can indirectly reflect
the concentration of OH- ions in the pore solution of the cement slurry [9,10] conducted electrochemical
impedance analysis on the hydration process of cement with different particle sizes, and showed
that the pore diameter was smaller when the particles’ gradation was small. Furthermore, the pore
diameter was further reduced by the hydration reaction, which is related to the size ratio of slag and
cement particles. Andrade et al. (1999) [11] proposed the equivalent circuit model of the experimental
results through the non-contact method. This method was used due to the non-contact between the
sample and electrode. The equivalent model successfully distinguished between the effect of the solid
phase and the electrolyte filled hole on the impedance spectrum, which greatly promoted the analysis
of impedance data. Cruz et al. (2013) [6] studied the degree of hydration reaction of cement mortar
through AC impedance parameters based on a three-branch circuit equivalent model, and quantified
the electrochemical properties of hydration products located at the solid–liquid interface. Wansom et al.
(2013) [12] studied and proposed that electrochemical AC impedance spectroscopy could be used as an
effective method that could evaluate the fiber orientation in fiber cement and provide information about
the interfacial properties between different phases. Wu et al. (2016) [13] summarized and analyzed
the test procedure for determining the diffusion coefficient of chloride ions based on AC impedance
spectrum, and proposed the correction factors of diffusion coefficients of different gel materials to
eliminate the influence of other ions on the results. McCarter et al. (2013) [14] used AC impedance
technology to monitor the characteristics of long-term hydration reaction of concrete with or without
adding mineral-assisted cementing materials, introducing the normalized electrical conductivity to
analyze the hydration kinetics of concrete at different hydration stages. The results show that this
parameter can distinguish the degree of hydration reaction and the chemical properties of pore solution
of different cementitious materials.

However, the effect of air entraining agents (AEAs) on the uniaxial compressive strength (UCS)
of the material has not been studied yet. Moreover, AEAs render different influences on different
materials. Zhu et al. (2018) [15] demonstrated that the UCS of concrete is reduced with increasing the
concentration of AEAs. Şahin et al. (2011) [16] studied the effect of saponin on concrete performance and
showed that the moderate concentration of AEA results in the optimal UCS of concrete. Furthermore,
nuclear magnetic resonance (NMR) can measure the porosity and pore structure by analyzing the T2

relaxation time. Zhang et al. (2018) [17] analyzed the hydration degree of the cemented paste backfill
by NMR and demonstrated that polynaphtalene sulfonate has a strong influence on short-duration
hydration. Shang et al. (2015) [18] studied the NMR T2 curve, showing that it can be analyzed using
the pore size distribution of the filling body.

In short, electrochemical AC impedance technology has been used in some studies to analyze
the internal structure and equivalent circuit model of cement materials. However, only a handful of
studies have been conducted on the electrochemical AC impedance characteristics of the filling body
with different pore structures. The addition of different AEAs to change the porosity and internal pore
structure of the filling body, and the analysis of the electrochemical AC impedance, porosity, and the
strength of the filling body. In this work, the influence of AEA on the performance of cemented backfill
was studied, which provided a reasonable method for AEA to improve the strength and fluidity of
cemented backfill.

2. Experimental

2.1. Materials

The main filling aggregate used in the current work was obtained from Sanning mine, Hubei
Province, China. According to the actual situation of the mine, coal gangue and tailings were selected
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as the filling aggregate, while fly ash was used as the cementing materials. The particle size distribution
is shown in Figures 1 and 2. According to the GB/T 14685-2011 [19], the apparent density, the packing
density, and the contents of surface water of aggregates were analyzed. The corresponding results are
presented in Table 1.
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Figure 1. Particle size distribution of gangue.
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Figure 2. Particle size distribution of tailing and fly ash.

Table 1. Physical properties of the materials.

Class Apparent Density
(kg/m3)

Packing Density
(kg/m3)

Surface Moisture
Content (%)

Gangue 2626 1464 0.120
Tailing 2653 923 0.974
Fly ash 1990 650 0.049

The mineral compositions of materials were obtained using XRD, and the results are provided in
Table 2. The dolomite content is up to 69.65% in gangue. Therefore, it has little effect on the cementation
activity of the filling body. The hydroxyllapatite in tailings is as high as 60.94%. This will have an
effect on the cement hydration reaction and reduce the amount of tri-calcium silicate (C3S) [10,15–17].
It will affect the strength of the cemented paste backfill. The Al element is mainly present in muscovite
and albite, which will affect the activity of fly ash.
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Table 2. Mineral compositions of the aggregate (%).

Sample Hydroxyllapatite Quartz Hematite Albite Plagioclase Muscovite Illite Dolomite

Gangue 10.15 6.91 12.75 - - - - 69.65
Tailing 60.94 2.24 - 8.38 11.42 - 9.76 6.30
Fly Ash - 61.55 1.46 15.99 - 20.99 - -

Cement
3CaO·SiO2 2CaO·SiO2 3CaO·Al2O3 4CaO·Al2O3·Fe2O3

52.8 20.7 11.5 8.8

In this experiment, three AEAs, namely sodium abietate (SA), sodium dodecyl sulfonate (K12)
and triterpene saponins (SJ) were selected. The three AEAs are SA, the main chemical component
of which was sodium abietate, SJ, the main chemical component of which was triterpenoid saponin,
and K12, whose main chemical component was sodium dodecyl sulfate, which are widely used in
China. Table 3 shows the physical properties of three AEAs.

Table 3. The main characteristic of the used air entraining agents (AEAs).

Chemical Agent Appearance PH

SA White Powder 10
SJ Pale yellow powder 6

K12 White Powder 6.5

The main instruments used were UCS (WDW-2000, Shanghai new sansi Measuring Instrument
Manufacturing Co., Ltd., Shanghai, China), NMR (MiniMR-60, Shanghai Newmai Co. Ltd., Shanghai,
China), an electrochemical workstation and an electron microscope scanner (SEM, MIRA3 (LMH/LMU),
TESCAN(China) Co. Ltd., Shanghai, China). The main experimental equipment and processes are
shown in Figure 3.
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2.2. Methods

The experiment mainly studied the cementing fill body with the same proportion for different
curing ages (7 and 28 days). The changes in porosity, strength, and internal microstructure of the filling
body were studied by changing the contents of different AEAs. The grouping and proportioning of
this experiment are presented in Table 4. Each group had three filling samples. The main experimental
steps are as follows.

(1) According to the proportioning scheme presented in Table 4, the filling material was poured
into the mixer for full and even mixing. According to the Sanning mine, the slump height of the filling
body needs to reach 22 cm; when the mixing amount of AEA was 0.2%, 0.4% and 0.6%, the slump of
the filling body increased approximately by 3%, 6% and 8.5%, respectively. It was then poured into the
cylindrical standard test mold (50 mm × 100 mm) after stirring. The samples were cured at ambient
temperature (20 ◦C) and a relative humidity of 99% for 7 and 28 days, respectively.
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(2) After 7 and 28 days of curing, the filling body was vacuumed and saturated. The dry pumping
mode was selected for 4 h, whereas the wet pumping mode was selected for 2 h to ensure that the
sample was fully saturated with water.

(3) The porosity and T2 spectrum of the filling body under the condition of saturated water
were measured using the NMR instrument. The NMR tests used the MiniMR-60 magnetic resonance
imaging (MRI) analysis system, which was manufactured by Shanghai Newmai Co. Ltd., Shanghai,
China. The experimental parameters were as follows: receiver bandwidth SW = 100 KHz; sampling
points TD = 4502; waiting time Tw = 4800 ms; analog gain RG1 = 20 db; cumulative sampling NS = 64;
90◦ pulse application time P1 = 11.52 µs; 180◦ pulse application time P2 = 22.48 µs; number of echo
cycles NECH = 3000; digital gain DRG1 = 3; coil waiting time RFD = 0.25 ms; number of times NS = 64.

(4) The electrochemical workstation (Integrated electrochemical test system of AMETEK,
the experimental parameters were as follows: AC properties = value; start frequency = 105 Hz;
end frequency = 10−1 Hz; amplitude = 10 mV; current range = 2 mA; Voltage range = ±6 V; points
per decade = 10; data quality = 3), the UCS (the tests were conducted by a computer-controlled fully
automatic pressure testing machine (WDW-2000) with a maximum capacity of 200 kN. The specimens
were loaded at a constant displacement rate of 1mm/min), and SEM (a specimen of 1 mm2 was cut
from the center part of each cemented paste backfill specimen, then take the prepared samples to
the TESCAN MIRA3 field-emission scanning electron microscope to obtain the results) was used to
measure the water-filled filling body with different AEAs and curing ages of 7 and 28 days.

Table 4. Details of mixture proportions for the cemented paste backfill.

Code
Gangue Tailing Fly Ash Cement Water SA SJ

K12
kg/m3 %

0%AEA 1500 400 200 150 562 - - -
SA 1500 400 200 150 562 0.2 - -
SA 1500 400 200 150 562 0.4 - -
SA 1500 400 200 150 562 0.6 - -
SJ 1500 400 200 150 562 - 0.2 -
SJ 1500 400 200 150 562 - 0.4 -
SJ 1500 400 200 150 562 - 0.6 -

K12 1500 400 200 150 562 - - 0.2
K12 1500 400 200 150 562 - - 0.4
K12 1500 400 200 150 562 - - 0.6

3. Results and Discussion

3.1. AC Impedance of the Filling Body after 7 Days of Curing

Figure 4 shows the electrochemical impedance results of the filling body with different mass
concentrations of SA (a), K12 (b), SJ (c) and without AEA (d) for a curing period of 7 days. As can
be seen from Figure 4, with the increase in frequency, the AC impedance of the filling body with
different mass concentrations of SA, K12 and SJ showed a similar trend to that of without AEA, both of
which decreased gradually with the increase in frequency. This indicates that whether AEA is added
or not within the frequency range of 10−1–105 Hz, the variation trend of AC impedance of backfill
remains unchanged, and the filling body with the same proportion of AEA has a similar topological
structure. In the low-frequency range of 10−1–104 Hz, the impedance value of the filling body without
AEA is the maximum for the same frequency. Furthermore, the higher the mass concentration of SA
and K12, the lower the impedance value. However, with the increase in mass concentration, the AC
impedance value of SJ first increased, and then decreased. Within the range of 104–105 Hz at high
frequency, the impedance value of the filling body without AEA was the highest. The variation trends
of impedance of the filling body for the three AEAs were basically consistent with each other, indicating
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that the AC impedance of the filling body decreased with the increase in the mass concentration
of AEA.
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Figure 4. Relationship between AC impedance value and frequency of filling test block with different
AEA added for 7 days of curing age. (a) Add SA; (b) Add K12; (c) Add SJ; (d) 0% AEA.

3.2. AC Impedance of the Filling Body for 28 Days of Curing

Figure 5 shows the electrochemical impedance results of the filling body with different mass
concentrations of SA (a), K12 (b), SJ (c) and without AEA (d) for the curing age of 28 days. As can be
seen from Figure 5, with the increase in frequency, the AC impedance of the filling body with different
mass concentrations of SA, K12 and SJ showed the same variation trend as that of without AEA, both of
which decreased gradually with the increase in frequency. This indicates that whether AEA is added
or not within the frequency range of 10−1–105 Hz, the variation trend of AC impedance of backfill
remains unchanged, and the filling body with the same proportion of AEA shows a similar topological
structure. In the low-frequency range of 10−1–104 Hz, the impedance value of the filling body without
AEA is the maximum for the same frequency. Adding SA and K12 did not show regularity in the whole
low-frequency region; however, regularity was observed only in a certain frequency range. In the high
frequency range of 104–105 Hz, the AC impedance variation patterns of the filling body for the curing
periods of 28 and 7 days were consistent with each other.
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3.3. Effect of Equivalent Amount of Air-Entraining Agent on AC Impedance

Figure 6 shows the Nyquist plots of AC impedance of the filling body with AEAs present in the
same mass concentration for a curing period of 7 days. The impedance spectrum of the filling body
with the curing age of 7 days is the same. The AC impedance of the filling body with AEA is lower
than that of the test blocks without AEA for the same curing time. When the mass concentration of
AEA was 0.2%, the degree of influence on AC impedance was found in the following descending
order: SA > K12 > SJ. When the mass concentration of AEA was 0.4%, the degree of influence on AC
impedance was found in the following descending order: SA > SJ > K12. When the mass concentration
of AEA was 0.6%, the degree of influence on AC impedance was found in the following descending
order: SA > SJ > K12. This phenomenon indicates that the addition of AEA reduces the degree of
adhesion of the backfill, increases the connectivity of internal pores, and makes the migration of ions in
pore water smoother.
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As shown in Figure 7, the Nyquist plots of AC impedance of the filling body with AEA with the
same mass concentration for the same curing age. For the curing age of 28 days, the variation of AC
impedance of the filling body is not regular at a low frequency, and it has the similar trend for high
frequency. The AC impedance for the test blocks cured for 28 days with the same AEA concentration
and the same frequency were all greater than those of the test blocks cured for 7 days. The results show
that the longer the curing time, the weaker the connectivity of the pores inside the backfill. This is
caused by the hydration expansion reaction, which is the property of the backfill itself. However,
the AC impedance value of the sample preserved for 28 days was lower than that of the sample without
AEA. When the curing time was less than 28 days, the effect of AEA still existed, making the porosity
inside the backfill larger than that of the sample without AEA. The properties of this kind of AEA can
help pump the filling slurry and increase the fluidity of filling slurry in actual filling engineering.
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Figure 7. Nyquist diagram of the filling body with the same amount of AEA for 28 days of curing age.
(a) Add 0.2% SA, K12 and SJ, respectively; (b) Add 0.4% SA, K12 and SJ, respectively; (c) Add 0.6% SA,
K12 and SJ, respectively.

3.4. Equivalent Circuit Analysis of the AC Impedance

As shown in Figure 8, the conductive schematic of the microstructure of the filling body is
mainly composed of three conductive modes, namely the continuous conductive channel (CCP),
the discontinuous conductive channel (DCP), and the insulator channel (ICP), in which water in
isolated pores forms a solid–liquid contact interface with the backfill.
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Figure 8. Schematic diagram of the microstructure of the filling body.

According to the measured impedance value of the filling body based on the electrochemical AC
impedance data, Zview software was used to simulate the equivalent circuit, and the corresponding
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results are shown in Figure 9. The equivalent circuit diagram of the filling body shows samples with
SA, K12 and SJ with the mass concentration of 0.6% and for different curing ages. In the equivalent
circuit model shown in Figure 9, Ws is the warbug impedance of the diffusion process occurring in
the filling body, CPE1 is the original normal-phase angle reflecting the properties of the solid–liquid
interface in the backfill, and Rs is the pore water resistance. Furthermore, the resistance of charge
transfer in the backfill is represented by Rp.
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By simulating the equivalent circuit model of the filling body, it can be seen that when the
concentration of SA, K12 and SJ was 0.6% for the same curing age, the equivalent circuit diagram
remained unchanged. When the curing ages for the filling body with the same AEA were 7 days and
28 days, the equivalent circuit diagrams remained the same, and the chi-square coefficient had the
maximum value of 0.46%. The results show that the main structure of backfill did not change due
to different AEAs and curing ages. This means that the components in the equivalent circuit were
consistent. However, the internal microstructure of the filling body changed due to changes in AEA
and curing ages. Table 5 presents the values of each property parameter of the circuit components.
For example, for 0.6% mass concentration of SA for the curing age of 28 days, Rs was 2365 Ω, whereas
that for the curing age of 7 days was 560.2 Ω, which is almost 4.2 times less than that for 28 days.
These results indicate that longer the curing age, the more adequate the hydration reaction of the
backfill, the smaller the internal porosity and the weaker the connectivity.

Table 5. Equivalent circuit model parameters.

Group Time Rs W1-R W1-T W1-P CPE1-T CPE1-P Rp
Chi-Squre

Test/%

SA 7day 560.2 196.6 4.48 × 10−4 0.322 5.05 × 10−5 0.629 22466 0.22
K12 7day 637.1 151.2 1.48 × 10−4 0.357 1.07 × 10−4 0.556 10882 0.43
SJ 7day 652 346.5 9.07 × 10−6 0.1938 3.22 × 10−5 0.549 18127 0.33
SA 28day 2365 5206 9.76 × 10−6 0.329 3.63 × 10−6 0.388 3.66 × 105 0.15
K12 28day 2043 3498 2.76 × 10−6 0.235 5.72 × 10−6 0.449 3.489 × 105 0.34
SJ 28day 2688 2.92 × 105 4.933 0.292 1.21 × 10−6 0.836 40155 0.46

3.5. Analysis of the Porosity of the Filling Body

In this paper, the porosities of water-filled backfill with different concentrations of SA, K12 and SJ
cured for 7 and 28 days were measured using the NMR instrument, and the corresponding results are
shown in Figure 10. For the same curing age, the porosity inside the backfill gradually increased with
the increase in AEA. For the curing age of 7 days, the minimum porosities of SA and SJ were greater
than that of 8.686% without AEA, whereas the porosity inside the backfill was greater than that without
AEA when the concentration of K12 was only 0.6%. This shows that SA and SJ can increase the porosity
of the filling body more significantly than K12. When the curing age was 28 days, the porosities inside
the backfill with SA, SJ and K12 were all greater than that without AEA. This shows that all three AEAs
can increase the porosity of backfill, and their effect is found in the following descending order: SA > SJ
> K12. Obviously, the porosity of backfill with the curing age of 7 days is greater than that of the filling
body with the curing age of 28 days. This indicates that the longer the curing age, the more sufficient
the hydration reaction and the smaller the porosity.

SEM was used to analyze the pores in the filling body with the curing ages of 7 and 28 days.
The changes of pore structure in the filling body with the addition of AEA and curing age were
obtained. It can be seen from Figure 11 that the filling body without AEA for the curing period of
7 days had a smaller porosity with a large number of pores and an uneven distribution. However,
the filling body with AEA was more porous with a higher number of pores and even distribution.
Due to a certain volume of backfill, the connectivity between the pores inside the filling body will be
enhanced. From the microscopic point of view, it is reasonable that the AC impedance value of the
filling body with AEA at the same curing age was less than that without AEA. It can be clearly seen
from the comparison between the curing period of 7 days and 28 days for 0.6% SA that the longer
the curing period, the more sufficient the hydration reaction inside the backfill, which will lead to
a smaller porosity. Meanwhile, the larger pore size will gradually decrease, and the smaller pore
size will gradually increase. Additionally, the connectivity between the pores will gradually weaken.
This indicates that the longer the curing age under the same conditions, the smaller the porosity of
backfill and the larger the AC impedance. Liu et al. (1998) [10] showed that the hydration reaction can
reduce the pore diameter of the filling body. The experiment in this paper proves this point from the
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microscopic view, and shows that the filling body with AEA has stronger fluidity, which is conducive
to improving the current situation of the long-distance transportation of the filling body.Minerals 2020, 10, x FOR PEER REVIEW 12 of 17 
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For the frequency of 105 Hz, Figure 12a,b show that the relationship between the porosity of the
filling body with different AEA concentrations and the AC impedance for the curing age of 7 days,
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and the relationship between the porosity of the filling body with different AEA concentrations and
the AC impedance for the curing age of 28 days, respectively. The AC impedance and porosity of the
filling body adding SA are given after the curing ages of 7 days, as shown in Table 6. Because some of
the pores in the filling body are small or closed, the porosity measured by NMR is smaller than the
true value. Therefore, the change in filling porosity studied in this paper is relative, mainly based on
the nuclear magnetic resonance technology to study the change law of filling porosity. According to
Figure 12a, when the curing age was 7 days, the experimental data were fitted linearly, and the values
of correlation coefficient (R2) were 0.7116, 0.9129 and 0.9487, respectively. This indicates that porosity is
linearly correlated with AC impedance, and the AC impedance decreases with the increase in porosity.
As can be seen from Figure 12b, when the curing age was 28 days, the experimental data were fitted
linearly. However, such a feat could not be achieved for SJ. The values of correlation coefficient for SA
and K12 were 0.9571 and 0.9655, respectively. The larger the porosity of the backfill with SA, the higher
the impedance, while the larger porosity of the backfill with K12, the smaller the impedance.
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Figure 12. Relationship between porosity and AC impedance at 105 Hz; (a) represents the filling body
with different AEAs at the 7 days curing age; (b) represents the filling body with different AEAs at the
28 days curing age.

Table 6. Adding sodium abietate (SA), the AC impedance of the filling body for the curing ages of
7 days.

.

Parameter/% Porosity/%
|Z|/Ω

104 HZ 105 HZ

0 8.686 1538.2 1304.5
0.2 9.708 1218.3 945.42
0.4 10.161 841.84 762.33
0.6 10.955 701.21 619.86

The experimental results show that the porosity and AC impedance at the curing age of 7 days
show a negative linear correlation, while at the curing age of 28 days, the porosity and AC impedance
do not show a good regularity, but are related to the type of AEA added. The porosity and AC
impedance of backfill with the curing age of 7 days with different concentrations of AEA show a linear
negative correlation. However, the relationship between the porosity and AC impedance of the filling
body with different concentrations of AEA for a curing age of 28 days at high frequency is affected by
the type of AEA added to the system.
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3.6. Analysis of the Strength of the Filling Body

In this paper, the electro-hydraulic servo material testing machine of 200 kN was used to measure
the uniaxial compressive strength of water saturated backfill with different concentrations of SA,
K12 and SJ and the curing ages of 7 and 28 days, respectively. The results are shown in Figure 13.
For the same curing age, the uniaxial compressive strength of the filling body decreases gradually
with the increase in AEA concentration. When the curing age was 7 days, the uniaxial compressive
strengths of the backfill with SA, SJ and K12 with the concentration of 0.4% were close to that of the
backfill without AEA at 1.23 MPa. This shows that the three AEAs in this paper have similar effects on
the uniaxial compressive strength of the filling body. When the curing age was 28 days, the relationship
between the uniaxial compressive strength of the filling body and the AEA was similar to that of
the curing age of 7 days. When the concentration of AEA was 0.4%, the strength of the filling body
was close to that of the sample without AEA. Obviously, with the same type of AEA, the uniaxial
compressive strength of the backfill with the curing age of 28 days was greater than that for the curing
age of 7 days. The results show that the longer the curing time, the more sufficient the hydration
reaction inside the backfill, the smaller and more uniform the porosity inside the filling body, and the
stronger the backfill strength. While Şahin et al., (2011) [16] showed that the moderate concentration of
AEA results in the optimal UCS of concrete, in accordance with the experimental results, this shows
that the filling body with 0.4% concentration of AEA can improve the production of the mine due to
the insufficient strength of the filling body compared with the filling body without AEA, thus relieving
the pressure of mining on the ecological environment.Minerals 2020, 10, x FOR PEER REVIEW 15 of 17 
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Figure 13. Uniaxial compressive strength of AEA for different curing ages.

For the frequency of 105 Hz, Figure 14a,b show the relationship between the UCS and the AC
impedance of the filling body with different concentrations of AEA for the curing age of 7 days, and the
relationship between the UCS and the AC impedance of the filling body with different concentrations
of AEA for the curing age of 28 days, respectively. As can be seen from Figure 14a, when the curing
age was 7 days, the experimental data were fitted linearly, and the values of correlation coefficient (R2)
were 0.8542, 0.9984 and 0.981, respectively. These results show that the UCS was linearly correlated
with the AC impedance, and the AC impedance increased with the increase in strength. As can be seen
from Figure 14b, the experimental data for the curing age of 28 days were linearly fitted (except for the
data for SJ). The values of correlation coefficient of SA and K12 were 0.9979 and 0.8668, respectively.
The higher the strength of the backfill with SA, the lower the impedance value was, while the higher
the strength of the filling body with K12, the higher the impedance value.

The experimental results show that the UCS was positively linearly correlated with the AC
impedance value for the curing age of 7 days, while the UCS and impedance value at the curing age
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of 28 days do not show a good regularity, but are related to the type of AEA added to the system.
The porosity and impedance of backfill with the curing age of 7 days with different concentrations of
AEA were positively linearly correlated. The relationship between the UCS and AC impedance of the
filling body with different concentrations of AEA for a curing age of 28 days at high frequency was
affected by the type of AEA added to the system.
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Figure 14. Relationship between the uniaxial compressive strength (UCS) and the AC impedance at
105 Hz. (a) represents the filling body with different AEAs at the 7 days curing age; (b) represents the
filling body with different AEAs at the 28 days curing age.

4. Conclusions

(1) Within the frequency range of 10−1–105 Hz, the addition of SA, SJ and K12 AEAs cannot change
the variation pattern of the AC impedance of the filling body, which showed a gradual decrease.
The AC impedance of the backfill for the curing age of 7 days was stronger than that of the filling body
with the curing age of 28 days.

(2) Equivalent circuit fitting shows that the backfill with different kinds of AEAs and curing ages
can be represented by the same equivalent circuit model, indicating that the main structure of the
backfill samples had not changed, and that only the internal microstructure of the backfill changed due
to the AEAs and curing ages.

(3) For the same curing age, the porosity inside the backfill increased with the increase in AEA.
With the same type of AEA, the porosity of backfill with the curing age of 7 days was greater than that
of the backfill with the curing age of 28 days.

(4) Under the condition of high frequency of 105 Hz, the porosity of the backfill with 7 days
of curing age was negatively correlated with the AC impedance, whereas the UCS was positively
correlated with the AC impedance. For the backfill with the curing age of 28 days, the relationship
between the porosity, the UCS and the AC impedance was affected by the type of AEA at the high
frequency of 105 Hz.
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