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Abstract: More than 40 m length of drill cores were collected from four boreholes drilled by Geological
Survey of Finland (GTK) and Outokumpu Oy in high-grade metamorphic rocks of Rautalampi and
Käypysuo, Central Finland. The hosted rocks of the graphite mineralization were mica–quartz schist
and biotite gneiss. The graphite-bearing rocks and final concentrated graphite powder were studied
with petrographic microscope, scanning electron microscope (SEM-EDS), Raman spectroscopy, and
X-ray analysis (XRD and XRF). A majority of the studied graphite had a distinctly flakey (0.2–1 mm in
length) or platy morphology with a well-ordered crystal lattice. Beneficiation studies were performed
to produce high-purity graphite concentrate, where rod milling and froth flotation produced a final
concentrate of 90% fixed carbon with recoveries between 67% and 83%. Particle size reduction was
tested by a ball and an attritor mill. Graphite purification by alkaline roasting process with 35% NaOH
at 250 ◦C and leached by 10% H2SO4 solution at room temperature could reach the graphite purity
level of 99.4%. Our analysis suggested that purifying by multistage flotation processes, followed by
alkaline roasting and acid leaching, is a considerable example to obtain high-grade graphite required
for lithium-ion battery production.
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1. Introduction

Graphite occurs naturally in the Earth’s crust in schist and gneiss metamorphic rocks. The graphite
can have a microcrystalline structure and flaky morphology, displaying a polymorphic phase with
hexagonal and rhombohedra layers. Based on its structure properties, graphite is applied in a variety
of technological applications including lithium-ion batteries, fuel cells, two-dimensional grapheme,
electronics, fiber optics, electrical vehicles, and so forth.

Graphite is an essential component of commercial lithium-ion batteries in the near-to-mid-term
future. The vast majority of lithium-ion (Li-ion) batteries use graphite powder as an anode material.
Graphite anodes meet the voltage requirements of most Li-ion cathodes, as they are relatively affordable,
extremely light, porous, and durable. Recently, natural graphite has been considered as a promising
anode material due to its high reversible capacity, cycle stability, higher purity, and more suitable
particle size distribution [1,2].

Particle or flake size, carbon content, and grade of graphite products are important in commercial
interest of the batteries industry. Graphite electrodes (anodes and cathodes) can only be produced from
natural graphite ores by several beneficiation processes, which include repeated crushing, milling,
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and flotation to separate the graphite flakes from their ore body. Ultra-high-purity (>99.95% C) with
fine particle size ranging from 10 to 30 µm of battery grade could be achieved by further purification
with alkali roasting pretreatment and acid leaching process [3]. In practical terms, graphite is one of
the easiest minerals to segregate into a rough concentrate, but one of the most difficult to refine into
a commercially useful product. To overcome this problem, some new grinding processes, such as
vibration [4] and stirred milling [5], can be used to reduce the large flakes promptly after each flotation
process while keeping the crystallinity of graphite.

Graphite-bearing rocks are rarely found as outcrops due to their softness and low weathering
resistance. It has been found that geophysical investigations, especially electromagnetic, are a
very effective method for locating unexposed graphite deposits in prospecting of graphite deposits.
The Rautalampi and Käpysuo areas are located in the Savo Schist Belt that comprises metasedimentary
and volcanic sequences, which are related to the rifting of the Archean Karelian Craton [6,7].

The rocks hosting significant graphite mineralization occurrences in Rautalampi and Käpysuo
are quartz–mica schist and feldspathic biotite gneiss (Figure 1). These rocks are associated with
garnet–sillimanite gneisses and garnet ± cordierite ± orthoamphibole/orthopyroxene (GCO) rocks and
gneissic tonalite [8]. According to previous studies, the graphite-bearing rocks, which include volcanic
rocks and metasediments from Pyhäsalmi to Rautalampi, have been dated at 1922 ± 12 Ma [9–11].
These rock types are regarded as the basement of the overlying volcano sedimentary supracrustal
sequence [12].
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The flake graphite deposits occur in different parts of the Proterozoic supracrustal continent
with various grade graphite ores and different types of ore deposits [13,14]. According to the USA
and European Union, graphite is considered to be a critical material for industry and national
security. The refractories industry is the leading consumer of crystalline flake graphite, where the
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graphite, having an excellent temperature resistance and stability, is used in furnace lining applications.
Crystalline flake graphite can be divided into two main grades: coarse flakes (≥150–850 µm in diameter)
and fine flakes (≥45–150 µm in diameter), which may be further subdivided into fractions ≥100–150 µm,
≥75–100 µm, and ≥45 µm [15–17]. Flakes in the size range of 250–1000 µm in diameter demand the
highest price [18].

In this paper we describe flake graphite occurrences in Rautalampi and Käpysuo as the highest
potential of flake graphite in Finland due to the quality of the hosted bedrocks and the suitable
metamorphic grade. The study also describes the separation and purification techniques for producing
high-quality graphite with very low concentration of impurities for lithium-ion battery anodes
application requirements.

2. Materials and Methods

2.1. Sample

In the studied area, two types of rocks contain a significant amount of graphite, which include
graphite flakes occurring in strongly foliated black schist, and disseminated graphite flakes within
a banded gneiss. Bimodal flake graphite populations have been seen in thin section samples from
Rautalampi and Käpysuo graphite deposits. The larger flakes are in excess of 1 mm long, while the
small flakes are about 0.1 mm in length. The graphite is intimately associated with varying amounts of
biotite, chlorite, quartz, and feldspar. Minor minerals are chlorite, pyrite, titanite, and hornblende,
and accessory phases are apatite, pyroxene, zircon, and opaque.

The feed samples used in this study were obtained from a more than 40 m length of drill cores
in Rautalampi and Käpysuo graphite ore for the grinding and flotation tests. Composite drill-core
samples were divided into 700 g subsamples for flotation testing in GTK Mintec laboratory (Table S1).
Many analytical instruments were used to identify the feed samples before and after the experiment.
XRF and ICP-Ms analyses were used for chemical analysis, X-ray diffraction (XRD) was used for
mineral composition, and SEM was used for morphological and elementary analyses.

2.2. Chemical and Mineralogical Analysis

The samples were analyzed at Eurofins Labtium Oy, Finland, using XRF and ICP-MS.
The noncarbonate carbon was analyzed by the pyrolysis method (Eltra analyzer). The whole rock
composition of selected samples are presented in Table S2.

The mineralogical characterization and textural relations of the minerals in the Rautalampi Käpysuo
deposit were carried out on both graphite-bearing rock samples and final graphite concentrates. XRD
analysis of ground samples were subjected to a Burker D8 Discover A25 X-ray diffractometer, hosted in
GTK’s mineralogical laboratory. The equipment parameter of copper tube source (40 kV and 40 mA),
Cu Kα (Cu Kα1 = 1.5406 Å; Cu Kα2 = 1.5444 Å; Cu Kα average = 1.5418 Å; and Cu Kβ contamination =

1.3922 Å). The XRD patterns were recorded in the 2◦–70◦ angular interval in continuous measurement
mode of 0.01 2 θ/s angular velocity, with scan rate of 2◦/min and count time of 0.5 s/step (Figure 2).
Quantitative analysis was performed by using Bruker EVA software and ICDD (International Center
for Diffraction Data), Powder Diffraction File PDF-4 Minerals 2018 database that contains only naturally
occurring inorganic crystalline phases.

The scanning electron microscope (SEM-EDS), JEOL5900 LV with X-ray (EDX) detector at the
GTK mineral laboratory, Espoo, Finland, was used to examine 16 thin sections made from drill cores
and the graphite flakes powder extracted by flotation, leaching, and roasting processes. Backscattered
imaging (BSI) was used to characterize the mineral morphology and quantity proportion of primary
minerals, while the energy dispersive X-ray analysis (EDX) was used for elemental analysis. The goal
was to determine if the graphite-bearing rocks differ from each other in flake size, characteristics of the
graphite flakes, and their associated impurities.
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Figure 2. X-ray Powder Diffraction (XRD) pattern of the sample N4442017_R7.

2.3. Raman Spectroscopy

The Raman spectra of each sample were recorded using a Renishaw inVia Confocal Raman
spectrometer equipped with a Leica DMLM microscope connected to a Leica camera, objectives
5×, 20×, 50×, and 100×, at the GTK Mintec mineral processing laboratory, Outokumpu, Finland.
The measurements were made by using an argon ion laser (785/532) with the extraction wave length of
532 nm at room temperature with a laser power of 5 mW and spectrum resolution of approximately
2 cm−1. The spectrum was calibrated against silicon water standard (520.6 cm−1).

The analyses were on 16 thin sections and 6 polished sections that were prepared from separated
graphite flakes. The most intense features of Raman spectra of graphite are visible at the first-order
region, where the so-called G band and D bands are [19–21]. The G band is characteristic of in-plane
vibrational mode involving sp2-hybridized carbon atoms which comprise the grapheme sheets in the
graphite. The position of the G band is highly sensitive to the number of grapheme layers and it is
visible at 1580 cm−1. The G band position shifts to higher energy or higher wavenumber location as
the layer thickness decreases [21]. The most intense of the D bands is the Di band, which is located in
the first-order region at ~1350 cm−1, and it is characteristic of unrecognized carbon. It is also known as
a disorder or defect band and represents the mode of sp3 carbon atoms [22–24]. Another first-order
band pertaining to structural disorder is the D2 band at ~1620 cm−1 which can be observed as a
shoulder on the G band. This shoulder becomes further developed in more disordered carbonaceous
materials where the G band and D2 band merge, until a single feature is observed around 1600 cm−1,
which produces an apparent band broadening and upshifting of the G band [25].

The first-order Raman spectra were recorded from 900 to 1800 cm−1, while the second-order
spectra were recorded from 2400 to 3100 cm−1. The peak positions, their height, full width of the peaks
at half-maximum (FWHM), and area of the disorder peak (D) and order peak (G) in the first-order
spectra were measured. Thus, the relative intensity ratio of D and G bands (R1 = D1/G) can be used as
an indicator for the degree of graphite crystallinity [26–28]. Raman spectra of graphite can also be used
as a geothermometer to estimate the peak metamorphic temperature in the rocks hosting graphite.
Beyssac et al. [24] constructed a geothermometer, based on the two bands area ratio (R2), defined
as (R2 = D1⁄(G + D1 + D2), which can be applied to regional metamorphism rocks, according to the
formula TGr (◦C) = −445 R2 + 641. The geothermometer is valid for temperatures between 330 and
650 ◦C, and the uncertainty corresponds to ±50 ◦C. At higher temperatures, the R2 ratio remains fixed
at ~0.05.
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2.4. Beneficiation

2.4.1. Flotation

Graphite-bearing rocks from Rautalampi and Käpysuo were beneficiated by froth flotation to
produce high-grade graphite concentrate. Flotation experiments were performed by GTK Mintec,
Mineral Processing Pilot Plant, at Outokumpu. The samples were prepared by crushing and sieving to
collect the sample fraction passing −1.4 mm. Crushed samples were then ground in one stage using
a laboratory rod mill for 75 min (<250 µm). The d80 of the flotation feed samples was about 43 µm.
The flotation feed C average head grade was 12.5%. In this study, the froth flotation experiments were
conducted in a flotation machine, with cell volume 1.5 and 4 L. Rougher flotation was done to separate
the graphite from their gangue minerals. Kerosene fuel (C12H23) was used as collector, and Flotanol
7026 plus methyl-isobutyl carbinol (MIBC, C6H14O) as flotation frothers for the graphite. Sodium
silicate (Na2SiO3) and starch were used as depressants aiming to remove silicates and iron-bearing
minerals, and the dosages were 1500 g/t and 450 g/t, respectively. The dosage of collector and frother
varied within the tests, as presented in Table 1. Graphite separation was accomplished through several
stages of cleaning since the objective of the study was to obtain high-grade graphite concentrates,
which are suitable for refractory and battery applications. A schematic depiction of flotation circuits
including initial stages of grinding and rougher flotation, followed by five cleaning stages, is given
in Figure S1. The chemical analysis of the feed to the rougher concentrate and the final concentrate
obtained is given in Table S3.

Table 1. Reagent types and dosage used for flotation test.

Test Code Main Variable
Reagent Dosages (g/t)

Flotanol 7026 Kerosene MIBC Na2SiO3 Starch

R7-1 Test (PH19-9) 204 1500
R7-2 Reagents 220 345 1500
R7-3 Lower collector dosage 111 172 1500
R7-4 Starch 111 170 1500 450
R7-5 Rod Mill 116 187 1500

The attritor mill (Union Process Model 1S) is mainly used for reducing particle sizes in the final
graphite concentrate from the flotation processes. The milling was done using 3 to 4 mm diameter
ceramic balls, 564 rpm, 3.8 L balls, and about 20% solids. After 360 min, the d50 was 24 µm. Additional
grinding with a laboratory ball mill was made with various conditions. The first test run was done
with a 5 kg mix of steel and ceramic balls, diameter 5–20 mm. Grain size degreasing appeared to
proceed very slowly and milling was continued with steel balls, diameter 10–15 mm and weight 8 kg.
Each suspension contained 350–400 g graphite concentrate and 0.5 L water.

2.4.2. Graphite Purification

Removal of silicate and gangue minerals from graphite ores was required to achieve high-purity
graphite products. Alkaline roasting and acidic leaching process were used to prepare high-grade
graphite (>99%) from fine flake graphite concentrates. These concentrates were products of multistage
flotation-cleaning processes of Rautalampi and Käpysuo ore. The graphite purification method
included several steps: alkaline roasting, water washing, sulfuric acid leaching, and drying to remove
any impurities within the lattice structure help to attain a highly purified graphite [29–31]. The alkali
roasting–acid leaching efficiency of pure graphite was investigated with the liquid–solid ratio of 2/1
(w/w) in alkaline roasting and 5/1 (w/w) in acidic leaching.

Firstly, the research samples of fine graphite were roasted with alkaline hydroxide (concentration
NaOH 15% to 35%) at 250 ◦C; in this step, common impurities were converted to soluble forms. In the
next step, the graphite was filtered, washed with water to remove residual alkalinity, and then dried at
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105 ◦C. The roasted product was washed numerous times using deionized water until the washing
solution reached natural pH = 7. After roasting, the graphite concentrate was treated with H2SO4

10% concentration in a beaker for further removal of the insoluble compounds, mainly hydroxides
and oxides. Finally, the resulting solution was filtered and washed several time with deionized water
until pH reached neutral. Then, the mixture was dried and high-quality graphite powders (>99%)
were obtained.

3. Results

3.1. Graphite Petrology and Mineralogy

Rautalampi and Käpysuo flake graphite is found mainly in two rock types: quartz–mica schist
and feldaphitic biotite gneiss. The quartz–mica schist comprises the minerals quartz, feldspar (mainly
plagioclase and orthoclase), and biotite as the main silicate minerals. The quartz and feldspar showed
partly a granoblastic texture. Graphite and sulfide were the main opaque minerals. The graphite
crystals most commonly occurred along the grain boundaries of other minerals and were often arranged
parallel to other minerals, particularly biotite, and together they defined the foliation of the rock,
forming a typical texture of the graphite schist (Figure 3a). Pyrite and pyrrhotite were the dominant
sulfides and associated mainly with graphite and biotite (Figure 3b). The feldspathic biotite gneiss rocks
consisted mainly of alternating quartz and feldspar bands (about 3 mm thick) and thin layers of biotite
and graphite (about 0.5 mm) with subordinate rutile, garnet, and amphibole. Plagioclase feldspar was
poorly to well twinned, occasionally myrmekitic and partially altered to sericite, whereas biotite was
altered to chlorite (Figure 3a–d). The same replacement of plagioclase was also seen in the biotite schist.

The foliation-laminae in both rock types consisted predominantly of graphite flakes plus biotite
and chlorite. The majority of the graphite flakes occurred as flat, plate-like crystals (>30 µm width),
with angular and rounded edges, disseminated mainly in fractures and along the foliation. Graphite
flakes in the studied samples ranged in size from 50 to 1600 µm in length. Commercial grade flake
graphite can be subdivided into coarse flakes (400–1600 µm), medium flakes (150–400 µm), and fine
flakes (<150 µm). From thin-section image analysis, most graphite flakes observed were oblong shaped,
but not particularly fibrous, and the ratios between their long and short axes were in the range of 2 to 4
for the majority of the flakes (Figure 3c–f). The SEM images also showed that all the samples consisted
of flaky graphite, that is, one graphite flake consisted of several layers, with regular and irregular flake
edges and clean flake surfaces (Figure 3f).

All of the XRD patterns of ground graphite corresponded to highly crystalline hexagonal graphite.
No peaks of rhombohedral graphite were recorded. The measured d002 spacing showed no significant
variation between the studied graphite samples (Figure S2). However, the measured full-width at
half-maximum (FWHM) of the 002 peak was more sensitive to calculate the size of crystalline graphite.
The Scherrer f ormula [32] is used to obtain the crystalline size along the c axis (L):

L =
Kλ

β· cos θ

where β is the full width of the peak at half-maximum (FWHM) in radian, λ is the X-ray wave length
in angstrom (Å), and θ is the angle of diffraction in radian. K is the shape constant, assumed to be
0.9 [33,34], the diffraction peak centered for studied graphite samples at 2θ value ranges (25.9–27.2
2θ◦). The calculated crystallite size along the c axis (L) of studied graphite samples ranged between
130 and 150 nm with an average of 135 nm.

The XRF analysis and normative mineralogy are presented in Table 2, which shows the major
constituents were SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, SO3, and Na2O. In addition, the average carbon
content was 12.5% FC (fixed-carbon content). The main gangue minerals were quartz, plagioclase,
K-feldspar, biotite with subordinate pyrite, carbonate, and chlorite.
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Figure 3. Petrography of a graphite-bearing schist and gneiss as seen in a polarization microscope.
(a,b) The graphite flakes show strongly foliated schist consisting of alternating biotite, quartz, plagioclase,
chlorite, and sulfide minerals; (c,d) reflected light image showing the large graphite flakes (≥1 mm)
occurring as flat, plate-like crystals (>30µm width), with angular and rounded edges; (e) plane-polarized
light illustrating two graphite populations within one sample, coarse and fine graphite flakes; (f) selective
graphite flakes as seen in SEM.

Table 2. Chemical composition and normative mineralogy of the studied graphite ore (wt. %).

Composition SiO2 Al2O3 Fe2O3 MgO TiO2 CaO K2O Na2O P2O5
Content 54.4 13.1 6.1 2.7 0.6 1.7 1.9 1.5 0.3

Composition BaO SrO C2O5 ZrO2 CuO ZnO Y2O3 SO3 C
Content 0.05 0.02 0.03 0.02 0.01 0.007 0.002 7.3 12.5

Mineral Quartz Feldspar Mica Carbonate Pyrite Chlorite Apatite Graphite Others

Content 35.4 25.4 15.5 4.3 4.5 1.1 0.6 12.5 0.5
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3.2. Particle Size and Chemical Analysis

In the processing of graphite beneficiation, the crude ore (about 1–3 kg) was subjected to crushing
first by using a jaw roll crusher to reduce it to the desired size (>1.4 mm), followed by stage grinding in
rod or ball mills in closed circuit with classifier, before being sent to flotation. The particles produced,
having different sizes and shapes, can be separated through a sieve series of screens: +1000, 700, 500,
250, 125, 180, 75, 45, and −20 µm. The weight percentage passing the sieve series was evaluated.
The calculated d80 of the graphite samples N4442017_R2 and N4442017_R7 were found to be 850
and 930 µm, respectively. The carbon content of particles that passed through the sieve series was
detected by Eltra analyzer (Table S4). The size distribution particles in the two representative samples
N4442017_R2 and N4442017_R7 are shown in Figure 4a. The effect of particle size on carbon content in
all size ranges was studied and is shown in Figure 4b. It is evident from the histograms that the highest
grades of graphitic carbon were obtained at size ranges larger than the 250/125 µm fraction in sample
N4442017_R2, while the highest carbon content in sample N4442017_R7 occurs in fraction +125–75 µm.
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3.3. Raman Spectroscopic Characterization

Raman spectroscopy is a rapid and nondestructive technique that can be used to estimate the
graphitization temperature and degree of crystallinity of the carbonaceous material (CM). Raman
spectrum is sensitive to the imperfections in the graphite crystal structure, such as the lattice
defects, finite size of crystallites, and edges of graphite layers. Beyssac et al. [24] derived the
first temperature-dependent empirical equation, in order to estimate the peak temperature between
330 and 650 ◦C during metamorphism. This was a developmental turning point and encouraged
the wider use of Raman spectroscopy as a geothermometer for graphite-bearing rocks. In order
to quantify the observations for Käpysuo and Rautalampi graphite samples, spectral parameters
were determined by background fitting process and the corresponding dataset is given in Figure 5.
The most widely used parameters obtained from Raman spectra were obtained from 35 petrographic
thin sections of graphite-bearing rocks, which are summarized in Table 3. To achieve wider utilization
of Raman, the spectrum processing method, and the positions and nomenclature of Raman bands and
all parameters including mean values for center position, FWHM of the D1 and G bands, values of the
D1/G intensity and peak area (D1⁄(G + D1 + D2) ratios are required to be standardized. An assessment
of the most widely used Raman parameters, as well as the best analytical practices that have been
proposed, was conducted. Based on these quantitative parameters, it is possible to evaluate the
metamorphic condition of graphite-bearing samples, according to the formula TGr (◦C) = −445 R2 + 641.
The application of TGr to the studied samples gave a temperature range of 430–560 ◦C.
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Table 3. Raman spectra parameters from petrographic thin section and the peak of the metamorphic
temperature, according to the formula of Beyssac et al., * TGr (◦C) = −445 R2 + 641 [24].

Samples
Peak Position FWHM

R1 R2 TGr (◦C) *
D1 G D1 G

High-crystalline graphite

RTL_PH3_52.95_2 1352 1580 37 14 0.10 0.20 560
M2143_98_R330_67.3_2 1350 1580 40 16 0.29 0.29 514

RTL_PH11_58.85_4 1350 1580 41 16 0.30 0.30 505
N4442018R30_54.05_2 1349 1581 40 16 0.45 0.32 498
M4121_61_R1_11.80_1 1350 1580 40 17 0.45 0.38 470

Low-crystalline graphite

RTL_PH3_152.0_1 1350 1580 42 17 0.85 0.48 420
RTL_PH3_152.0_3 1349 1580 42 17 0.90 0.48 430
RTL_PH9_238.0_2 1350 1580 40 17 0.68 0.46 434

RTL_PH8_155.85_1 1351 1580 41 16 0.65 0.46 436
RTL_PH6_127.6_1 1351 1580 41 17 0.70 0.44 440



Minerals 2020, 10, 680 10 of 16

Wide ranges of intensity ratio (R1) and peak area ratio (R2) were recorded for the graphite flakes in
35 thin sections and polished sections from selected samples ranging from 0.09 to 0.9 for R1 and 0.18 to
0.48 for R2 ratio (Table 3), indicating that the graphite flakes formed under high- and low-temperature
metamorphism, respectively. As the degree of graphitization increased, the Raman spectra of the
graphite G band became narrower, and the D1 band appeared broad as graphitization increased,
where the Raman spectra of the graphite band (G band) became narrower, and the D1 band appeared
as a broad band with lower relative intensity than those of low-grade graphitization [35,36].

In the high-crystalline graphite flakes samples, the R1 and R2 ratios decreased down to 0.1–0.45
and 0.2–0.38, respectively. The Raman spectra flakes showed a strong G band with quite broad D1
band and almost undetectable D2 band (Figure 5a,b). It is referenced that fully ordered graphite in the
studied rocks did not appear until metamorphism conditions were reached at temperatures exceeding
450 ◦C as recorded in the range of 470–560 ◦C.

Another interesting observation was the comparison between the evolution of R1 and R2 in
the low-crystalline graphite flakes (disordered graphite); the R1 intensity ratios (0.65–0.90) and R2
peak area ratios (0.44–0.48) showed higher values than those obtained for the somewhat high-grade
crystalline graphite flakes in the former samples. The disorder-induced D1 and D2 bands are observed
in Figure 5c,d which shows progressively better defined D1 and D2 bands than those of the high-grade
graphite samples and exhibits higher values of both intensity ratios R1 (D1/G) and peak area ratios R2
[D1⁄(G + D1 + D2)]. We refer to this type of disordered graphite formed at lower temperature recorded
range from 400 to 440 ◦C. Recently, Palosaari et al. [37] determined the peak metamorphism of graphite
occurrences in Piippumäki, Eastern Finland using Raman spectrum was 737 ◦C.

The presence of both ordered and disordered graphite in the studied samples can thus be explained
by a superimposition of more than one metamorphic event. In addition, disordered flakes intersecting
most metamorphic mineral assemblages could clearly be distinguished as having formed later than
ordered graphite flakes. The presence of ordered and disordered graphite can thus be explained by
a superimposition of more than one metamorphic event. We report here thermometer plots of the
calculated dependence on both R1 and R2 representing the used graphite flakes, and calibrated using
the formula of Beyssac et al. (RSCM) [24]. These datasets have demonstrated a linear correlation in
R2 values over the range 420 to 520 ◦C, but there was little variation in R1 values at low temperature
fields (Figure 6a). The graphite crystallinity was dominated and strongly correlated with peak
metamorphic temperature. The results of Figure 6b show that the center positions of D1 bands and G
bands shifted slightly with increasing metamorphic temperature from 1352 to 1348 cm−1 and 1581 to
1579 cm−1, respectively.
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3.4. Graphite Beneficiation

3.4.1. Flotation

Graphite ore is mostly concentrated from crushed rocks by using flotation separation techniques.
The beneficiation processes depend upon the nature and association of gangue minerals present
in ore deposits [38–40]. The mineralogical results indicated that the flaky graphite particles from
Rautalampi and Käpysuo deposit were embedded with gangue minerals such as quartz, mica, sericite,
clay, and sulfide minerals, making it difficult to be beneficiated by using the typical flotation technique.
Gangue mineral of sericite, mica, and clay have a similar flake or scaly form to graphite, and clay
shows good adhesion on the surface of graphite, so flotation of the graphite is antagonistically affected
significantly. Dissociation between graphite and sulfides has certain difficulties; especially fine graphite
particles filled in the pore of pyrite and pyrrhotite are difficult to dissociate, and this may have a certain
influence on the graphite concentrate quality. A combination technique of two rougher flotations at
natural pH and five stages of cleaner flotation was used to increase the graphite recovery based on the
coexisting relationship between graphite and gangue minerals in middling. The ore contained 5 to
20 wt. % C with an average of 12.5 wt. % C (Tables S1 and S2). By two rougher flotation stages at
natural pH, the grade graphite was increased to 51–57% fixed carbon. This product was the feed to the
flotation cell; five stages of cleaner flotation are essential to produce clean graphite concentrates of
80–86% total carbon content with 67–97% total carbon recovery.

The results of graphite grade (FC) and recovery achieved for the rougher flotation and final
graphite concentrate (CC5) sample R7 are summarized in Table 4 and Figure 7. All of the cumulative
grade-recovery curves were very similar and exhibited similar gradients, except one for sample R7-4
showed a clear difference with a steeper slope of the grade-recovery curve. Based on flotation tests of
composite sample R7, the best grade of final concentrate containing 85% fixed carbon at 88% recovery
was achieved in the test R7-5, where the treatment was done with a pH of 8.5 and the chemical dosages
were 187 g/t MIBC, 116 g/t kerosene, 1500 g/t sodium silicate, as presented in Table 1. The graphite
grade of the final concentrate upgraded from 57% to 85%, indicating that the two rougher flotations
followed by five stages of cleaning treatments can efficiently recover the graphite concentrate for the
battery industry.

Table 4. Results of flotation tests after fifth cleaning stage (CC5).

Flotation Stages Rougher Flotation Final Phase Cleaning CC5 Combined Tailings

Test Code C Grade % C Recovery % C Grade % C Recovery % Mass Pull % C Grade %

R7-1 57 98.4 86 70 8.5 3.4
R7-2 50.54 99.2 80 98 12.6 0.3
R7-3 53.28 98.9 84 79 9.6 2.4
R7-4 57.61 97.2 84 67 10.3 3.8
R7-5 56.74 97.6 85 88 10.7 1.4

3.4.2. Graphite Flake Size Reduction

The common techniques for the preparation of micron-size graphite are ball, attritor, or jet mill.
In this study, additional milling was carried out by using both the attritor and ball mill. The maximum
grade of the final (5th cleaner) concentrate was obtained at +125–250 µm fraction, having 97% FC.
The FC content of the final concentrate in the finer fraction decreased continuously as 90.7% C for
the 75–45 µm fraction and 82.6% C for the –20 µm fraction. The particle size of the final concentrate
d50 = 60 µm was reduced to 20 µm. The SEM images show that the final graphite concentrate consisted
of fine crystalline flaky graphite with 10~15 µm thickness and 50–100 µm of width. Each graphite
flake was composed of several layers with irregular and irregular flake edges and clean flake surface
(Figure 8a,b). The treatment is not expected to have modified the graphite flakes’ microstructure.



Minerals 2020, 10, 680 12 of 16

As expected, the general flat shape of the graphite flakes is still visible (Figure 8) and the high
crystallinity was indicated by X-ray diffraction (XRD) patterns (Figure 2 and Figure S2).Minerals 2020, 10, x FOR PEER REVIEW 12 of 16 
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3.4.3. Graphite Purification

Alkali treatment with graphite concentrate was mostly related to the concentration of alkali. It can
be observed that increasing the NaOH concentration from 15% to 35% improved substantially the C
grade in the residue as well as that the further raise of the concentration to higher than 35% did not
improve any more the process (Figure 9a).

The effect of alkaline roasting temperature on the removal of impurities from graphite concentrates
is quite clear. The increase of temperature leads to increasing the removal of impurities, especially
at the temperature range of 150–200 ◦C. The product purity reaches 93.5% at 150 ◦C and increases
peak value of 99.4% at 200 ◦C from a feed graphite powder purity of 97.7% (Figure 9b). In addition to
this, the effect of leaching time on the removal of impurities from graphite was studied. It seems that
increasing in leaching time has a positive effect on removing impurities. The removal of impurities
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increased rapidly by increasing leaching time from 30 to 120 min, but the leaching time seemed to have
an insignificant effect over 120 min (Figure 9c).
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Figure 9. Effect of roasting and acid leaching process on graphite purity; (a) high-grade graphite at
200 ◦C and for 3 h leaching time; (b) alkaline roasting temperature at 3 h concentration time; and
(c) roasting time at 250 ◦C.

Both alkaline roasting temperature and alkaline roasting time are equally good parameters for
eliminating impurities in fine graphite powder. Increasing the time and temperature will often increase
the rate of reaction of silicate and sulfide impurities. For instance, the concentration of SiO2 in the final
product could be reduced to less than 0.4% from 4.0% and sulfur content reduced to below 0.05% from
0.23% at 220 ◦C. The decrease of sulfur from 0.50% to 0.07% was most effective at a temperature of
350 ◦C.

Alkaline purification of the studied graphite showed excellent results as well. The results prove
it is possible to reduce impurities 1.5–1.7 wt% and the graphite content can be increased from 93.5%
to reach up to 99.4% carbon content, as shown in the samples tested, LT14 and LT 12, respectively
(Table S4). That purity was considered adequate for the first experiments as anode active graphite in
lithium-ion batteries.

4. Conclusions

1. Rautalampi and Käpysuo graphite ores mainly consist of quartz–mica schist and feldspathic
biotite gneiss. These rocks are associated with metamorphic indicator minerals as chlorite, garnet,
and sillimanite. The graphite flakes ranged in size from 50 µm to 1600 µm, but with the majority
ranging from 200 to 500 µm. Coarse graphite flakes occur as flat, plate-like crystals (≥30 µm width),
with angular and rounded edges, associated mainly with chlorite, biotite, and iron sulfide minerals.
Small graphite flakes were occurring as fracture, cavity-filling, or fissure-filling in veins. However,
some graphite flakes were concentrated along the mineral boundaries. Impurities in graphite ore and
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its surrounding host rocks were quartz, mica (biotite and chlorite), and sulfide minerals (pyrite and
pyrrhotite).

2. Raman spectroscopy study of graphite flakes provide, relatively easily and quickly,
comprehensive information on the degree of graphitization as a function of microstructure and
heat treatment, which may contribute to determine the maximum temperature reached during regional
and contact metamorphism. The formation temperature of ordered graphite flakes in Rautalampi and
Käpysuo was in the range of 470–590 ◦C, whereas that for the disordered graphite flakes ranged from
400 to 440 ◦C, which was related to the condition of retrograde metamorphism.

3. The crushed <1.4 mm graphite ore from the selected drill core sample was further ground with
rod mill grinding and then screened down to 250 µm (d80). The ground ore was concentrated by two
stages rougher flotation, followed by five cleaning stages. The final concentrate presented 85% fixed
carbon at 88% recovery. The flotation was done with a pH of 8.5 and the chemical dosages were 187 g/t
MIBC, 116 g/t kerosene, 1500 g/t sodium silicate.

4. Further purification by alkaline roasting process was still needed to produce high-grade
graphite with up to 99% carbon content to be used in the battery industry. The leaching process for
producing high-purity graphite from 87–93.5% to 99.4% carbon content was studied by using many
factors, such as concentrated sodium hydroxide (NaOH, 15–35%) at 250 ◦C, sulfuric acid concentration
H2SO4 of 10%, water washing, and finally drying.

5. The results showed that the graphite content of Käpysuo ore can be increased with alternative
purifying methods like leaching chemicals (hydrochloric acid, hydrofluoric acid) into ultra-high-purity
graphite (≥99.95% C) with fine particle sizes <20 µm, which reaches the requirement for use in
lithium-ion battery testing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/8/680/s1,
Table S1: Samples selected for mineralogical and beneficiation processes, Table S2: Whole rock geochemistry,
major oxides (wt. %), trace elements (ppm), and carbon content based on Eltra measurement, Table S3: Chemical
analysis of feed material and flotation test products, C content by Eltra (%) and element contents by XRF (%),
Table S4: Result of sieving analysis and corresponding FC content in wt. %, Figure S1: Schematic flow sheet of
graphite flotation. R7-5 is used as an example. The conditioning time for kerosene and MIBC was 2 min in all
stages, Figure S2: X-ray diffraction patterns of high-grade graphite products for several samples.
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