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Abstract: The quartz-vein-type Baiyinhan tungsten deposit is located at the eastern part of the Central
Asian Orogenic Belt, NE China. Analyses of fluid inclusions, H-O isotope of quartz and Re-Os isotope
of molybdenite were carried out. Three stages of mineralization were identified: The early quartz +

wolframite + bismuth stage, the middle quartz + molybdenite stage and the late calcite + fluorite stage.
Quartz veins formed in the three stages were selected for the fluid inclusion analysis. The petrographic
observation and fluid inclusion microthermometry results revealed three types of fluid inclusions:
CO2-H2O (C-type), liquid-rich (L-type) and vapor-rich (V-type). The homogenization temperatures
of C-type, V-type and L-type inclusions were 233–374 ◦C, 210–312 ◦C, and 196–311 ◦C, respectively.
The salinity of the three types of inclusions was identical, varying in the range of 5–12 wt%. The H-O
isotope analyses results showed that quartz had δ18OH2O and δDSMOW compositions of −2.6%� to
4.3%� and −97%� to −82%�, respectively, indicating that the ore-forming fluids were mainly derived
from magmatic water with a minor contribution of meteoric water. The addition of meteoric water
reduces the temperature and salinity of the ore-forming fluids, which leads to a decrease of the
solubility of tungsten and molybdenum in the fluids and eventually the precipitation of minerals.
Re-Os isotopic analysis of five molybdenite samples yielded an isochron age of 139.6 ± 7.6 Ma (2σ)
with an initial 187Os of −0.05 ± 0.57 (MSWD = 3.5). Rhenium concentrations of the molybdenite
samples were between 3.1 ug/g and 8.5 ug/g. The results suggest that the metals of the Baiyinhan
deposit have a crust origin, and the mineralization is one episode of the Early Cretaceous tungsten
mineralization epoch which occurred at the eastern part of the Central Asian Orogenic Belt.

Keywords: Re-Os dating; fluid inclusions; H-O isotope; quartz-vein tungsten deposit; eastern Central
Asian Orogenic Belt

1. Introduction

The eastern Central Asian Orogenic Belt (CAOB) in NE China is characterized by orogenic events
of the Paleo-Asian domain superimposed by the magmatism of the Paleo-Pacific and Ohotsk Ocean
tectonic domains, which resulted in extensive distribution of Mesozoic volcanic and granitic rocks
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together with widespread Cu, Mo, Au, Pb-Zn-Ag and Sn polymetal deposits [1–7]. In recent years,
an increasing number of tungsten deposits have been discovered in this region, revealing a great
potential of large-scale tungsten mineralization.

The previous geochronology studies of the tungsten mineralization in eastern CAOB have shown
Triassic, Jurassic and Early Cretaceous ages [8–29] and are in close association with the magmatic
activities. The mineralization includes porphyry, skarn and quartz-type deposits. The quartz-vein-type
tungsten deposits can be divided into two subtypes: Quartz-wolframite and quartz-scheelite vein
types. The Baiyinhan quartz-vein-type tungsten deposit belongs to the quartz-wolframite subtype.

At present, there is no unified understanding of the precipitation mechanism of tungsten in
ore-forming fluids, especially whether CO2 plays an important role in the migration and precipitation
of tungsten. In this study, we selected the newly discovered Baiyinhan deposit, which has not been
reported in any article to date. The Re-Os isotope test of molybdenite in the Baiyinhan quartz vein
tungsten deposit was carried out to determine the ore-forming age and source of ore-forming materials.
Fluid inclusions and quartz H-O isotopes were used to discuss the fluid evolution and fluid source of
the deposit, especially the role of CO2 in the migration and precipitation of tungsten.

2. Geological Setting

The eastern CAOB is divided into four tectonic blocks: Erguna, Xing’an, Songliao and Jiamusi
massifs, which are separated by the regional-scale Tayuan-Xiguitu, Hegenshan-Heihe and Mudanjiang
faults, respectively [1] (Figure 1). The Baiyinhan tungsten deposit is located in the Liaoyuan massif
and belongs to the southern part of the Da Hinggan Mountains polymetal metallogenic belt (SDMB)
(Figure 2). The SDMB is bounded by the western Hegenshan Fault, the eastern Nenjiang Fault and the
southern Xilamulun Fault (Figure 2). The SDMB is composed of the Permian strata and is overlain
by the Mesozoic-Cenozoic volcanic and sedimentary rocks and intruded by Mesozoic intrusive rocks
(Figure 2). The Permian strata are composed of four units [30]: (1) The Lower Permian Qingfengshan
Formation, which consists of graywacke and siltstone with tuffaceous intercalation; (2) the Lower
Permian Dashizhai Formation, which is mainly composed of submarine lava and tuff (andesitic,
felsic and basaltic) with arenite; (3) the Lower Permian Huanggangliang Formation, which consists
of mix-bedded sandstone and shale with limestone and tuffite; and (4) the Upper Permian Linxi
Formation, which is mainly composed of terrestrial sandstone, siltstone and mudstone.

The Mesozoic formations include Jurassic and Cretaceous strata. The Jurassic strata are composed
of conglomerate, sandstone, siltstone, mudstone, coal bed, volcaniclastic rock, tuff, rhyolite and dacite.
The Cretaceous strata consist of andesite, volcaniclastic rock, tuff, tuff sandstone, siltstone and basal
conglomerate. The Cenozoic corresponds to continental red strata. The Major structures are the
Erlian-Hegenshan Fault, the Xilamulun River Fault and the Nenjiang Fault [31,32].

A scatter of a late Paleozoic granite is exposed at the Haolibao mine area and at the northern part
of the Xilamulun River [33]. Mesozoic granites include Triassic, Late Jurassic and Early Cretaceous
granites [3]. The Mesozoic granites are characterized by low (87Sr/86Sr)i and high εNd(t) values,
showing that juvenile crust materials are the major source of the Mesozoic granites [1].
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Fault; F3—Dunhua-Mishan Fault; F4—Chifeng-Kaiyuan Fault; F5—Xilamulun River Fault; F6—

Heganshan-Heihe Fault; F7—Xiguitu-Tayuan Fault. Locations: 1—Cuihongshan; 2—Gongpengzi; 3—

Yangbishan; 4—Yangjingou; 5—Wudaogou; 6—Liudaogou; 7—Baishilazi; 8—Sanjiazi; 9—Dayana; 10—

Honghuaerji; 11—Weilianhe; 12—Zishi; 13—Shamai; 14—Dongshanwan; 15—Xiaolaogualinzi; 16—

Weilasituo; 17—Chamuhan; 18—Daolundaba; 19—Wulegerejidaban; 20—Xiaohaiqing. 

The SDMB is an important polymetal metallogenic belt in China, and contains abundant 

porphyry Mo deposits, skarn Pb-Zn deposits, skarn Fe-Sn deposits, hydrothermal-vein-type Ag-

polymetal, Sn-polymetal, Pb-Zn polymetal and Cu-polymetal deposits (Figure 2).  

Figure 1. Geological map of the eastern part of the Central Asian Orogenic Belt and distribution of
tungsten deposits in NE China (modified from [3]). Fault: F1—Nengjiang Fault; F2—Yitong-Yilan
Fault; F3—Dunhua-Mishan Fault; F4—Chifeng-Kaiyuan Fault; F5—Xilamulun River Fault;
F6—Heganshan-Heihe Fault; F7—Xiguitu-Tayuan Fault. Locations: 1—Cuihongshan; 2—Gongpengzi;
3—Yangbishan; 4—Yangjingou; 5—Wudaogou; 6—Liudaogou; 7—Baishilazi; 8—Sanjiazi; 9—Dayana;
10—Honghuaerji; 11—Weilianhe; 12—Zishi; 13—Shamai; 14—Dongshanwan; 15—Xiaolaogualinzi;
16—Weilasituo; 17—Chamuhan; 18—Daolundaba; 19—Wulegerejidaban; 20—Xiaohaiqing.

The SDMB is an important polymetal metallogenic belt in China, and contains abundant porphyry
Mo deposits, skarn Pb-Zn deposits, skarn Fe-Sn deposits, hydrothermal-vein-type Ag-polymetal,
Sn-polymetal, Pb-Zn polymetal and Cu-polymetal deposits (Figure 2).
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Figure 2. Regional geological map of south DaHinggan mountains showing the distribution of the
metal ore deposits (modified from [34,35]).

3. The Baiyinhan Tungsten Deposit

The Baiyinhan tungsten deposit occurs within the Yanshanian granite and is mainly composed
of wolframite-bearing quartz veins (Figure 3). The Yanshanian granite (biotite granite, Figure 4A) is
constituted of quartz (30–40%), K-feldspar (30–40%), plagioclase (~15%), biotite (~8%), and minor
accessory minerals. The xenomorphic granular or granular quartz occurs as clusters, and the grain
size varies from 0.2 mm to 2.0 mm. The grain size of K-feldspar varies from 0.5 mm to 2.0 mm and
shows a xenomorphic granular texture. The grain size of plagioclase ranges from 0.5 mm to 1.5 mm.
The tungsten mineralization at Baiyinhan is spatially confined to gently dipping faults, with a striking
length of 10–150 m. The tungsten ore bodies occur mainly as quartz veins, and five ore bodies have
been defined (Figure 3). The features of these ore bodies are similar.
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Figure 4. Photographs of the biotite granite (A) and the mineralization (B–I) in the Baiyinhan
deposit showing: (A) Biotite granodiorite; (B) Wolframite-bearing quartz vein within the granite
(dipping to north); (C) Quartz + pyrite + wolframite vein; (D) Quartz + molybdenite + wolframite
vein with drusy cavity; (E) Euhedral wolframite in greisen; (F) massive ore; (G) Bismuthinite in
massive ore; (H) Veined wolframite in greisen; (I) Veined wolframite in quartz vein. Abbreviations:
Bi—biotite, Pl—plagioclase, Kfs—K-feldspar, Mb—molybdenite, Py—pyrite, Gs—greisen, Qv—quartz
vein, Qz—quartz, Wf—wolframite, Bm—bismuthinite.

The V1 ore body is located at the southwest part of the ore deposit. It strikes EW and dips north
at angles of 10–15◦, with a length of 150 m and thickness of 0.1–1.5 m (Figure 3). The V2 ore body is
smaller and located at the north of the V1 ore body (Figure 3). It also strikes EW and dips north at
an angle of 15◦, but the scale of V2 ore body is smaller and thinner than the V1 ore body. The V3, V4
and V5 ore bodies are located at the northern part of ore deposit (Figure 3). The V3 and V4 ore bodies
strike NE, and the V5 ore body strike NS. These three ore bodies dip northwest at angles of 12–20◦,
with a length of several tens to 150 m and thickness of 0.2–1.8 m. The orebody has a WO3 grade of
0.5–2.5%. These orebodies are mainly composed of tungsten-bearing quartz veins and minor greisen
alteration rock.

The vein-type ore includes wolframite + pyrite + molybdenite (Figure 4C,D) and minor amounts
of bismuthinite (Figure 4G). Gangue minerals consist of quartz and muscovite. The ore minerals
occur in major veins and massive structures, along with minor drusy cavity structures (Figure 4F,H,I).
The ore minerals are mainly euhedral and subhedral (Figure 4C–E,G). Alteration at Baiyinhan is
well-developed and characterized by a fracture-controlled greisen alteration. A small proportion of
tungsten mineralization occurs within the greisen (Figure 4E,H). Mineralogically, the greisen alteration
comprises quartz and muscovite (Figure 4E).

Based on the structure, texture and mineralogy of the ore veins, three hydrothermal stages can
be distinguished: (1) Wolframite + quartz vein stage; (2) molybdenite + quartz + pyrite stage and
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(3) calcite + fluorite stage. The first stage of quartz-wolframite veins contains significant amounts of
disseminated wolframite and minor bismuthinite, accompanying intense greisen alteration. The quartz
is typically milky white, coarse-grained, anhedral and fractured. The wolframite is also commonly
fractured and is locally cemented together with fractured quartz that was formed during the second
and third stages of activity. The second hydrothermal stage is characterized by an enrichment in pyrite
and molybdenite. The third stage is characterized by coarse translucent euhedral calcite and fluorite
crystals occurring in fractures and veinlets, which crosscut earlier formed veins.

4. Sampling and Analytical Methods

4.1. Samples

Thirty-six samples of quartz veins were collected from the open pit, all of which were collected
from the V3, V4 and V5 ore bodies in the north of the ore deposit for the study of fluid inclusions
shape, type, abundance and spatial distribution. Twenty-one of these samples were used for the
analysis of microthermometry of fluid inclusions, and 10 samples were used for H-O isotope analysis.
Five molybdenite samples were also collected from the ore pile for Re-Os geochronology analysis.

4.2. Analytical Methods

The microthermometric measurements on the fluid inclusions were carried out using a Linkam
THMS 600 programmable heating-freezing stage combined with a Zeiss microscope at the China
University of Geosciences, Beijing (CUGB), China. The process has been described in detail by
Yu et al. [36]. Salinities of H2O-NaCl [37] and CO2-bearing [38] fluids were calculated using the final
melting temperatures of ice (Tm-ice) and clathrate (Tm-cla). The pressure of the fluid inclusions was
calculated according to Steele et al. [39].

The H-O isotope analyses were accomplished with a MAT253 mass spectrometer at the Institute
of Geology and Geophysics, Chinese Academy of Sciences. Oxygen was liberated from quartz through
reaction with BrF5 [40] and converted to CO2 on a platinum-coated carbon rod. In accordance with the
method described by Simon [41], H isotopic ratios of bulk fluid inclusions in quartz were measured by
mechanically crushing ~5 g of quartz grains to a grain size of 1–5 mm. Samples were first degassed of
labile volatiles and secondary fluid inclusions by heating under vacuum to 120 ◦C for 3 h. The released
water was trapped and reduced to H2 by reaction with Zn. The analytical precision was better than
±0.2%� (1σ) for δ18O and ±2%� (1σ) for δD. H-O isotopic data were reported relatively to the Standard
Mean Ocean Water standard. δ18OH2O of fluids were calculated using the equation for quartz-water
isotopic equilibrium: 1000 × lnαquartz-water = (3.38 × 106)T−2

− 3.40, where T is the temperature in
Kelvins [42], and the average fluid inclusion temperature of each stage was used to calculate the
δ18OH2O value.

The Re-Os isotopic analyses were performed at the National Research Center of Geoanalysis,
Chinese Academy of Geosciences. The details of the chemical procedure have been described by
Du et al. [43,44], Shirey et al. [45] and Stein et al. [46] Five molybdenite samples from the Baiyinhan
deposit were collected in the footrill. Microprobe screening of these samples revealed euhedral
molybdenite crystals.

5. Results

5.1. Fluid Inclusion Petrography

Fluid inclusions were widely developed in the quartz veins (Figure 5). Most fluid inclusions were
isolated or randomly clustered, had relatively regular shapes (polygonal, oval and semicircular) and
were interpreted as primary in origin. However, secondary and pseudosecondary inclusions have
also been observed as intergranular arrays or aligned along microfractures in transgranular crystal
trails [47]. During this study, we focused on the primary inclusions. According to the composition of
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inclusions and the phase state at room temperature [47,48], fluid inclusions in the Baiyinhan deposit
can be divided into three types: C-, L- and V-type (Figure 5). On the basis of the microthermometry
results of fluid inclusions, the discussion of fluid evolution corresponded to the aforementioned three
hydrothermal stages.

Minerals 2020, 10, x FOR PEER REVIEW 7 of 18 

 

microthermometry results of fluid inclusions, the discussion of fluid evolution corresponded to the 

aforementioned three hydrothermal stages. 

 

Figure 5. Photomicrographs of typical fluid inclusions in quartz from the Baiyinhan tungsten deposit. 

(A) Liquid-rich C-type inclusion. (B) Vapor-rich C-type inclusion. (C) V-type inclusions. (D) Clustered 

L-type inclusions. (E) Clustered C-type inclusions. Abbreviation: LCO2 = liquid CO2; LH2O = liquid H2O; 

VCO2 = vapor CO2; VH2O = vapor H2O. 

5.1.1. C-type (CO2-H2O Inclusions) 

C-type inclusions were irregular-shaped to rounded and were ~4–20 μm in size. They usually 

consisted of three phases at room temperature. In the first phase, the proportion of CO2 was less than 

50% (Figure 5A). In the second phrase, the proportion of CO2 was more than 50% and the proportion 

of VCO2 was larger (Figure 5B). In the third phase, the proportion of CO2 was greater than 50% and 

the proportion of LCO2 was larger (Figure 5E). Although some inclusions showed only two phases at 

room temperature, they turned into three phases during cooling. C-type inclusions occurred mainly 

in veins of early stages. Based on the ratio of liquid to vapor, C-type inclusions can be divided into 

liquid-rich and vapor-rich inclusions. The liquid-rich inclusions were homogenized to the liquid 

phase, and the most vapor-rich inclusions were homogenized to the vapor phase. 

5.1.2. L-type (Liquid-Rich Inclusions) 

The L-type fluid inclusions were found in quartz veins from all stages. Most L-type inclusions 

contained liquid and a vapor bubble that occupied ~5–45 vol% of the inclusion (Figure 5D,E). They 

occurred as irregular to rounded forms of ~4–19 μm in size (mainly 5–9 μm; Figure 5D). In the early 

stage, different from C-type inclusions, only three L-type inclusions were observed. The massive 

development of L-type fluid inclusions occurred in the middle and late stages. 

5.1.3. V-Type (Vapor-Rich Inclusions) 

The V-type fluid inclusions were rarely developed in all quartz veins. They contained two 

distinct phases, namely liquid H2O and vapor H2O. They were rounded rectangles, and the size 

ranged from ~3–12 μm (Figure 5C). The bubble usually accounted for >55 vol% of the inclusion. V-

type fluid inclusions appeared mainly in the veins of middle and late stages. 

5.2. Microthermometry  

A summary of the microthermometric data obtained from fluid inclusions from the three 

mineralization stages is listed in Table 1, and the results are plotted in Figure 6. 

Figure 5. Photomicrographs of typical fluid inclusions in quartz from the Baiyinhan tungsten deposit.
(A) Liquid-rich C-type inclusion. (B) Vapor-rich C-type inclusion. (C) V-type inclusions. (D) Clustered
L-type inclusions. (E) Clustered C-type inclusions. Abbreviation: LCO2 = liquid CO2; LH2O = liquid
H2O; VCO2 = vapor CO2; VH2O = vapor H2O.

5.1.1. C-Type (CO2-H2O Inclusions)

C-type inclusions were irregular-shaped to rounded and were ~4–20 µm in size. They usually
consisted of three phases at room temperature. In the first phase, the proportion of CO2 was less than
50% (Figure 5A). In the second phrase, the proportion of CO2 was more than 50% and the proportion
of VCO2 was larger (Figure 5B). In the third phase, the proportion of CO2 was greater than 50% and the
proportion of LCO2 was larger (Figure 5E). Although some inclusions showed only two phases at room
temperature, they turned into three phases during cooling. C-type inclusions occurred mainly in veins
of early stages. Based on the ratio of liquid to vapor, C-type inclusions can be divided into liquid-rich
and vapor-rich inclusions. The liquid-rich inclusions were homogenized to the liquid phase, and the
most vapor-rich inclusions were homogenized to the vapor phase.

5.1.2. L-Type (Liquid-Rich Inclusions)

The L-type fluid inclusions were found in quartz veins from all stages. Most L-type inclusions
contained liquid and a vapor bubble that occupied ~5–45 vol% of the inclusion (Figure 5D,E). They
occurred as irregular to rounded forms of ~4–19 µm in size (mainly 5–9 µm; Figure 5D). In the early
stage, different from C-type inclusions, only three L-type inclusions were observed. The massive
development of L-type fluid inclusions occurred in the middle and late stages.

5.1.3. V-Type (Vapor-Rich Inclusions)

The V-type fluid inclusions were rarely developed in all quartz veins. They contained two distinct
phases, namely liquid H2O and vapor H2O. They were rounded rectangles, and the size ranged from
~3–12 µm (Figure 5C). The bubble usually accounted for >55 vol% of the inclusion. V-type fluid
inclusions appeared mainly in the veins of middle and late stages.
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5.2. Microthermometry

A summary of the microthermometric data obtained from fluid inclusions from the three
mineralization stages is listed in Table 1, and the results are plotted in Figure 6.

Table 1. Microthermometric data of fluid inclusions from the Baiyinhan tungsten deposit.

Stage Type N Tm-CO2
(◦C) Tm-ice (◦C) Tm-cla

(◦C)
Th-CO2

(◦C)
Th-tot
(◦C)

Salinity
(wt.%)

Pressure
(bars)

Density
(g/cm3)

I
L-type 3 −8.1 to −4.4 299–311 7.02–11.81 80–92 0.79–0.82

C-type 31 −63.9 to
−60.8 3.9–7.9 28.1–31.1 294–374 4.14–10.72

II
L-type 72 −9.5 to −0.5 228–298 0.88–13.40 25–82 0.78–0.93
V-type 5 −6.6 to −0.6 248–297 1.05–9.98 35–82 0.72–0.88

C-type 16 −62.2 to
−60.9 6.4–8.1 27.9–31.1 233–305 3.19–6.81

III
L-type 103 −9.4 to −0.3 171–244 0.53–13.29 8–34 0.84–0.96
V-type 4 −5.0 to −0.6 210–245 1.05–7.86 14–36 0.81–0.91

Abbreviations: N = numbers of measured fluid inclusion, Tm-CO2 = final melting temperature of solid CO2, Tm-cla
= final melting temperature of CO2-H2O clathrate, Th-CO2 = homogenization temperature of CO2 phases, Tm-ice =
final melting temperature of ice, Th-tot = total homogenization temperature, wt.% NaCl equiv. = weight percent
NaCl equivalent.

In the quartz veins of the early stage, there were mainly C-type inclusions and only a few L-type
inclusions. C-type inclusions yielded final melting temperatures of solid CO2 ranging from −63.9 to
−60.8 ◦C, lower than the pure CO2 critical point of −56.6 ◦C. The melting temperatures of the clathrate
were 3.9–7.9 ◦C, and the corresponding salinity were 4.14–10.72 wt% NaCl equiv. The homogenization
temperatures of the CO2 phase were 28.1–31.1 ◦C, and the final homogenization temperatures ranging
from 294 ◦C to 374 ◦C. Only three L-type inclusions were found in quartz from this stage, yielding
ice-melting temperatures ranging from −8.1 ◦C to −4.4 ◦C, corresponding to salinities of 7.02–11.82 wt%
NaCl equiv. The final homogenization temperatures ranged ~299–311 ◦C, and the bulk densities of the
inclusions were 0.79–0.82 g/cm3. The pressure of L-type inclusions was ~80–92 bars.

The middle stage was dominated by L-type and C-type inclusions with minor V-type inclusions.
C-type inclusions yielded final melting temperatures of solid CO2 ranging from −62.2 ◦C to −60.9 ◦C,
indicating the presence of minor concentrations of other volatiles. The melting temperatures of the
clathrate were 6.4–8.1 ◦C and the corresponding salinity were 3.19–6.81 wt% NaCl equiv. Partial
homogenization of CO2 phases occurred between 27.9 ◦C and 31.1 ◦C, and the final homogenization
temperatures ranged ~233–305 ◦C. L-type inclusions yielded ice-melting temperatures ranging from
−9.5 ◦C to −0.5 ◦C, corresponding to salinities of 0.88–13.40 wt% NaCl equiv. The final homogenization
temperatures ranged ~228–298 ◦C, and the bulk densities of the inclusions ranged 0.78–0.93 g/cm3.
The pressure of L-type inclusions was ~25–82 bars. V-type inclusions were the least abundant, yielding
ice-melting temperatures ranging from −6.6 ◦C to −0.6 ◦C, corresponding to salinities of 1.05–9.98 wt%
NaCl equiv. The final homogenization temperatures ranged ~248–297 ◦C, and the bulk densities of the
inclusions ranged 0.72–0.88 g/cm3. The pressure of V-type inclusions was ~35–82 bars.

The late stage was dominated by L-type inclusions with minor V-type inclusions. L-type inclusions
yielded ice-melting temperatures ranging from −9.4 ◦C to −0.3 ◦C, corresponding to salinities of
0.53–13.29 wt% NaCl equiv. The final homogenization temperatures ranged ~171–244 ◦C, and the
bulk densities of the inclusions ranged 0.84–0.96 g/cm3. The pressure of L-type inclusions was
~8–34 bars. Only four L-type inclusions were found in the late stage, yielding ice-melting temperatures
ranging from −5.0 ◦C to −0.6 ◦C, corresponding to salinities of 1.05–7.86 wt% NaCl equiv. The final
homogenization temperatures ranged ~210–245 ◦C, and the bulk densities of the inclusions ranged
0.81–0.91 g/cm3. The pressure of V-type inclusions was ~14–36 bars.
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Figure 6. Histograms of total homogenization temperatures and salinities of different fluid inclusions
from the three stages in the Baiyinhan tungsten deposit.

5.3. H-O Isotopes

Among the 21 quartz vein samples that were analysed for microthermometry, 9 of them were
selected and analysed for the O (quartz) and H (fluid inclusions) isotopes. The H-O isotope ratios are
listed in Table 2. The δ18O and δD values of hydrothermal quartz samples ranged 8.5–10.2%� and
−97%� to −92%�, respectively. The calculated δ18OH2O of fluids varied from −2.6%� to 4.3%�.

Table 2. Hydrogen and oxygen isotopic compositions of quartz from the Baiyinhan tungsten deposit.

Sample No. Mineral Stage δD (%�) δ18Oquartz (%�) Th (◦C) δ18Owater (%�)

17BYH-8 Quartz Early −81.65 9.96 338 4.3
17BYH-10 Quartz Early −84.23 9.27 338 3.6
17BYH-31 Quartz Early −83.68 9.20 338 3.5
17BYH-11 Quartz Middle −91.76 9.32 255 0.6
17BYH-13 Quartz Middle −82.06 8.83 255 0.1
17BYH-26 Quartz Middle −87.37 9.82 255 1.1
17BYH-14 Quartz Late −96.54 8.46 210 −2.6
17BYH-16 Quartz Late −97.07 10.16 210 −0.9
17BYH-17 Quartz Late −93.27 9.68 210 −1.4
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5.4. Re-Os Isochron Ages

The abundance of Re and Os and the osmium isotopic compositions of molybdenite from the
quartz-vein-type ores of Baiyinhan are shown in Table 3. The concentration range of Re was 3108–8486
ng/g and that of 187Os was 4.52–12.53 ng/g. The Baiyinhan tungsten deposit had low Re and Os
contents. The Re content of the Baiyinhan deposit was less than that in the porphyry Mo deposit (where
the average value ranged from 14–68 µg/g) [49]. Five samples gave a model age of 137–141 Ma and a
weight mean age of 138.8 ± 1.6 Ma (Table 3). Data, processed using the ISOPLOT/Ex program [50],
yielded an isochron age of 139.6 ± 7.6 Ma and with MSWD = 3.5 (Figure 7).

Table 3. Re-Os isotope data for molybdenite samples from the Baiyinhan tungsten deposit.

Sample
No.

Weight
(g) Re (ng/g) Uncertainty

187Re
(ng/g)

Uncertainty
187Os
(ng/g)

Uncertainty Model
Age (Ma) Uncertainty

BYH-13 0.03025 7464 57 4691 36 10.73 0.09 137.1 2.0
BYH-14 0.03016 8486 82 5333 52 12.53 0.10 140.8 2.3
BYH-15 0.03031 8223 60 5168 38 11.99 0.11 139.1 2.1
BYH-16 0.03092 8169 78 5134 49 11.87 0.08 138.6 2.1
BYH-18 0.0.001 3108 20 1953 13 4.52 0.03 138.7 1.9

Enriched 190Os and 185Re were obtained from the Oak Ridge National Laboratory. Decay constant: λ (187Re) = 1.666
× 10−11/year [51]. The uncertainty in each individual age determination was about 1.02% including the uncertainty
of the decay constant of 187Os, uncertainty in isotope ratio measurement, and spike calibration. BYH-13, -14, -15
were sampled form the V3 orebody, BYH-16, -18 were sampled from the V4 orebody.

Minerals 2020, 10, x FOR PEER REVIEW 10 of 18 

 

5.4. Re-Os Isochron Ages 

The abundance of Re and Os and the osmium isotopic compositions of molybdenite from the 

quartz-vein-type ores of Baiyinhan are shown in Table 3. The concentration range of Re was 3108–

8486 ng/g and that of 187Os was 4.52–12.53 ng/g. The Baiyinhan tungsten deposit had low Re and Os 

contents. The Re content of the Baiyinhan deposit was less than that in the porphyry Mo deposit 

(where the average value ranged from 14–68 μg/g) [49]. Five samples gave a model age of 137–141 

Ma and a weight mean age of 138.8 ± 1.6 Ma (Table 3). Data, processed using the ISOPLOT/Ex 

program [50], yielded an isochron age of 139.6 ± 7.6 Ma and with MSWD = 3.5 (Figure 7). 

Table 3. Re-Os isotope data for molybdenite samples from the Baiyinhan tungsten deposit. 

Sample No. 
Weight 

(g) 

Re 

(ng/g) 
Uncertainty 

187Re 

(ng/g) 
Uncertainty 

187Os 

(ng/g) 
Uncertainty 

Model Age 

(Ma) 
Uncertainty 

BYH-13 0.03025 7464 57 4691 36 10.73 0.09 137.1 2.0 

BYH-14 0.03016 8486 82 5333 52 12.53 0.10 140.8 2.3 

BYH-15 0.03031 8223 60 5168 38 11.99 0.11 139.1 2.1 

BYH-16 0.03092 8169 78 5134 49 11.87 0.08 138.6 2.1 

BYH-18 0.0.001 3108 20 1953 13 4.52 0.03 138.7 1.9 

Enriched 190Os and 185Re were obtained from the Oak Ridge National Laboratory. Decay constant: λ 

(187Re) = 1.666 × 10−11/year [51]. The uncertainty in each individual age determination was about 1.02% 

including the uncertainty of the decay constant of 187Os, uncertainty in isotope ratio measurement, 

and spike calibration. BYH-13, -14, -15 were sampled form the V3 orebody, BYH-16, -18 were sampled 

from the V4 orebody. 

 

Figure 7. Re-Os isochron plot for molybdenite samples from the Baiyinhan tungsten deposit. 

6. Discussion 

6.1. Evolution of Ore-Forming Fluids-the Important Role of CO2 

The study of fluid inclusions shows that the ore-forming fluid of the Baiyinhan tungsten deposit 

is a NaCl-H2O-CO2 system with medium temperature and low salinity. The temperature of the fluid 

gradually decreased from the early stage to the late stage. As indicated from the types and abundance 

of fluid inclusions in the three stages, the early stage was mainly characterized by high-temperature 

CO2-rich inclusions, and the middle stage was mainly composed of gas-liquid two-phase inclusions, 

while the late stage only contained low-temperature gas-liquid two-phase inclusions. The content of 

CO2 in the ore-forming fluid tended to decrease with the evolution of the fluid. 

CO2 is the most abundant gas composition in fluid inclusions in many typical wolframite 

deposits [52,53]. Rios et al. [54], Li et al. [55] and Chen et al. [48] also found primary fluid inclusions 

containing CO2 in wolframite, which shows that CO2 is closely related to the dissolution and 

migration of tungsten. Experimental research has shown that the carbonate or CO2 in the fluid is 

Figure 7. Re-Os isochron plot for molybdenite samples from the Baiyinhan tungsten deposit.

6. Discussion

6.1. Evolution of Ore-Forming Fluids-the Important Role of CO2

The study of fluid inclusions shows that the ore-forming fluid of the Baiyinhan tungsten deposit
is a NaCl-H2O-CO2 system with medium temperature and low salinity. The temperature of the fluid
gradually decreased from the early stage to the late stage. As indicated from the types and abundance
of fluid inclusions in the three stages, the early stage was mainly characterized by high-temperature
CO2-rich inclusions, and the middle stage was mainly composed of gas-liquid two-phase inclusions,
while the late stage only contained low-temperature gas-liquid two-phase inclusions. The content of
CO2 in the ore-forming fluid tended to decrease with the evolution of the fluid.

CO2 is the most abundant gas composition in fluid inclusions in many typical wolframite
deposits [52,53]. Rios et al. [54], Li et al. [55] and Chen et al. [48] also found primary fluid inclusions
containing CO2 in wolframite, which shows that CO2 is closely related to the dissolution and migration
of tungsten. Experimental research has shown that the carbonate or CO2 in the fluid is conducive to
the dissolution and migration of tungsten [52,56,57]. Higgins [58] stated that tungsten may migrate
in the form of carbonate and bicarbonate in CO2-rich fluids under the condition of high temperature
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and high pressure. The experimental study on the crystallization of tungsten-manganese ore in alkali
carbonate solution showed that tungsten exists mainly in the form of WO4

2− in the hydrothermal
system, and the solubility of wolframite is affected by the pH value of the system. The effect of alkali
carbonate or CO2 on the solubility of wolframite cannot be attributed to complexation because it can
affect the pH value of the fluid, resulting in the change of tungsten solubility [55]. At the same time,
CO2 can act as pH buffer [59,60], and the high content of CO2 in the fluid can maintain the stability
and enhance the migration of tungsten [61].

It can be seen from the pressure calculation of the three stages (Table 1) that the pressure of the fluid
inclusion gradually decreased. A large number of liquid-rich inclusions were developed in the deposit.
There was an obvious negative correlation between density and homogenization temperature (Figure 8).
These characteristics may have been caused by the CO2 dissipation during the process of temperature
and pressure reduction, resulting in the gradual decrease of CO2 content and increase of fluid density,
and the evolution of fluids into a NaCl-H2O system [62–64]. The CO2-rich fluid formed during the
hydrothermal differentiation in the late magmatism can carry sufficient ore-forming element tungsten.
During the migration of ore-forming fluid along the fractures developed in the area, the addition of
meteoric water precipitation and decrease of temperature and pressure leads to the immiscibility of the
fluid. The escape of CO2 results in the change of pH and the decrease of the solubility of tungsten,
which leads to the precipitation and enrichment of WO4

2− in the ore-forming fluid by combining with
cations such as Fe2+ and Mn2+ [65–68]. The dilution and escape of CO2 can effectively enrich the
ore-forming elements and even cause the fluid to supersaturate in an instant [69,70]. The content of
CO2 in the ore-forming fluid of the Baiyinhan deposit tends to decrease with the evolution of the fluid,
which is similar to that of the Grey River tungsten deposit and Parrila tungsten-tin deposit [71,72].
It also further explains the important role of CO2 in tungsten migration, and that the precipitation and
enrichment of wolframite were closely related to the dispersion of CO2 at the Baiyinhan deposit.
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6.2. Source of Ore-Forming Fluids and Materials

The H-O isotopes of fluid inclusions show that the samples from three stages have an obvious
evolutionary trend, gradually transitioning from early residual magmatic water to late meteoric water
(Figure 9). The three samples in the early stage were plotted in the lower part of the residual magma
water, and their δD values were lower than the range of the residual magma water. There are two
possible explanations for the low fluid δD value for the Baiyinhan deposit: One is the existence of
CH4 observed from the Raman test of fluid inclusions and the hydrogen isotope exchange between
CH4 and H2 in the fluid, which leads to the fluid depletion of δD [73]. However, in the hydrothermal
system containing CH4, the proportion of water was much larger than that of CH4 and H2. Therefore,
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this process has a trivial impact on hydrogen isotope production [73]. Another possibility is that in
actual geological conditions, when magma intrudes into the shallow part of the surface, it is likely to
mix with meteoric water directly or indirectly [74]. The mixing of meteoric water and magmatic water
has a significant impact on H-O isotopes, and the effect on hydrogen is generally greater than that
on oxygen [75]. The second possibility well explains the fact that the δD values of H-O isotopes in
quartz in the early stage of the deposit consistently fell in the lower part of the residual magmatic water.
Therefore, we conclude that the initial fluid of the Baiyinhan tungsten deposit was a mixture of residual
magmatic water and meteoric water. With the migration and evolution of the fluid, the proportion of
meteoric water gradually increased.
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The Re content in molybdenite from the W-Mo-bearing quartz veins in the Baiyinhan tungsten
deposit is consistent with many porphyry Mo deposits but is significantly smaller than those from
porphyry Cu-Mo deposits [78]. The average Re contents of molybdenites from porphyry Cu–Mo
deposits and porphyry Mo deposits range from 118–19,800 ug/g, and 4–68 ug/g, respectively [76].
The Re content in molybdenites decreases gradually from the mantle source to a mixture of mantle
and crust and then to the crustal source [79,80]. The Re contents of molybdenite from the Baiyinhan
tungsten deposit ranged from 3.1–8.4 ug/g with an average of 7.1 ug/g (Table 3). The relatively lower
Re contents of molybdenites form the Baiyinhan tungsten deposit may indicate that the ore-forming
materials source of the ore-bearing quartz vein was a crust source.

6.3. The Significance of Re-Os Age of the Baiyinhan Tungsten Deposit

The analysis of five molybdenite samples yielded an isochron age of 139.6 ± 7.6 Ma with an initial
187Os of− 0.05± 0.57. It was shown that the initial 187Os values from the molybdenite were close to zero,
and the Re-Os isochron ages reflected the time of sulfide deposition [46,79,80]. Some W (-Mo) deposits
were discovered in the eastern part of the CAOB in recent years. The ages of W (-Mo) mineralization
in the eastern part of the CAOB were reported and recognized in three periods (Figure 10): Triassic
(~230 Ma), Early-Middle Jurassic (198–170 Ma) and Early Cretaceous (~140 Ma). The Baiyinhan deposit
was formed in the early Cretaceous with an Re-Os age of 139.6 ± 7.6 Ma, which further indicates
that the early Cretaceous is an important metallogenic period with great metallogenic prospect in the
eastern part of the CAOB.
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7. Conclusions

(1). The Baiyinhan quartz vein tungsten deposit occurs within the Yanshanian granite. The ore
mineral assemblage is wolframite + pyrite + molybdenite ± bismuthinite. The greisen is the main
hydrothermal alteration in the deposit.

(2). The thermometric analysis of inclusions showed that the fluid presented a medium-temperature
and a low-salinity H2O-CO2-NaCl system. The ore-forming temperature in the three stages gradually
decreased, and the CO2 content gradually decreased with the fluid evolution. The mineralization was
closely related to CO2 dispersion. The H-O isotope of quartz showed that the ore-forming fluid was a
mixture of residual magmatic water and meteoric water.

(3). Five molybdenite samples yielded an isochron age of 139.6 ± 7.6 Ma (MSWD = 3.5), and model
ages for individual analyses ranged from ~138–141Ma. Combined with the regional mineralization
age data, the tungsten mineralization of the Baiyinhan deposit indicates that the Early Cretaceous is an
important tungsten mineralization epoch in the eastern CAOB.
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