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Abstract: Chlorate is an important Cl-bearing species and a strong potential Fe(II) oxidant on
Mars. Since the amount of oxychlorine species (perchlorate and chlorate) detected on Mars is
limited (<~1 wt.%), the effectiveness of chlorate to produce iron oxides depends heavily on its
oxidizing capacity. Decomposition of chlorate or intermediates produced during its reduction, before
reaction with Fe(II) would decrease its effective capacity as an oxidant. We thus evaluated the
capacity of chlorate to produce Fe(III) minerals in Mars-relevant fluids, via oxidation of dissolved
Fe(II). Each chlorate ion can oxidize 6 Fe(II) ions under all conditions investigated. Mass balance
demonstrated that 1 wt.% chlorate (as ClO3

−) could produce approximately 6 to 12 wt.% Fe(III)
or mixed valent mineral products, with the amount varying with the formula of the precipitating
phase. The mineral products are primarily determined by the fluid type (chloride- or sulfate-rich),
the solution pH, and the rate of Fe(II) oxidation. The pH at the time of initial mineral nucleation and
the amount of residual dissolved Fe(II) in the system exert important additional controls on the final
mineralogy. Subsequent diagenetic transformation of these phases would yield 5.7 wt.% hematite per
wt.% of chlorate reacted, providing a quantitative constraint on the capacity of chlorate to generate
iron oxides on Mars.
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1. Introduction

The dominant reddish hue characteristic of Mars is caused by the distribution of various
Fe(III)-oxides and oxyhydroxides on its surface. Several Fe(III)-bearing minerals were identified in
numerous rocks, soils, sediments, and meteorite samples of Mars, including hematite [α-Fe2O3] [1–7],
goethite [α-FeOOH] [5,8], akaganeite [β-FeO(OH,Cl)] [9,10], lepidocrocite [γ-FeOOH] [11], jarosite
[(K,Na,H3O)Fe3(OH)6(SO4)2] [4,6,7,12–16], and schwertmannite [~Fe8O8(OH)6SO4] [17]. The mixed
valent iron oxide magnetite [Fe3O4] was also found on Mars [5,9,18–21]. Although hematite is
thermodynamically the most stable Fe(III)-oxide mineral [22], its direct precipitation by oxidation of
dissolved Fe(II) is kinetically inhibited at low-temperatures (<~70 ◦C) [23]. Phase transformations
of other iron oxides and oxyhydroxides can produce hematite [24–32] through various diagenetic
processes [24,33–44]. Formation of metastable, precursor Fe(III) oxides and oxyhydroxides, through
oxidation of dissolved Fe(II) was studied for a variety of oxidants, including O2, UV light, and hydrogen
peroxide [45–48]. A recent study [49] demonstrated the potential for chlorate (ClO3

−), an important
oxychlorine species on Mars, to oxidize dissolved Fe(II) under Mars-relevant conditions and produce
Fe(III)-bearing minerals.

Oxychlorine [chlorate and perchlorate (ClO4
−)] salts are globally distributed and are ubiquitous

on the Martian surface [50], occurring at levels of up to 1 wt.% [51]. Chlorate was identified as one of
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the likely sources of evolved O2 gas from the Rocknest (RN) [52,53], John Klein (JK), and Cumberland
(CB) [51] drill samples, during high temperature pyrolysis experiments from the Sample Analysis at
Mars (SAM) instrument at the Gale Crater. Laboratory studies indicate that O2 and HCl gas releases
from SAM pyrolysis experiments are most consistent with chlorate salts and chlorate salts/Fe oxides
mixtures [54,55]. While chlorate was not detected at the Phoenix landing site in coexistence with perchlorate
salts [56], its presence cannot be precluded, owing to the nature of the ion-selective electrode employed,
which was approximately 1000 times more sensitive to perchlorate than chlorate [57]. Any chlorate present in
Phoenix soil samples might therefore be masked in the presence of perchlorate [57]. Terrestrial field studies
of oxychlorine salt occurrences and laboratory investigations of their formation processes indicate that
chlorate should generally co-form with perchlorate in equimolar or greater proportions [58–60]. Chlorate is
therefore likely to be an important Cl-bearing species that is widespread on the surface of Mars, but our
knowledge of its occurrence is limited by the lack of ability to detect this species in many past landed
missions. While chlorate likely always co-occurs with perchlorate, the latter displays no reactivity towards
Fe(II) [49,61,62] and is not relevant to iron chemistry on the Martian surface.

Fe(II) oxidation by ClO3
− is represented by the following net redox reaction [63–65]:

6Fe2+ + ClO3
− + 6H+ = 6Fe3+ + Cl− + 3H2O (1)

According to Equation (1), each ClO3
− ion has a maximum stoichiometric capacity to oxidize

6 Fe(II) ions to Fe(III), which can then undergo hydrolysis to produce Fe(III)-bearing minerals.
Although our previous study demonstrated the kinetic potential of ClO3

− to produce Fe(III) minerals
under Mars-relevant conditions, the effective stoichiometric efficiency of each ClO3

− ion to oxidize
Fe(II) is unknown [49]. Earlier studies were conducted with a substantial stoichiometric excess of
chlorate [49,63,66,67]. Notably, in Mitra and Catalano (2019), the observed ClO3

− consumption was
greater than the expected one-sixth (~16.7%), as calculated by the reaction stoichiometry. The chlorate
concentration decreased by ~34% in chloride fluids and ~21% in sulfate fluids. ClO3

− was shown
to self-decompose via one or more comproportionation or disproportionation pathways, in acidic
chloride-containing fluids [68], thereby reducing the effective capacity of ClO3

− to oxidize Fe(II).
In addition, ClO3

− reduction to chloride by dissolved Fe(II) occurs sequentially through six stepwise
reactions [69], generating a series of reactive, intermediate, chlorine-bearing species. The relative rates
of decomposition and oxidization of Fe(II) by these species is unclear. If chlorate or its intermediate
reduction products partially break down before they fully react with Fe(II), then the overall capacity
for iron oxidation by chlorate is lower than the theoretical 6:1 molar ratio. While this excess chlorate
consumption in our prior study might have been an analytical error [49], if valid, then the amount of
Fe(II) that ClO3

− can oxidize would be halved.
Since the amount of ClO3

− expected to be present in Martian near-surface systems is limited (<1 wt.%,
not accounting for regeneration processes [70–75]), understanding its actual capacity to oxidize dissolved
Fe(II) in Mars-relevant fluids might better constrain iron oxidation processes and the resulting products.
The number of moles of Fe(II) oxidized per mole of ClO3

− ions relative to its maximum, theoretical
capacity of 6:1 (Equation (1)), is referred to as the “stoichiometric efficiency”. The rate of Fe(II) oxidation by
chlorate is faster than by O2 or through UV-photooxidation, by orders of magnitude in fluids similar to
the Martian surface waters [49]. However, the amount of ClO3

− in Martian soil or sediments could be an
important limiting factor in determining its relative contribution as an Fe(II) oxidant on Mars. In addition,
this stoichiometric efficiency potentially varies with fluid composition (e.g., chloride concentration, pH)
and will be affected by the aqueous speciation of chlorine and dissolved Fe(II). Therefore, determining the
stoichiometric efficiency of ClO3

− to oxidize Fe(II) is necessary to understanding the net capacity for this
oxychlorine species to oxidize dissolved Fe(II) in surface and subsurface aqueous systems on Mars.

In this study, we evaluate the stoichiometric efficiency of chlorate to oxidize Fe(II) in Mars-relevant
fluids and the resultant Fe(III) minerals. The experiments were conducted at [Fe(II)]/[ClO3

−] ratios under
chlorate-equivalent ([Fe(II)]/[ClO3

−] ≈ 6]) and chlorate-deficient ([Fe(II)]/[ClO3
−] ≈ 10:1) conditions,

to measure the maximum amount of Fe(II) oxidation by chlorate that is possible in Mars-relevant
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fluid compositions. The kinetics of Fe(II) oxidation were compared to our previously proposed rate
model [49], which explicitly assumed full chlorate efficiency, to compare the practical oxidation capacity
of chlorate against its theoretical maximum. Our results would allow us to examine the applicability,
as well as the limits of the kinetic model, in conditions that are geochemically different than those in
which it was originally parameterized. The resulting mineral products were identified and quantified
to determine the different iron oxides produced by chlorate as a function of fluid composition.

2. Materials and Methods

2.1. Kinetic Experiments

The maximum capacity of chlorate to oxidize dissolved Fe(II) was investigated in
chlorate-equivalent and chlorate-deficient systems. The experiments were conducted using solutions
prepared using ACS-grade Fisher Scientific chemicals [ferrous chloride tetrahydrate (FeCl2·4H2O),
ferrous sulfate heptahydrate (FeSO4·7H2O), magnesium chloride hexahydrate (MgCl2·6H2O),
magnesium sulfate heptahydrate (MgSO4·7H2O), and sodium chlorate (NaClO3) and deoxygenated,
deionized (DI) water. The experimental solutions were kept in aluminum foil-wrapped 50 mL
polypropylene tubes, at ambient conditions (24 ± 1 ◦C, 1 atm), inside an anaerobic chamber (N2 = 97%,
H2 = 3%, O2 < 1 ppmv), to inhibit Fe(II) oxidation by unwanted oxidants. Reactors were continuously
mixed on end-over-end rotators to avoid gravimetric settling of precipitates during the reaction.
Chlorate-free control experiments were also prepared at pH 7 and 3 to verify the lack of inadvertent
oxidation by stray oxidants (e.g., O2) in the anaerobic chamber (Figure S1).

The reactors to study the reaction kinetics contained 40 mL solutions of ~10 mmol L−1 Fe(II),
with either 1.67 mmol L−1 ClO3

− [for Fe(II):ClO3
−
≈ 6:1] or 1 mmol L−1 ClO3

− [for Fe(II): ClO3
−
≈ 10:1]

(Table 1). An ideal chlorate-equivalent system has an initial [Fe(II)]/[ClO3
−] that is exactly equal to 6.

However, pipettor inaccuracies, dilution errors, and other experimental factors produce [Fe(II)]/[ClO3
−]

ratios that are not exactly equal to the intended ratios. Mars-relevant background salts magnesium
chloride or magnesium sulfate [57,76–81] were used to serve as ionic strength buffers (~100 mmol L−1)
and provide anions with a different ability to complex dissolved Fe(II), affecting the reaction rates
and mineral products. Owing to the similar reaction rate in chloride- and perchlorate-rich fluids [49],
experiments in magnesium perchlorate fluids were not investigated to avoid redundancy. The initial
pH values were set to 7, 5, or 3 using 1 mol L−1 hydrochloric acid and sodium hydroxide. These initial
pH values were chosen to represent a range of near-neutral to acidic pH values that were thought
to represent most of the fluid pH conditions on Mars [82–84]. The acidity on Mars was controlled
primarily by Fe(II) oxidation and Fe(III) mineral precipitation [46], and therefore the experimental pH
was allowed to drift freely as a response to Fe(II) oxidation and Fe(III) precipitation. The pH and Fe(II)
concentration were measured throughout the course of the reactions, the latter via spectrophotometry,
following complexation by ferrozine [85]. For dissolved Fe(II) determination by spectrophotometry,
the subsamples from the experimental solutions were extracted and centrifuged, before complexation
with ferrozine, and the absorbance was corrected using a blank containing DI water and ferrozine.
Chlorate concentrations were measured at the start and the end of the experiment, using a Dionex
Integrion high pressure ion chromatograph (Thermo Scientific, Sunnyvale, CA, USA) equipped with an
IonPac AS11 analytical column, ADRS 600 suppressor, and conductivity detector with a 12 mmol L−1

KOH eluent. The total iron [Fe(II) and Fe(III)] in the solutions after the end of the experiments were
measured using an iCAP 7400 Duo inductively coupled plasma optical emission spectroscopy (Thermo
Scientific, Madison, WI, USA).

A kinetic rate law model for dissolved Fe(II) oxidation by chlorate [63–65] was previously implemented
in The Geochemist’s Workbench module React [49], using a modified LLNL database [86,87]. This kinetic
model was employed in the present study to simulate the reaction of chlorate with Fe(II), using the starting
compositions of the experiments. Details of the kinetic model, rate constants, and the activation energy can
be found in our previous paper [49].
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Table 1. Fluid composition of the kinetic experiments.

Sample a
Initial
[Fe2+]

(mmol L−1)

Initial
[ClO3−]

(mmol L−1)
[Fe2+]/[ClO3−]

Initial
pH

Model Final
[Fe2+]

(mmol L−1) b

Experimental
Final [Fe2+]

(mmol L−1) b

Final
[ClO3−]

(mmol L−1)

Model
Final
pH d

Experimental
Final pH d

Cl-6:1-10-100-3 10.5 1.73 6.1 3.04 0.98 0.65 BDL c 2.05 1.96
Cl-6:1-10-100-5 10.4 1.73 6.0 5.34 1.03 0.84 BDL 2.07 1.98
Cl-6:1-10-100-7 10.2 1.70 6.0 6.58 1.01 0.49 BDL 2.08 2.04

Cl-10:1-10-100-3 11.1 1.08 10.3 3.02 4.68 4.99 BDL 2.14 2.01
Cl-10:1-10-100-5 11.2 1.10 10.2 4.34 4.67 5.09 BDL 2.16 2.07
Cl-10:1-10-100-7 11.3 1.13 10.0 6.31 4.57 5.36 BDL 2.16 2.16

S-6:1-10-100-3 10.8 1.71 6.3 3.07 1.70 0.93 BDL 2.45 2.44
S-6:1-10-100-5 10.7 1.71 6.3 4.68 1.81 0.96 BDL 2.45 2.44
S-6:1-10-100-7 10.9 1.73 6.3 6.77 1.82 0.95 BDL 2.45 2.43
S-10:1-10-100-3 11.5 1.10 10.4 3.06 5.02 5.28 BDL 2.45 2.49
S-10:1-10-100-5 11.5 1.10 10.5 4.88 5.19 5.46 BDL 2.48 2.53
S-10:1-10-100-7 11.5 1.10 10.4 6.54 5.18 5.44 BDL 2.48 2.55

a Sample name code: The abbreviated names of each experiment represent the fluid composition (either Cl = chloride,
or S = sulfate), ratio of iron (II) to chlorate (either ≈6:1 or ≈10:1), concentration of Fe(II) in mmol L−1, concentration
of background salt (MgCl2 or MgSO4) in mmol L−1 and the initial pH. b Concentration ~100 days after the start of
the experiments. c Below detection limit (0.012 mmol L−1). d pH ~100 days after the start of the experiments.

2.2. Mineral Precipitation Studies

The Fe(II) oxidation products were studied for a range of fluid compositions and Fe(II):ClO3
−

ratios by conducting experiments at larger volumes (150 mL) to facilitate greater solid phase production
needed for characterization (Table 2). The experimental solutions for the higher volume mineral
precipitation experiments were prepared in serum bottles and sealed inside the anaerobic chamber
and then placed on an orbital shaker outside the chambers, operating at ~160 rotations per minute
for ~100 days. A control sample containing dissolved Fe(II) but no chlorate at pH 7 was similarly
prepared in a serum-bottle reactor to verify the effectiveness of using sealed serum bottles, outside
the anaerobic chamber for anaerobic experiments. The suspensions were then filtered (0.22 µm pore
size MCE membrane) and dried inside the anaerobic chamber, using a vacuum desiccator. The solid
samples were analyzed by powder X-ray diffraction (XRD) using a D8 Advance diffractometer (Bruker
AXS, Karlsruhe, Germany) equipped with a Cu Kα source and a position sensitive, energy-dispersive
LynxEye XE detector. Diffrac.Eva version 4.0 (Bruker AXS, Karlsruhe, Germany) was used for mineral
identification, and the Profex version 4.2 [88] interface to BGMN [89] was used for quantitative phase
analysis via the Rietveld method.

Table 2. Fluid composition of the mineral precipitation studies.

Sample a
Initial
[Fe2+]

(mmol L−1)

Initial
[ClO3−]

(mmol L−1)

Initial
[Fe2+]/[ClO3−]

Initial
pH

Model
Final [Fe2+]
(mmol L−1)

Experimental
Final [Fe2+]
(mmol L−1)

Final Total
[Fe]

(mmol L−1)

Final
[ClO3−]

(mmol L−1)

Final
pH

Mineral
Products

Cl-6:1-10-100-3 11.6 1.92 6.1 3.08 0.12 1.53 4.11 BDL b 1.95 Trace c

Cl-6:1-10-100-7 8.00 1.42 5.6 7.02 0.00 2.14 1.96 BDL 2.51 M,G,L
Cl-6:1-100-100-3 90.1 15.5 5.8 3.00 0.00 0.57 43.6 BDL 1.56 Trace
Cl-6:1-100-100-7 90.9 15.1 6.0 7.25 0.16 0.35 0.35 BDL 2.54 L,M,G

Cl-10:1-10-100-3 12.5 1.35 9.3 3.04 4.43 3.12 6.47 BDL 1.92 Trace
Cl-10:1-10-100-7 13.2 1.32 10.0 7.02 5.28 0.00 0.13 BDL 5.74 M,G,GR

Cl-10:1-100-100-3 138 15.0 9.2 2.97 48.1 39.0 89.4 BDL 1.46 Trace
Cl-10:1-100-100-7 141 15.3 9.2 7.26 49.0 10.9 11.5 BDL 4.46 M,G

S-6:1-5-100-3 3.85 0.63 6.1 3.01 0.07 1.57 2.24 BDL 2.72 Trace
S-6:1-5-100-7 3.91 0.63 6.2 6.90 0.13 0.82 0.10 BDL 4.60 M,G

S-6:1-10-100-3 8.82 1.49 5.9 3.04 0.00 1.47 3.43 BDL 2.51 G
S-6:1-10-100-7 8.61 1.45 6.0 6.80 0.00 1.74 3.48 BDL 2.58 G

S-6:1-100-100-3 83.5 15.2 5.5 3.04 0.00 0.31 50.2 BDL 2.11 S
S-6:1-100-100-7 72.5 15.2 4.8 6.64 0.00 0.23 12.1 BDL 2.08 G

S-10:1-10-100-3 9.53 1.01 9.4 3.01 3.47 3.33 5.71 BDL 2.58 G
S-10:1-10-100-7 9.48 1.01 9.4 7.02 3.42 5.03 4.99 BDL 3.43 M,G
S-10:1-100-100-3 96.4 9.65 10.0 3.03 38.5 18.6 58.9 BDL 2.25 S
S-10:1-100-100-7 97.1 10.2 9.5 7.04 36.0 15.6 28.6 BDL 2.21 G

a Sample name code: The abbreviated names of each experiment represent the fluid composition (either Cl = chloride,
or S = sulfate), ratio of iron(II) to chlorate (≈6:1 or ≈10:1), Fe(II) concentration in mmol L−1, background salt
concentration (MgCl2 or MgSO4) in mmol L−1 and the initial pH. b Below detection limit (0.012 mmol L−1). c The
experiment did not generate enough iron oxides for characterization. Mineral codes: G = Goethite, L = Lepidocrocite,
M = Magnetite, GR = Green Rust, S= Schwertmannite, and Sa = Salt.
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3. Results

3.1. Iron Oxidation in Chlorate-Equivalent vs. Chlorate-Deficient Systems

The experiments in both chlorate-equivalent systems ([Fe(II)]/[ClO3
−] ≈ 6) and chlorate-deficient

systems ([Fe(II)]/[ClO3
−] > 6) displayed a decrease in their Fe(II) concentration and pH with time

(Figure 1, Table 1). The pH dropped to ~2 in chloride- and ~2.5 in sulfate-rich fluids, in response to
Fe(II) oxidation and subsequent Fe(III) hydrolysis. Similar to Mitra and Catalano [49], the rate of
Fe(II) oxidation was slower in sulfate- than chloride-rich fluids, despite the greater Fe(II) to chlorate
ratios in the present study. Fe(II) oxidation in chlorate-equivalent systems for all fluids and initial pH
conditions displayed about 90% of the maximum stoichiometric extent of reaction within 100 days.
The chlorate-equivalent systems experienced a greater extent of Fe(II) oxidation than chlorate-deficient
systems, due to the stoichiometrically greater amount of chlorate in the system.

Figure 1. The dissolved Fe(II) concentration and pH versus time in systems containing approximately
10 mmol L−1 Fe(II) with 1.67 ([Fe(II)]/[ClO3

−] ≈ 6) mmol L−1 and 1 mmol L−1 (≈10) ClO3
− in 10−1 mol

L−1 MgCl2 at initial (a) pH 3, (b) pH 5, and (c) pH 7, and in 10−1 mol L−1 MgSO4 fluids at initial (d) pH
3, (e) pH 5, and (f) pH 7 at 24 ◦C. The ratios written alongside the curves represent the initial molar
ratio between [Fe(II)] and [ClO3

−].

The rate of Fe(II) oxidation by chlorate was proportional to the chlorate concentration [63],
explaining the slower oxidation rate in chlorate-deficient systems than the chlorate-equivalent and
“chlorate-excess” systems ([Fe(II)]/[ClO3

−] ≈ 1) [49]. Unlike chlorate-equivalent systems that contain
nearly enough chlorate to oxidize all dissolved Fe(II), the chlorate-deficient systems were expected to
contain excess substantial Fe(II) ions after the consumption of all available chlorate in the solutions.
The small amount of dissolved Fe(II) unoxidized in the chlorate-equivalent experiments was due to
the slightly greater [Fe(II)]/[ClO3

−] than 6 and the insufficient time to undergo full oxidation. The pH
evolution trend matched the Fe(II) reduction trend and the chlorate-deficient systems showed a slower
pH decrease than the chlorate-equivalent systems. This effect was expressed more clearly in sulfate-
than in chloride-fluids, owing to the slightly slower Fe(II) oxidation rate. At the end of the experiments,
the chlorate in all reactors was below the detection limit (0.012 mmol L−1) (Table 1).
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To further evaluate the stoichiometric efficiency of chlorate, the kinetic data were compared to
the predictions of the rate model from Mitra and Catalano [49], which followed the following rate
law [63–65]:

−
d[Fe(II)]

dt
= k1aFe2+aClO−3

a0.886
H+ + k2aFe2+aClO−3

a−0.634
H+ (2)

This model explicitly assumed a 100% efficiency, i.e., 1 mole of ClO3
− oxidized 6 moles of

Fe(II). In other words, the kinetic model provided the ideal extent and rate of Fe(II) oxidation,
chlorate consumption, and pH evolution, as a function of time corresponding to each experiment.
The results of the experimental studies were compared to the model results to understand the practical
efficiency of chlorate to oxidize Fe(II) in experimental conditions. Both Fe(II) concentration and the
pH of the experiments were in close agreement with predictions of our previously-parameterized
kinetic model [49], across near-neutral to acidic pH conditions in both chloride- and sulfate-rich
fluid systems (Figure 1). The kinetic model also predicted near-complete consumption of chlorate
(Figure S2), as observed in the experiments (Table 1) at the end of ~100 days. This model-data
comparison demonstrated that chlorate expressed its maximum capacity for oxidizing dissolved Fe(II)
in Mars-relevant fluids.

3.2. Mineral Products in Chlorate-Equivalent vs. Chlorate-Deficient Systems

Fe(II) oxidation by chlorate and subsequent Fe(III) hydrolysis yielded diverse mineral products in
the corresponding ~100 day duration replicate mineral precipitation experiments (Figure 2, Table 2).
The final chlorate concentration in all replicate experiments dropped below the detection limit of the
ion chromatograph (Table 2). The final pH values of the replicate solutions matched with the final pH
values of the corresponding kinetic experiments (Table 1), except the solutions starting at near-neutral
solutions, in which minor deviation in the final pH was observed. The chloride fluids that started at
pH 3 primarily produced dissolved Fe(III), and filtering the solution did not yield sufficient minerals
for characterization. The final pH of these solutions dropped below pH 2, facilitating greater solubility
of the generated Fe(III) and leading to decreased amounts of mineral precipitation. A portion of the
minerals that formed in these solutions were likely nanoparticulates and passed through the filter
due to their small particle size. Discoloration indicated that particles were also retained by the filter
membrane but these remained embedded and could not be recovered for analysis. The remainder of
the precipitate was too limited in quantity to recover and analyze. All remaining experiments yielded
mineral precipitates that depended on the fluid composition, the extent of Fe(II) oxidation, and the
reaction rate (Figure 2).

3.2.1. Minerals Produced in Chloride-Rich Fluids

The chloride-rich fluid solutions that started at pH ~7, unlike pH 3, produced a mixture of
Fe(III)- and mixed-valent Fe(II/III) minerals (Figure 2a,b, Table 2, and Table S1). Chlorate-equivalent
experimental solutions that started at pH 7 produced a mixture of lepidocrocite, nanocrystalline goethite,
and nonstoichiometric magnetite. The proportion of lepidocrocite in the mineral precipitate was greater
for higher concentrations of Fe(II) and chloride in the solution. In contrast, chlorate-deficient systems
formed a mixture of green rust, goethite, and magnetite. The low-concentration ([Fe(II)] ≈ 10 mmol L−1)
chlorate-deficient system preserved green rust while high-concentration ([Fe(II)] ≈ 100 mmol L−1)
solutions yielded a larger proportion of magnetite over goethite and green rust. Magnetite precipitated
as the dominant mineral in chlorate-deficient chloride fluid systems starting at near-neutral conditions,
in both low ([Fe(II)] ≈ 10 mmol L−1) and high ([Fe(II)] ≈ 100 mmol L−1) concentration solutions.
The high-concentration chlorate-deficient system showed formation of magnetite with minor goethite.
The chlorate-deficient systems maintained substantial unreacted Fe(II) and produced slower oxidation
rates and relatively higher pH values, which facilitated the predominance of magnetite over other
Fe(III) minerals.
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Figure 2. XRD patterns of the mineral products (left) and phase proportions generated using Rietveld
refinement (right) for the corresponding XRD scans (Figures S3–S6) of the precipitates formed by the
oxidation of dissolved Fe(II) by chlorate (ClO3

−). Chloride-rich fluids using (a) [Fe(II)]/[ClO3
−] ≈ 6 and (b)

[Fe(II)]/[ClO3
−] ≈ 10 and sulfate-rich fluids using (c) [Fe(II)]/[ClO3

−] ≈ 6 and (d) [Fe(II)]/[ClO3
−] ≈ 10 were

investigated. The sample labels depict fluid type, initial Fe(II) concentration (mmol L−1), MgCl2 concentration
(mmol L−1), and initial pH (sample label details in Table 2, except segregated by initial Fe(II) to chlorate
ratio). The abbreviated names of each experiment represent the fluid composition (either Cl = chloride,
or S = sulfate), concentration of Fe(II) in mmol L−1, and the initial pH. Diagnostic peaks are as follows:
G = Goethite, L = Lepidocrocite, M = Magnetite, GR = Green Rust, S = Schwertmannite, and Sa = Salt
(bischofite [MgCl2·6H2O], halite [NaCl], or hexahydrite [MgSO4·6H2O]). The scans are offset from each other
and scaled for better visualization; CPS = counts per second.
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3.2.2. Minerals Produced in Sulfate-Rich Fluids

All experiments conducted in the sulfate-rich fluid systems yielded mineral precipitates containing
either magnetite, goethite, or schwertmannite (Figure 2c,d, Table 2, and Table S1). The SO4-rich fluids
did not precipitate lepidocrocite or green rust. The experimental solutions that started at pH 3 produced
either schwertmannite or goethite, depending on the Fe(II) concentration. Solutions with high solute
concentration ([Fe(II)] ≈ 100 mmol L−1) formed schwertmannite as the sole phase. The final pH of these
solutions dropped below pH ~2.3 and no other Fe(III)-bearing phases co-existed with schwertmannite.
The solutions containing low solute concentrations ([Fe(II)] ≈ 10 mmol L−1) starting at initial pH 3,
precipitated nanocrystalline goethite instead of schwertmannite. Experimental solutions that started
at pH 7 produced magnetite or more crystalline goethite. The proportion of crystalline goethite also
increased in solutions that started at near neutral solutions.

Sulfate-rich solutions containing greater than ~10 mmol L−1 Fe(II) precipitated magnetite as
the predominant mineral in chlorate-deficient systems at neutral pH. On the other hand, analogous
chlorate-equivalent systems did not precipitate magnetite. We investigated a chlorate-equivalent
solution with even lower solute concentrations ([Fe(II)] ≈ 5 mmol L−1) to further decrease the rate of
Fe(II) oxidation. Magnetite precipitated with minor goethite in this dilute chlorate-equivalent system,
when the initial pH was 7 but did not form any detectable mineral precipitate in solution that started at
pH 3. The precipitation of magnetite was favored over goethite in this system, owing to the very slow
Fe(II) oxidation rate, due to low initial [Fe(II)] and the mild acidic nature of the final fluid (pHfinal ≈ 4.6).

4. Discussion

4.1. Fe(II) Oxidation Capacity of Chlorate

Our results demonstrated that chlorate expresses the full theoretical capacity to oxidize Fe(II) in
Mars-relevant fluid systems. The final observed dissolved Fe(II) concentration in all experimental
solutions at the end of ~100 days were similar to the calculated final values predicted in the same
time period by the kinetic model (Tables 1 and 2), which assumed full oxidation efficiency of chlorate
ions. The close agreement between the experiment and the model (Figure 1) demonstrated that
each chlorate ion could oxidize six dissolved Fe(II) ions without substantial loss via side-reactions.
Therefore, any chlorate present on the surface of Mars is expected to be fully available to react with
Fe(II), providing a substantial oxidizing capacity. This also confirmed the applicability of the previously
published rate law model [49] to accurately predict the rate of Fe(II) oxidation by chlorate in diverse
systems. The model can therefore be confidently used to simulate Fe(II) oxidation by chlorate in
diverse Mars-relevant fluids.

4.2. Geochemical Parameters Determining Mineral Products

4.2.1. Fluid Composition

The fluid composition, specifically the dominant anion present, exerts strong control over the
mineral product by influencing the mineral formation pathways [24] and by providing essential
components for some minerals (e.g., chloride for akaganeite, sulfate for schwertmannite and jarosite)
(Figure 3). The effect of fluid composition on the nature of mineral product formation is shown in our
results (Figure 2) and our earlier study [49]. Iron oxidation by chlorate in chloride-rich fluids produced
either lepidocrocite, goethite, magnetite, akaganeite, or a mix of these minerals. Chloride and other
halogenides (bromide, iodide, fluoride) promote lepidocrocite formation [90,91], and akaganeite forms
in acidic chloride-rich fluids [24,92–95]. Similarly, in sulfate-rich solutions iron oxidation by chlorate
produced either goethite, magnetite, schwertmannite, jarosite, or a combination of these minerals.
The precipitation of jarosite (hydronium- and natro-) was observed by Mitra and Catalano [49]. Sulfate
ions also favors goethite formation over lepidocrocite [24], hence the predominance of goethite in
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sulfate-rich fluids. Schwertmannite forms as a precursor mineral to jarosite and goethite in Fe(II)
oxidizing sulfate-rich fluids [96–98].

Figure 3. (Top) Schematic of possible iron oxidation pathways on Mars. Mineral products of iron
oxidation determined by the fluid type, solution pH, and oxidation rate. The wt.% in each mineral box
represents the amount of Fe(III)-bearing mineral that can be produced by the oxidation of Fe(II) by
1 wt.% chlorate. (Below) Fourfold diagram depicting the dominant mineral product as a function of
fluid concentration and solution pH.

4.2.2. pH Evolution

The solution pH also played an important role in determining the type and proportion of the
mineral precipitate (Figure 3). Highly acidic systems inhibited the precipitation of substantial Fe(III)
minerals because of mineral nucleation inhibition and the weak supersaturation of iron oxides at low
pH (<2) (Figure 2, Table 2). When minerals do form in substantial quantities, the final pH alone does
not determine the parameter of the mineralogy, as the data clearly demonstrated that this was affected
by the pH at the time of nucleation. The fluids at the end of the experiments were acidic; this suggest
that phases such as akaganeite [Fe8O6.4(OH)9.7Cl1.3 or β-FeO(OH,Cl)] and jarosite [XFe3(OH)6(SO4)2,
X = K+, Na+ or H3O+] should form. However, green rust and magnetite, which typically form in
near neutral and alkaline conditions [24], formed in some cases, with goethite and lepidocrocite also
occurring. This indicated that the circumneutral pH at the time of mineral nucleation had a substantial
effect on the fate of Fe(III).

The relative abundance of goethite and schwertmannite in sulfate-rich systems was also primarily
controlled by the solution pH. Schwertmannite is a common mineral in acid sulfate systems and was
shown to occur between pH 4.7 to 1.9 [98]. It is a metastable precursor mineral forming in oxidizing
sulfate-rich Fe(II) solutions in acidic systems [96,97]. The stability of schwertmannite in our experiments
might thus be transient, although it is apparently stable in the studied fluids for at least 100 days.
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In other studies schwertmannite was shown to transform to either goethite or jarosite, depending on the
pH and sulfate concentration of the solution [97,99–104]. In the present work, schwertmannite formed
only in experimental solutions that started at pH ~3 and then dropped below pH ~2.3. The preservation
of schwertmannite in our experiments demonstrated the important role played by the solution pH at
the time of mineral nucleation, in determining the type of mineral precipitate.

The frequent occurrence of magnetite was unexpected, given the low final pH of some experiments.
Notably, magnetite only precipitated in solutions that started at near-neutral pH. The solution pH
at the time of magnetite nucleation was likely ~4. Simulation of the exact initial composition of
the experiment using the kinetic model found that the pH was at this value at the initiation of
magnetite precipitation (simulation not shown). Magnetite is metastable in acidic solutions, owing to
its high solubility [105,106]. It persists in our experimental solutions either due to slow dissolution
kinetics [107,108], or the formation of an oxidized surface layer that inhibited further dissolution. Lattice
parameters and octahedral iron occupancies from Rietveld refinements of the XRD results indicate the
presence of non-stoichiometric magnetite in a number of experiments (Figure 2). Non-stoichiometric
magnetite, also referred to as “cation-deficient magnetite”, had an Fe(II)/Fe(III) ratio <0.5 and a unit
cell smaller than regular magnetite (8.396 Å), caused by Fe(II) oxidation to Fe(III), and the presence of
vacancies in its structure [109]. The formation of non-stoichiometric magnetite might be caused either
by direct oxidation of magnetite by chlorate or by the leaching of surficial Fe(II) ions of magnetite in
acidic fluids (pH 2–2.5) [110]. Our experiments depicted a similar case in which magnetite at the end
of the experiment was retrieved from acidic solutions.

4.2.3. Oxidation Rate

Geochemically similar systems can produce different mineral products due to the differences in their
iron oxidation rate (Figure 3). The oxidation rate is primarily controlled by the reactant concentration
([Fe(II)] and [ClO3

−]) (Equation (2)) [63–65], with dilute solutions experiencing slower oxidation rate
than solutions with higher concentrations. Chloride-rich, “Chlorate-excess” ([Fe(II)]/[ClO3

−] ≈ 1)
solutions investigated in our prior investigation [49] produced akaganeite, due to very rapid oxidation
rates. In contrast, lepidocrocite formed in similar fluids in the chlorate-equivalent systems of the
present study due to slower rate of Fe(II) oxidation (Figure 2).

Slower rates of oxidation in chloride-rich, chlorate-deficient systems induced magnetite formation
over lepidocrocite for initially circumneutral pH conditions. On the contrary, during faster Fe(II)
oxidation, lepidocrocite formation is preferred over magnetite (Figure S7). The figure demonstrates
how the mineral type is a strong function of the oxidation rate. A mixture of lepidocrocite and goethite
is formed in near-neutral solutions if the rate of formation is slightly slower [111]. In chloride-rich fluids,
systems favoring faster iron oxidation form akaganeite [49], while those yielding slower oxidation
rates form lepidocrocite and magnetite.

Similar to the chloride system, for sulfate-rich fluids the chlorate-excess solutions studied
previously produced jarosite in higher concentration solutions ([Fe(II)] ≈ [ClO3

−] ≈ 100 mmol L−1) that
yielded relatively fast oxidation, while lower concentration solutions ([Fe(II)] ≈ [ClO3

−] ≈ 10 mmol L−1)
favored goethite [49]. Slower oxidation rates in chlorate-equivalent and -deficient systems produced
either goethite, schwertmannite, or magnetite. Relatively faster oxidation rates favored goethite
(or schwertmannite, depending on initial pH) production over magnetite. The sulfate-rich fluids
produced magnetite in systems with an even slower oxidation rate, which contained unoxidized Fe(II)
along with oxidized Fe(III) in the solution. Magnetite formed either in chlorate-deficient systems
containing low [Fe(II)] (~10 mmol L−1) (e.g., S-10:1-10-100-7) or in chlorate-equivalent systems with
even lower [Fe(II)] (~5 mmol L−1) (e.g., S-6:1-5-100-7); refer to Tables 1 and 2 footnotes for explanation
of the sample codes. In all systems, magnetite formed in solutions undergoing slow oxidation at
near-neutral solutions (Figure S7). Sulfate-rich solutions produced magnetite only when the rate of
oxidation was orders of magnitude slower than those which formed goethite or jarosite.
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4.3. Quantitative Measure of Mineral Production

The Fe(III) ions produced by Fe(II) oxidation undergo hydrolysis and precipitate Fe(III)-bearing
and mixed valence Fe(II/III) minerals. Mass balance calculations showed that 1 wt.% chlorate
could produce about 6.4 wt.% FeOOH (e.g., goethite, lepidocrocite). Similarly, if other chemical
species, such as chloride and sulfate, were available, 1 wt.% chlorate could produce ~12 wt.% jarosite
[XFe3(OH)6(SO4)2, X = K+, Na+ or H3O+], ~7 wt.% schwertmannite [(~Fe8O8(OH)6SO4], and ~7 wt.%
akaganeite [Fe8O6.4(OH)9.7Cl1.3]. In systems with slow oxidation rates, the Fe(III) generated from 1 wt.%
chlorate might combine with unreacted Fe(II) to form ~8.3 wt.% magnetite. Diagenetic transformation
of these metastable phases [24,25,33–44] yield about 5.7 wt.% hematite per wt.% of chlorate reacted.

Such diagenetic transformations are critical to the ultimate fate of iron oxides and oxyhydroxides
that occur as metastable phases on the Martian surface [112]. Although ferrihydrite was not one of the
phases observed to form in our study, the timescales of its phase transformation provides insight into
hematite formation via diagenesis on Mars. Ferrihydrite transforms in aqueous media to hematite,
on timescales of years to decades, at temperatures as low as 4 ◦C, with the rate being primarily
dependent on pH, temperature, and the presence of solutes or other minerals in the solution [113–119].
The extent of any diagenetic transformation is primarily a function of time and temperature [120],
and mineral transformation processes studied at high temperature in the laboratory might occur
during diagenesis at lower temperature after increased reaction times, unless other pathways take
over. Goethite decomposes directly to hematite, through thermal or hydrothermal dehydroxylation
processes [24] and by dehydration [33]. Goethite can also transform to hematite at ~25 ◦C, during
diagenesis in geological conditions, in the presence of liquid water [26]. Goethite is the most common
Fe(III) bearing mineral that formed in our study (Figure 2) and likely produces hematite, given the
right conditions or time. Based on morphological [34] and spectral studies [27], goethite formed in an
aqueous environment was considered to be the most probable precursor mineral for crystalline hematite
spherules at Meridiani Planum [25,27,33]. Lepidocrocite, albeit a goethite polymorph, does not form
hematite directly but involves maghemite (γ-Fe2O3) as an intermediate. In our work, lepidocrocite
formed in chloride-rich (Figure 2) and perchlorate-rich solutions [49].

Akaganeite, schwertmannite, and jarosite can undergo transformation to hematite in both aqueous
solution and through solid-state transformation. Akaganeite transforms to hematite via a dissolution-
reprecipitation mechanism at ambient (~28 ◦C) [35] and hydrothermal (70–200 ◦C) [36,37,121–124] conditions.
The solution pH and the presence of other solutes are important parameters that govern akaganeite
transformation [121], with goethite forming instead of hematite at pH > 12. Akaganeite transformation
to hematite in hydrothermal systems sometimes precedes with the early formation of hydrohematite,
an Fe-deficient, hydroxyl (-OH)rich hematite phase [124]. Akaganeite can also transform to jarosite at
lower pH conditions (<pH 4.5) in the presence of sulfate [92]. Akaganeite precipitated in chloride-rich,
chlorate-excess solutions [49], and could serve as important hematite precursors on Mars. An iron oxidation
study [96] conducted on sulfate-rich systems demonstrated the transformation of jarosite and nanocrystalline
goethite to hematite, which might explain the association of hematite and sulfates in regions like Valles
Marineris [125,126], Aureum Chaos, and Iani Chaos [127]. Schwertmannite transforms to goethite at high
pH, while jarosite is favored at low pH conditions [96,97,99–104]. Although schwertmannite could be
stable in the solid-state for longer periods of time (e.g., Rio Tinto) [128], it often readily transforms
to either jarosite or goethite [96,97,99–104], depending on the solution pH and sulfate concentration.
Schwertmannite and jarosite are important Fe(III)-bearing minerals in sulfate-bearing fluids in our
experiments. While jarosite precipitated only in the chlorate-excess systems [49], schwertmannite
formed in both chlorate-equivalent and -deficient systems. The ability of schwertmannite to form
goethite or jarosite provides additional potential diagenetic routes to hematite on Mars.

4.4. Implications for Gale Crater, Mars

Chlorate is likely present in Gale Crater, as suggested by in-situ SAM instrument results [51,53,54,129]
and recent terrestrial laboratory experiments [55]. Chlorate is now shown to form all key iron oxides found
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in Gale Crater via Fe(II) oxidation (Figure 2 and [49]), except hematite, and was recently proposed to be a
likely Fe(II) oxidant [130]. However, hematite is expected as a diagenetic product of many of these phases
(Section 4.3). The results from the CheMin drill samples in Gale crater on Mars show coexistence of magnetite
and akaganeite in the Yellowknife Bay Formation [John Klein (JK), and Cumberland (CB) drill samples] [131],
and magnetite with jarosite in the Murray Formation [Confidence Hills (CH), Mojave2 (MJ), Telegraph Peak
(TP), and Stoer (ST) drill samples] [6,7]. Based on the results of our studies, none of the experiments
generated coexisting akaganeite and magnetite, or jarosite and magnetite. It is therefore likely that
magnetite was precipitated from a fluid that was different in composition from those precipitating
jarosite and akaganeite (Figure 3). Therefore, the occurrence of hematite as well as magnetite with
acidic phases indicates that multiple diagenetic fluids of different compositions have likely altered both
Yellowknife Bay and Murray Formation sediments in the past. Alternatively, evaporation processes
might concentrate and acidify fluids, and the same near-neutral and dilute fluid that forms magnetite
might subsequently evolve into the akaganeite or jarosite stability fields, provided that enough chlorate
is present to continue oxidizing residual Fe(II) and that the resulting fluids do not destroy the initial
magnetite precipitates.

5. Conclusions

The experimental efficiency of Fe(II) oxidation by chlorate was investigated in Mars-relevant
fluids. Chlorate can exhibit its maximum theoretical oxidation capacity in chloride- and sulfate-fluid
environments from circumneutral to acidic pH conditions, and closely follows our predictive kinetic
model [49]. The mineral products are controlled by the fluid type, acidity, and the Fe(II) oxidation
rate. The oxidation rate was determined by the concentration of Fe(II), oxidant (chlorate), and the
[Fe(II)]/[chlorate] ratio. Geochemically similar solutions experiencing slower rates of oxidation
favored magnetite over other iron oxides. A total of 1 wt.% chlorate can produce ~6.4 wt.% goethite
(α-FeOOH) and lepidocrocite (γ-FeOOH), ~7 wt.% akaganeite [β-FeO(OH,Cl)] and schwertmannite
[(~Fe8O8(OH)6SO4], ~8.3 wt.% magnetite (Fe3O4), and ~12 wt.% jarosite [XFe3(OH)6(SO4)2, X = K+, Na+

or H3O+]. These phases might subsequently diagenetically convert to ~5.7 wt.% hematite (α-Fe2O3).
Notably, all iron oxides found in the Gale Crater can be produced by Fe(II) oxidation by chlorate
or through subsequent diagenesis. Despite the low concentration on the surface of Mars (<1 wt.%),
the high oxidizing capacity of chlorate and its possible regeneration by the putative oxychlorine cycle
makes chlorate an important contributor of iron oxide, on both past and present Mars.
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