
minerals

Article

High-Performance Recovery of Cobalt and Nickel
from the Cathode Materials of NMC Type Li-Ion
Battery by Complexation-Assisted Solvent Extraction

Wen-Yu Wang * , Hong-Chi Yang and Ren-Bin Xu
Department of Environmental Engineering and Management, Chaoyang University of Technology,
Taichung 41349, Taiwan; sslt1161@gmail.com (H.-C.Y.); xu10225617@yahoo.com.tw (R.-B.X.)
* Correspondence: wywang@cyut.edu.tw; Tel.: +886-4-2332-3000

Received: 22 June 2020; Accepted: 24 July 2020; Published: 26 July 2020
����������
�������

Abstract: The annual global volume of waste lithium-ion batteries (LIBs) has been increasing over years.
Although solvent extraction method seems well developed, the separation factor between cobalt and
nickel is still relatively low—only 72 when applying conventional continuous-countercurrent extraction.
In this study, we improved the separation factor of cobalt and nickel by complexation-assisted solvent
extraction. Before solvent extraction procedure, leaching kinetic of Li, Ni, Co and Mn was studied and
can be explained by the Avrami equation. Leached residues were also investigated by SEM and XRD.
Operation parameters of complexation-assisted solvent extraction were examined, including volume
ratio of extractant to diluent, types of diluent, type of complexing reagent, extractant saponification
percentage and volume ratio of organic phase to aqueous phase. The optimal separation factor
of complexation-assisted solvent extraction could be improved to 372, which is five times that of
conventional solvent extraction. The separation tendency would be interpreted by the relationship
between extraction equilibrium pH and log distribution coefficient.
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1. Introduction

Secondary lithium-ion batteries (LIBs) featuring high-energy densities and reasonable costs are
widely used for energy storage in electronic devices and electric vehicles. A variety of LIBs designed for
different purposes are made from different cathode materials. To date, the seven most commonly used
cathode materials are lithium iron phosphate (LFP), lithium cobalt oxide (LiCoO2), lithium manganese
oxide (LMO), lithium nickel oxide (LNO), lithium nickel cobalt aluminum oxide (NCA), lithium
titanate oxide (LTO), and lithium nickel manganese cobalt oxide (NMC) [1].

Global usage of NMC type LIBs has grown significantly in the past decade [2]. However, lifetime
of LIBs is only about five years, which makes high-performance methods for recycling the valuable
contents in the spent NMC type LIBs a critical requirement for the industry. It is worth mention that
metals in these cathode materials are valuable. Cobalt is the highest value in most types of cathode
materials [3,4]. Cobalt is widely distributed in igneous and sedimentary rocks and also present in
meteorites (i.e., iron–nickel metal contains a few tenths of a percent cobalt), but cobalt reserves are
very scarce. It is average content in the Earth’s crust is approximately 25–30 ppm, though widely
distributed, ranks only 33rd in the order of abundance, and is less common than all other transition
metals except scandium [5]. Currently, the price for cobalt (~$35,700 per ton) is comparable to lithium
(~$38,100 per ton, equivalent to $6350 per ton of LiOH·H2O), which is much more expensive than
those of manganese (~$1500 per ton) and nickel (~$14,600 per ton), respectively (metal.com, June 2020).

Recently, the interest for recycling cobalt from spent LIBs has grown rapidly. Several review
articles have summarized the processes and technologies for recycling these metals, especially the ones
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using hydrometallurgy techniques [6–14]. Normally, a metal leaching procedure is needed to recover
spent LIBs. Many researchers have used organic acid leaching and have reported that the operation
conditions and metal leaching percentages which are shown in Table 1 [15–23], but most of these studies
focus only on cathode materials of LiCoO2. Nevertheless, the metal extraction percentage in some
organic acid solution systems is not high enough for the recovery and separation of different metals
from ternary metal oxide, i.e., NMC. As shown in Table 2, there are also some studies using inorganic
acid leaching solution [24–33]. Among them, acid leaching solution added with reducing agent has
higher efficiency for cathodic metals. Therefore, in this study we used H2SO4 as leaching solution and
H2O2 as reducing agent. Other studies applied biohydrometallurgy or bioleaching techniques were
also reported [34,35]. Calvert et al. studied the recycling of metals from leachate of waste LIBs using
hydrogen sulfide generated by a consortium of sulfate-reducing bacteria in a lactate-fed fluidized bed
reactor [36]. Calvert’s study displayed a high recovery percentage with 96% metals in the leachate,
however, the process is unable to separate individual metal.

The high similarity of chemical properties of cobalt and nickel makes the separation of cobalt
and nickel with comparable concentration challenging. The chemical precipitation method and
electrolytic recovery technology are only suitable for recycling high cobalt content with trace nickel
impurity. For the leachate with mixed metals (Co, Ni, Mn, Li, Al and Cu) from cathodic metals of spent
NMC type LIBs, as the ratio of nickel (or manganese) to cobalt increases greatly, co-precipitation or
co-electrodeposition of cobalt, nickel and manganese will result in a significant reduction in purity.
Our previous study work on recovering cobalt in a leachate (leaching with H2SO4 and H2O2) from
LiNi1/3Mn1/3Co1/3O2 (NMC 111) LIBs by electrolytic plating. However, even at the optimal operating
conditions, the purity was only 62.2% [37].

Table 3 lists the separation technologies for separating and recovering the metal species in
the leachate from cathode materials of spent LIBs. These technologies include aqueous two-phase
systems [38], solvent extraction [39,40], microemulsion extraction [41], ionic liquid [42], polymer
inclusion membrane containing extractant [43] and hollow fiber supported liquid membrane [44].
Some studies worked on the synergetic effect of complexing agent in leaching process for spent
LIBs [45,46], but only a few studies investigated on the synergetic effect of complexing agent in solvent
extraction process [47].

Among these technologies, solvent extraction process is the most studied one. The term solvent
extraction refers to the distribution of a solute between two immiscible liquid phases in contact with
each other, i.e., a two-phase distribution of a solute [48]. The solute is the metals dissolved in the
leaching aqueous solution from waste (e.g., spent LIBs). The two immiscible liquid phases are the
organic phase of extractant blended with diluent and the leaching aqueous solution. Pagnanelli et al.
targeted on recycling Co from end of life LIBs [49] using cathodic powder of LIBs which containing
metal oxides going through a series of treatments to obtain a cobalt carbonate product. The process in
their study included (1) a selective extraction stage by P-204 for removing Mn; (2) another selective
extraction stage by Cyanex 272 for extraction of Co; (3) a stripping stage by sulfuric acid to transfer Co
ions to aqueous phase; and (4) a precipitation stage by sodium carbonate to produce the final product
of cobalt carbonate. With optimized conditions, the purity of cobalt carbonate could be as high as 95%.

This study investigated and optimized a continuous-countercurrent-extraction process for the
separation of Mn, Co, Ni and Li from the spent NMC 111 LIBs and a facile recovery technology of
complexation-assisted solvent extraction for highly efficient separation of Co and Ni.
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Table 1. Recent research for cathodic metals leaching by organic acid.

Organic Acid/Reducing
Agent Used Cathode Materials Temperature (◦C) Leaching Time (min) Co Leaching

Percentage (%)
Li Leaching

Percentage (%) Reference

2-M DL-malic acid
6 vol% H2O2

LiCoO2
LiMn2O4

95 60 90 90 [15]

2-M L-tartaric acid
4 vol% H2O2

LiCoO2
LiNi0.5Co0.2Mn0.3O2

70 30 98.6 99.1 [16]

1-M iminodiacetic acid
0.02-M ascorbic acid LiCoO2 80 120 99.0 90.0 [17]

1-M maleic acid
0.02-M ascorbic acid LiCoO2 80 120 99.0 96.0 [17]

0.5-M glycine
0.02-M ascorbic acid LiCoO2 80 120 91.0 - [18]

0.4-M tartaric acid
0.02-M ascorbic acid LiCoO2 80 60 93.0 95.0 [19]

2-M citric acid
0.6 g/g H2O2 (H2O2/LIBs) LiCoO2 70 80 96.0 98.0 [20]

1-M oxalic acid LiCoO2 95 150 97.0 98.0 [21]

1.5-M succinic acid
4 vol% H2O2

LiCoO2 70 40 100.0 96.0 [22]

1-M oxalic acid
5 vol% H2O2

LiCoO2 80 120 96.7 - [23]
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Table 2. Recent research for cathodic metals leaching by inorganic acid.

Inorganic Acid/Reducing
Agent Used Cathode Materials Temperature (◦C) Leaching Time (min) Co Leaching

Percentage (%)
Li Leaching

Percentage (%) Reference

4-M HCl NCA (LiNi0.8Co0.15Al0.05O2) 90 1080 100 100 [24]

4-M HCl NCA scrap 80 60 >99 >96 [25]

3-M HCl
3.5 vol% H2O2

Mobile phones batteries LiCoO2 80 60 89 89 [26]

2-M H2SO4
5 vol% H2O2

Mobile phones batteries LiCoO2 75 60 70 99.1 [27]

2-M H2SO4
3 vol% H2O2

Cathode materials
LiNi0.5Co0.2Mn0.3O2

60 60 >99 >99 [28]

2.5-M H2SO4
3.3 vol% H2O2

Mixture of LiCoO2, LiMn2O4,
LiNiO2, LiNixCoyMnzO2

90 120 >99 >99 [29]

4-M H2SO4
10 vol% H2O2

Mobile phones batteries
mainly LiCoO2

85 120 95 96 [30]

6-M H2SO4
5 vol% C2H5OH

spent cell phones batteries
LiCoO2

90 160 >99 >99 [31]

1-M H2SO4
0.075-M NaHSO3

PCs/laptops batteries LiCoO2,
Li2CoMn3O8, (Li0.85Ni0.05)(NiO2) 95 240 91.6 96.7 [32]

1.5-M H2SO4
5 vol% H2O2/5 g C5H8O4

Laptops batteries
mainly LiCoO2

90 120 88 100 [33]
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Table 3. Recent research for recovering and separation of cathodic metals from spent lithium-ion batteries (LIBs).

Technologies Characteristic Conclusion Reference

Aqueous two-phase systems Separation of cobalt and nickel in
leach solutions

The best separation conditions were achieved using 2-N as extracting agent, pH 5.00,
sodium sulfate, L64 copolymer, TP:BP ratio 1:1 and a 35- dilution factor of the liquor.
Under these conditions, 99.19% cobalt and 10.81% nickel extraction were obtained.

[38]

Solvent extraction Recovery metals from LIBs NMC
cathode materials

The optimal parameters obtained in leaching were 2.0 mol/L of H2SO4, 30 mL/g,
70 ◦C and 90 min. The results showed that 0.1-M Na-Cyanex 272 should first be

used as the extractant to separate cobalt and nickel under the optimal condition of
pH 6. Then, cobalt and manganese should be separated by using 0.2-M Na-D2EHPA
at equilibrium pH 2.95. Nickel and lithium can be separated by using DMG at pH 9.

[39,40]

Microemulsion extraction Selective recovery of cobalt from
NMC type LIBs

With the assistance of probe type ultrasonication, manganese could be
simultaneously separated by precipitation. Next, water-in-oil microemulsion

extraction was applied for direct extraction of cobalt from the other metals.
The cobalt extraction yield was 98% and purity was 96%.

[41]

Ionic liquid Cobalt(II)/nickel(II) separation
from sulfate media

The separation of cobalt(II) and nickel(II) with [C101][Cl] and [C101][SCN] was
investigated by extraction from sulfate media. Co(II) extraction was close to 100%

while no extracted Ni(II) could be detected. Extraction did not follow the
split-anion mechanism but occurred through a regular anion-exchange mechanism.

[42]

Polymer inclusion membrane
containing extractant

Separation of cobalt(II) from
manganese(II)

Co(II) separation and preconcentration has been demonstrated by the complete
transfer of Co(II) from a feed solution containing a similar concentration of Mn(II)
into a sulfuric acid receiving solution with less than 5% Mn(II) being transported

during the same period.

[43]

Hollow-fiber supported liquid
membrane

Separation of Co(II) and Li(I)
with Cyanex 272

Co(II) and Li(I) was prepared by dissolving calculated amount of CoSO4 and
Li2SO4. A complete separation of both the metals with 99.99% purity can be

achieved by HFSLM process using Cyanex 272 as a mobile carrier.
[44]
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2. Materials and Methods

2.1. Reagents and Materials

Sulfuric acid (H2SO4; 98%); hydrogen peroxide (H2O2; 35%); sodium hydroxide (NaOH; ≥98%);
cobalt powder (Co; 99%); nickel powder (Ni; 99%); ICP multielement standard solution IV (99%),
cyclohexane (C6H12; 99%), sodium acetate (C2H3NaO2; 99%) and ammonium acetate (C2H7NO2;
98%) were all purchased from Merck (Darmstadt, Germany). Toluene (C7H8; 99%); heptane (C7H16;
99%); octane (C8H18; 99%); nonane (C9H20; 99%); decane (C10H22; 99%); citric acid (C6H8O7; 99.5%);
ammonium thiocyanate (NH4SCN; 99%); sodium thiocyanate (Na4SCN; 99%) and succinic acid
(C4H6O4; 99%) were all purchased from Acros (Fair Lawn, NJ, USA). Sodium citrate (C6H5Na3O7·2H2O;
99%) and kerosene (CnH2n+2, 10 ≤ n ≤ 16) were purchased from PanReac AppliChem (Barcelona,
Spain) and CPC Corporation (Chiayi, Taiwan), respectively. Di(2-ethylhexyl)phosphoric acid (P-204;
≥95%) and 2-ethyl(hexyl)phosphonic acid mono-2-ethylhexyl ester (P-507; ≥95%) were selected as
manganese extractants and cobalt extractants, respectively. All of the above reagents were used as
they were received. The spent lithium-ion batteries (Model no. 5099130N) containing ternary cathode
materials of lithium nickel manganese cobalt oxide (LiNi1/3Mn1/3Co1/3O2; NMC 111) were supplied by
Amita Technologies, Inc., Taoyuan, Taiwan.

2.2. Instrumentation

The analysis of metal concentration was carried out using inductively coupled plasma atomic
emission spectroscopy (ICP-AES) from Thermo ICAP-6000 (Waltham, MA, USA). The hydrogen ion
concentration was measured using digital pH-meter of HI-5222 from Hanna (Woonsocket, RI, USA).
Flask shaker is from Shin Kwang (New Taipei City, Taiwan) FS-6 U. The surface morphology of cathode
powder and leached residue was determined by a field-emission scanning electron microscopy (SEM,
JSM-7401F, JEOL, Tokyo, Japan). The crystalline phase of cathode powder and leached residue were
measured by X-ray diffraction (XRD, XRD-6000, Shimadzu, Kyoto, Japan, with Cu-Kα radiation,
λ = 1.54056 Å). XRD spectra were collected in the 2θ range from 5◦ to 90◦ with scan rate of 2◦ min−1.

2.3. Summary of Flow Sheet

The flow sheet, for recovering cobalt from the cathode materials of spent LIBs was illustrated as
Figure 1. The recovering procedure of spent LIBs includes the portions of discharging, dismantling,
pretreatment, leaching, solvent extraction of manganese and conventional solvent extraction or
complexation-assisted solvent extraction of cobalt. The spent batteries were discharged before
dismantling. Then, the cathode materials (NMC powder) coated on top of the aluminum foils were
collected for pretreatment. In the pretreatment step, sodium hydroxide solution was selected as
leaching reagent for dissolution of aluminum foil and detritus. Then, the NMC powder could be
filtered out of the solution, collected, dried and leached by 4-N sulfuric acid and hydrogen peroxide.
Because the cobalt leaching percentage is greater than 99% in this condition, the solid to liquid ratio in
the leaching process is 1:15. After subtracting oxygen (as LiNi0.33Mn0.33Co0.33O2) and insoluble residue
of graphite, the total metal concentration in leachate is about 35 g/L. The metal concentrations are
about 10 g/L for Mn, Co and Ni, respectively. Afterwards, manganese was removed by a three-stage
solvent extraction process. The organic extract phase with high purity cobalt could be obtained by
applying a six-stage conventional solvent extraction process or a single one-stage complexation-assisted
solvent extraction assisted by complexation with ammonium thiocyanate. Finally, the stripped solution
including only high purity of cobalt could then undergo electrowinning to obtain metallic cobalt or
precipitating to obtain cobalt salt.
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Figure 1. Flow sheet for recovering cobalt from the cathode materials of spent LIBs. Blue blocks
represent organic phase and black blocks represent aqueous phase.

2.4. Continuous-Countercurrent-Extraction Process and Mixing–Clarification Extraction Tank

A bench scale self-made mixing–clarification extraction tank shown as Figure 2, was used for
the solvent extraction process. The extraction tank has multicompartments for mixing, clarification,
organic phase (blend of extractant and diluent) collection and aqueous phase (leach liquor) collection.
The effective total volume of the extraction tank is 3 L. Volume for each compartment in the extraction
tank is 1 L for mixing, 1.5 L for clarification, 0.25 L for organic phase collection and 0.25 L for aqueous
phase collection, respectively. The mixing compartment is equipped with a motor with a propeller.
The propeller can suck aqueous leach liquor and organic extractant from the different inlets. During the
continuous-countercurrent-extraction process shown as Figure 3, several extraction tanks in series
were used, where manganese or cobalt was mixed with the organic phase by countercurrent contact
and extracted from the aqueous phase.

When; Con,M (n = 1–6 in Figure 3) was outlet metal (M = Mn, Co, Ni or Li) concentration of
organic phase at the nth stage extraction tank; Con+1,M is inlet metal concentration of organic phase
at the nth stage tank; Can−1,M is inlet metal concentration of aqueous phase at the nth stage tank;
and Can,M is outlet metal concentration of aqueous phase at the nth stage tank. Coi,M is the feeding
metal concentration of organic phase at the last stage tank and its metals concentrations are normally
equal to zero. Cai,M is feeding metal concentration of aqueous phase at the first stage tank and its
metal concentrations are normally equal to that of fresh acid leaching solution.
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Then, the mixed liquor overflowed into the clarification compartment and subsequently separated
into an upper organic phase and a lower aqueous phase, respectively. Afterwards, the upper organic
phase overflowed into the organic phase collection compartment and was sucked to the organic
extractant inlets of the previous extraction tank. Lower aqueous phase flowed to the aqueous phase
collection compartment and circuit to aqueous inlets of the next extraction tank.

When the leachate and extractant are brought together in the solvent extraction process, the metal
(solute M) will distribute itself between the aqueous phase and the organic phase. At equilibrium,
the ratio of this distribution is called the distribution coefficient (D).

DM = Co,M/Ca,M (1)

A typical parameter of the separation factor is defined to express selectivity of the extractant for
one metal (solute A) over another metal (solute B).

βA/B = DA/DB (2)

The separation factor must be greater than unity in order to separate A from B by solvent extraction,
just as the relative volatility must be greater than unity to separate A from B by distillation [50].

2.5. Sequential Solvent Extraction of Manganese and Cobalt

In a typical trial, the organic phase was made-up by extractant and diluent. Extractant P-204
and P-507 were, respectively, blended in a diluent for making a 20% by volume concentration.
Next, P-204 and P-507 were saponified by sodium hydroxide, respectively. The pH of the aqueous
phase was adjusted for extraction of manganese and cobalt, respectively by adding sodium hydroxide.
After that, the organic phase and the aqueous phase (leaching solution after de-aluminum) were put
together inside a separation funnel (O/A ratio = 1:1). The funnel was shaken for 30 min. After phase
separation was complete, the organic phase was stripped with 1-N sulfuric acid to elute manganese or



Minerals 2020, 10, 662 9 of 23

cobalt out. The collected aqueous phase was repeatedly extracted several times and collected for further
experiments and analyses. In the continuous-countercurrent-extraction process, the organic phase
and the aqueous phase were continuously pumped into the inlet tank, respectively. The extraction
equilibrium state can be examined by visual observation of the solution color and chemical analysis.

2.6. Complexation-Assisted Solvent Extraction of Cobalt

After the extraction of manganese, next step will be extraction of cobalt, which can be carried
out by a conventional solvent extraction process as described in the previous paragraph or the facile
complexation-assisted solvent extraction process. After that, P-507 was blended with various diluents
for making a 20% by volume concentration. These diluents include cyclohexane, heptane, toluene,
heptane, octane, nonane and decane. In addition, several possible complexing reagents were chosen
as candidates for extraction of cobalt including citric acid, sodium citrate, succinic acid, sodium
thiocyanate and ammonium thiocyanate. Other operation parameters were the same as described in
the previous paragraph. In order to control the initial metals concentrations in different experiments,
cobalt powder and nickel powder were used as substitutes of cathode materials from spent LIBs.
In addition, the cathode materials from spent LIBs were also examined with the optimum operation
parameters of complexation-assisted solvent extraction process.

3. Results and Discussion

3.1. Disassembly and Composition Analysis of Spent LIBs

The spent ternary secondary lithium battery cells were discharged and disassembled. The weight
percentage analysis results of the disassembled materials were 2.54% of outer packaging, 5.89% of
separator, 15.00% of copper foil, 26.63% of anode materials, 6.74% of aluminum foil and 43.20% of
cathode materials including stuck aluminum detritus. The metal compositions of cathode materials
(with stuck aluminum detritus) were examined. The ratios of Ni, Mn, Co and Li were 0.37:0.39:0.38:1,
which was comparable to the cathode composition of NMC 111.

3.2. Removal of Aluminum and Leaching of Cathode Powder Materials

After disassembly, cathode materials and stuck aluminum detritus were dissolved and filtered by
alkali and then the aluminum content was analyzed. There was 7.18% of aluminum remaining in the
43.20% of cathode powder materials and stuck aluminum detritus. Next, the filtered residues were
leached with H2SO4 and H2O2. After another filtration, a leached residue of graphite and a metals
solution were obtained. The metals contents of leached solution were 10.30 g/L of Mn, 10.75 g/L of Co,
10.45 g/L of Ni and 3.12 g/L of Li.

Figure 4 shows SEM images of recovered cathode powder and leached residue. Compared with
the recovered cathode powder (Figure 4a,b), the surface morphologies of leached residue (Figure 4c,d)
have plenty of pores with different sizes. Li and coworkers studied the valences of Ni, Co and Mn in
the NMC 111 LIBs by XPS. They found out that NMC consists of Ni2+, Mn4+ and Co3+ in the as-made
materials. After battery charging cycle, XPS peaks is considered to be Co3+, Mn4+ and composite
signal of Ni2+ and Ni3+ [51]. However, many literatures report ionic charges of manganese, nickel and
cobalt in leaching solution from cathode materials are all +2.

Figure 5 presents XRD patterns of recovered cathode powder and leached residue. The XRD
pattern of recovered cathode powder shows several reflection peaks which match with previously
reported pure single phase of LiNi1/3Co1/3Mn1/3O2 [52]. Comparing with the pattern of reported pure
single phase, there are many noises in the patterns of recovered cathode powder because of impurity
from spent LIBs. The pattern of leached residue shows a dominated reflection at 26.4◦ of 2θ which
is the same as the reported diffraction patterns of the pure graphite powders [53]. Besides, leached
residue also shows a few lower intensity peaks from remaining cathode powder. On the other hand,



Minerals 2020, 10, 662 10 of 23

the reflection pattern of cathode powder shows no reflection at 26.4◦ of 2θ. The reason could be that
graphite is shielded by cathode powder.
Minerals 2020, 10, x FOR PEER REVIEW 10 of 22 

 

  
(a) (b) 

 
(c) (d) 

Figure 4. SEM images of (a) recovered cathode powder (1000×), (b) recovered cathode powder (10,000×), 
(c) leached residue (1000×) and (d) leached residue (10,000×). (Leaching conditions: 4-N sulfuric acid; 
35% wt. H2O2:3% v/v; solid/liquid: 1:15 w/v; 50 °C; 3 h). 

 

Figure 5. XRD patterns of recovered cathode powder and leached residue. 

Various kinetics of leaching processes were studied by several studies. Among these leaching 
kinetics, Avrami equation is well verified for crystallization and later extended to other heterogeneous 
reaction systems [54]. Avrami equation is presented as ln(−ln(1 − x)) = lnk + nln(t), where x is the 

20 40 60 80

In
te

ns
ity

 (a
.u

.)

2-Theta (degree)

 Leached residue
 Cathode powder

(104)

(108)/
(110)

(003)

(101) (106)/
(102)

Graphite

Figure 4. SEM images of (a) recovered cathode powder (1000×), (b) recovered cathode powder
(10,000×), (c) leached residue (1000×) and (d) leached residue (10,000×). (Leaching conditions: 4-N
sulfuric acid; 35% wt. H2O2:3% v/v; solid/liquid: 1:15 w/v; 50 ◦C; 3 h).

Various kinetics of leaching processes were studied by several studies. Among these leaching
kinetics, Avrami equation is well verified for crystallization and later extended to other heterogeneous
reaction systems [54]. Avrami equation is presented as ln(−ln(1 − x)) = lnk + nln(t), where x is the
leaching efficiency of a metal; k is the reaction rate constant (min−1); t indicates leaching time (min) and
n is a fitting parameter. Its integration form is x = 1 − exp(−ktn). In the Avrami equation, particular
assumptions regarding leaching reaction and diffusion result in exact values of these constants.
Zhang et al. researched cobalt leaching process in trichloroacetic acid with H2O2 media [55]. They
indicated that the Avrami equation could be well used to describe the leaching process of cathode scraps.
We also applied Avrami equation to study kinetic of leaching process. Figure 6 shows correlation of
ln(−ln(1 − x)) to ln(t) of lithium, nickel, manganese and cobalt, respectively in different leaching media.
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Figure 6. Plots of ln(−ln(1 − X)) to ln(t) of (a) lithium, (b) nickel, (c) manganese, and (d) cobalt in
different acids (leaching conditions: acid molarity: 4 N; solid/liquid: 1:15 w/v; 65 ◦C and 480 min; except
for H2SO4 + H2O2 at 50 ◦C and 180 min).
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Most of the R2 values in Figure 6 are higher than 0.95, which indicates the validity of linearly
fitting by Avrami equation. The value of n in H2SO4 + H2O2 leaching for each meatal is the highest,
which shows that reducing agent (H2O2) greatly increases the leaching efficiency. The values of n
in mixing acid leaching system (H2SO4 + HCl) for lithium, nickel and cobalt are from 0.44 to 0.94,
which shows that the leaching rate is high at first and then goes down over time before leaching
equilibrium is reached. In addition, it can be discovered from Figure 6a that the values of n in different
leaching systems for lithium are obviously higher than that of other three metals, which indicates that
the acid leaching lithium is easier than other metals. It can also be discovered from Figure 6c) that the
values of n for manganese are only about 0.1 for three different leaching systems except for H2SO4

+ H2O2, which indicates that the acid leaching manganese without reducing agent is more difficult
than other metals. In the following conventional solvent extraction process and complexation-assisted
solvent extraction, we used the optimum leaching conditions of 4-N H2SO4, 3% v/v H2O2 (35 wt. %),
50 ◦C and 3 h.

3.3. Continuous-Countercurrent-Extraction Process

After de-aluminum and leaching, the leachate of cathode materials was processed to
remove manganese with P-204 by a continuous-countercurrent-extraction process with three
mixing–clarification tanks. When the extraction process reached equilibrium, two samples were
taken from each tank including organic phase outlet and aqueous phase outlet. Figure 7 shows the
metal concentrations of the feeding aqueous phase, feeding organic phase and inlet and outlet of each
stage position in continuous-countercurrent-extraction process. The stage position numbers of 1, 2 and
3 in Figure 7 are the same as the stage numbers in Figure 3. The terms Con,M and Can,M are metal
M (Mn, Co, Ni or Li) at nth stage in organic phase and aqueous phase, respectively. Feeding metal
concentrations were showed as the first set of data at the rightmost side of Figure 7.
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Figure 7. Metals concentrations in conventional continuous-countercurrent-extraction of manganese.
P-204/kerosene—1:4 v/v; saponification: 60%; O/A—1:1; retention time in each tank—5 min.

Figure 7 indicates that three stages are necessary for effective manganese removal from other
metals in aqueous phase. Concentrations of Co, Ni and Li in the aqueous phase slightly decrease from
the inlet (feeding) at stage 1 to the final outlet at stage 3. Concentrations of Mn in the aqueous phase
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decrease from the inlet at stage 1 to the final outlet at stage 3. Simultaneously, concentrations of Mn
in organic phase increase from the inlet (feeding) at stage 1 to the final outlet at stage 3. The metals
concentrations of Mn, Co, Ni and Li in the last extracted organic phase were 9.98, 0.20, 0.20 and 0.10 g/L.
Furthermore, purity of Mn was 95% and can be improved subsequently by impurities scrubbing
and manganese stripping. The separation factor of 108~157 (βMn/Co), 121~190 (βMn/Ni) and 48~91
(βMn/Li) were obtained at different extraction stage. Joo et al. used P-507 and Versatic 10 acid to extract
manganese and obtained separation factors of 9.4~24 (βMn⁄Co) and 46~329 (βMn⁄Ni) [56]. Separation
factors of βMn/Co in this study is better than literature data.

After removal process of manganese, the raffinate (aqueous phase with trace manganese
flow out from the last extraction stage) was fed to remove cobalt with P-507 by another
continuous-countercurrent-extraction line with six mixing–clarification tanks. Figure 8 shows the
metals concentrations of different streams in the extraction process.Minerals 2020, 10, x FOR PEER REVIEW 13 of 22 
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Figure 8. Metals concentrations in conventional continuous-countercurrent-extraction of cobalt.
P-507/kerosene: 1:4 v/v; saponification: 60%; O/A: 1:1; retention times in each tank: 5 min).

Figure 8 indicates that a six-stage process is necessary for effective cobalt removal from other
metals in the aqueous phase. The stage position numbers of 1, 2, 3, 4, 5 and 6 in Figure 8 are the same
as the stage numbers in Figure 3. The terms Con,M and Can,M are metal M (Co, Ni or Li) at nth stage
in organic phase and aqueous phase, respectively. Concentrations of Ni and Li in the aqueous phase
slightly decrease from the inlet (feeding) at stage 1 to the final outlet at stage 6. Concentrations of
cobalt in aqueous phase decrease from the inlet at stage 1 to the final outlet at stage 6. Simultaneously,
concentrations of Co in organic phase increase from the inlet (feeding) at stage 1 to the final outlet
at stage 6. The metals concentrations of Co, Ni and Li in the last extracted organic phase were 9.7,
0.38 and 0.22 g/L at stage 1. Furthermore, purity of Co was 94% and can be improved subsequently
by impurities scrubbing and cobalt stripping. Our previous study demonstrated that the purity of
plating cobalt foil can reach 98.80% [37]—or even up to 99.96% with deep impurity removal before
cobalt electrowinning.

The distribution coefficients Equation (1) of cobalt were stable throughout the extraction process,
but distribution coefficients of nickel decreased from stage 1 to stage 6. Therefore, separation factors
βCo/Ni increased from 34 (stage 1) to 109 (stage 6). The separation factors showed by this study



Minerals 2020, 10, 662 14 of 23

were higher than that presented by Nguyen et al. which were 11 to 23 implemented by P-507 [57].
Nevertheless, metals extraction efficiency and separation factor depend on ratio between two competing
metals, extractant concentration and equilibrium pH of the aqueous phase.

3.4. Complexation-Assisted Solvent Extraction of Cobalt

Both cobalt and nickel are transition metals arranged adjacent to each other on the periodic table,
meaning that the physicochemical properties of the two elements are similar, leading to the difficulty
in separating them. Subsequently, a six-stage extraction processes is required for separating cobalt
and nickel by conventional solvent extraction. As a result of these problems, this study developed
a complexation-assisted solvent extraction process with a specific diluent and a complexing reagent
reducing number of extraction stages from six to one.

3.4.1. Types of Diluent

First, the effectiveness of diluents was investigated. The extraction and separation results are
shown in Figure 9. The effectiveness of the diluents for the extraction of Co and Ni are presented as
their extraction percentages. The separation factors βCo/Ni are 553, 227, 372, 263, 416, 416, 315 and 265
when using toluene, cyclohexane, heptane, octane, nonane, decane and kerosene, respectively.
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Figure 9. Effectiveness of different diluents for extraction percentages of cobalt and nickel.
P-507/diluent—1:4 v/v; saponification: 60%; complexing reagent—ammonium thiocyanate; O/A—1:1).

By using toluene obtains the highest separation factor, but the lowest extraction percentage of Co
and Ni. Toluene contains a π bond with high polarity compared to the other diluents. This weakens the
organic properties of the extractant in organic phase and reduces the distribution coefficient of cobalt
complex in the oil/aqueous phases, thus results in the lowest cobalt extraction percentage. The result is
similar with the literature reported by Ghebghoub and Barkat [58]. They studied the nature of diluents
in the solvent extraction of Cu2+ from sulfate medium with P-204 as extractant. The literature reported
that the extraction in cyclohexane was clearly improved to the presence only of the dimeric form of the
molecules of extractant in the organic phase. For toluene, the extraction is weakest due to stronger
interactions between extractant and the diluent, decreasing the activity of P-204.
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Additionally, cyclohexane, heptane, octane, nonane, decane and kerosene are all alkanes types of
saturated hydrocarbons with low polarity. As the length of the carbon bond increases, the viscosity
increases, leading to the difficulty for metal ions to ionized in the two phases. As a result, the shortest
carbon bond of heptane has the highest extraction effectiveness.

Figure 9 also shows that it is difficult for P-507 blended with any kind of diluent to extract
nickel ions. Wherein, the extraction percentage of cobalt with cyclohexane is the highest of 86.25%,
and that of nickel is only 2.77%, but separation factor with heptane is higher than cyclohexane.
However, kerosene is primarily used in industry, which is mainly based on the determination in
consideration of the recovery percentage and the metal purity to economic costs. Therefore, it is to
be known that the increase in the polarity of the diluent may decrease the extraction capability of
the extracted organic phase. In addition, in the following sections, heptane was used as diluent for
extracting cobalt.

3.4.2. Saponification Percentage of Extractant

In order to examine the effect of saponification, various amounts of sodium hydroxide were
added to extractant P-507 before the extraction procedure. Figure 10 shows the extraction percentages
tendency of cobalt and nickel corresponding to the saponification percentage of P-507 carried out in
the complexation-assisted solvent extraction procedure.
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Figure 10. Extraction tendency of cobalt and nickel corresponding to saponification percentage.
P-507/heptane—1:4 v/v; complexing reagent—ammonium thiocyanate; O/A—1:1).

When the saponification percentage rose from 20% to 60%, the extraction percentage of cobalt
increased from 33% to 86%, but its nickel remained below 2%. At 50% to 60% saponification ratio,
the extraction equilibrium pH was between 4.5 and 5.2. When the saponification ratio reached 70%,
the cobalt extraction percentage become 91%, the nickel extraction percentage increased to 22%, and
the extraction equilibrium pH was 6.2. The highest effectiveness was achieved when the saponification
percentage was controlled at 60%, regarding the extraction percentage and separation efficiency of
cobalt and nickel.

3.4.3. Types of Complexing Reagent

In order to evaluate the effects of complexation on extraction of cobalt and nickel, various types
of aqueous phase metal complexing reagents were investigated. Figure 11 indicates the extraction
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percentages of cobalt and nickel by different complexing reagents. Separation factors of cobalt and
nickel were 2, 42, 18, 25, 525, 162, 372, 72 for citric acid, sodium citrate, succinic acid, sodium
acetate, ammonium acetate, sodium thiocyanate, ammonium thiocyanate and blank (no complexing
reagent added). We proposed ammonium thiocyanate as the best complexing reagent because
of its better cobalt extraction capability, low nickel extraction percentage and a good separation
factor. Although ammonium acetate has the highest separation factor with the highest cobalt
extraction percentage, its nickel extraction percentage is too high and need additional step to remove
nickel contents.
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Figure 11. Extraction tendency of cobalt and nickel corresponding to types of complexing reagent.
P-507/heptane—1:4 v/v; saponification: 60%; O/A—1:1.

The complexing reagent acts as a ligand and complex with metal ions. For the negative electric
metal complex, chloride ion or thiocyanate ion and so on, may be used as ligand. For the positive
electric metal complex, an ammonium ion such as tetraethyl ammonium and so on, may be used
as ligand. When the ligand ion is a negative electric specie (e.g., SCN−) and an acidic extractant
(e.g., P-507) is used, we proposed a metal complex of M(SCN)2(NH4SCN)2 forms in aqueous phase in
which M is Co or Ni. The metal extraction percentage is related not only to the structure and stability
of the complexing reagent in the aqueous phase, but also to the stability of metal-extractant compound
speciation in the organic phase. Kislik’s report expressed complex forms of acidic organophosphorus
extractant and transition metal [47]. At extraction of divalent transition metals (cobalt, nickel, copper)
with acidic organophosphorus extractants, for example, P-204, nucleus metal–extractant aggregate is
typically a tetraligated species—Ni(P-204)2·2H2O·2P-204.

We suggest that transfer procedure could be a series of steps. First, the complex
M(SCN)2(NH4SCN)2 (M = Co or Ni) forms in aqueous leachate, and then mixes with P-507 dimer
or aggregate at organic–aqueous interface. Metal ions exchange to saponified P-507 and form a new
complex M(P-507)2·2H2O·2(P-507). Finally, metal ions transfer into the organic phase. The difference
in stability between the cobalt complex and the nickel complex is very beneficial for separation in
extraction process. The reason may be that Co(SCN)2(NH4SCN)2 is more conducive to directly perform
an ion exchange of cobalt with saponified P-507.

However, when citrate ion or succinate ion acts as a complexing reagent the extraction percentages
got a negative effect and were even worse than being blank. We proposed that acetate and succinate
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ions form more stable complexing products than the original cobalt and nickel hydrates. Thiocyanate
ion and an organic amine alkaline extractant were once used in a cobalt–nickel hydrometallurgical
system, but the extraction complex became too stable, which made stripping became difficult.
Therefore, this study shown that when using acidic extractant P-507, ammonium thiocyanate is a better
complexing reagent for the separation of cobalt and nickel.

3.4.4. Organic/Aqueous Ratio

As shown in Figure 12, when the organic/aqueous ratio was 1:4 and 1:2, the cobalt extraction
percentage was only 29.95% and 57.37%, respectively due to insufficient dose of extractants, the nickel
extraction percentage was less than 1%. When the organic/aqueous ratio was elevated to 1:1, the best
separation effect was obtained. The extraction percentage of cobalt was 85.0%, the extraction percentage
of nickel was 1.5%, the separation factor βCo/Ni could reach 372.Minerals 2020, 10, x FOR PEER REVIEW 17 of 22 
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Figure 12. Extraction tendency of cobalt and nickel corresponding to organic/aqueous ratios.
P-507/heptane—1:4 v/v; saponification—60%; complexing reagent—ammonium thiocyanate.

If the organic/aqueous ratio increases continuously, it can be found that nickel enters the organic
phase in large quantities, because of the excessive extractant and results in a poor separation between
cobalt and nickel. When the organic/aqueous ratio reached 4:1, cobalt and nickel were almost
completely extracted.

3.4.5. Correlation of Extraction Equilibrium pH to Log Distribution Coefficient

Figures 13 and 14 shows the correlation of extraction equilibrium pH to log distribution coefficient
of cobalt and nickel, e.g., LogDCo and LogDNi, respectively. Figure 13 shows a linear relationship
between LogDCo and extraction equilibrium pH from 3.9 to 6.1. The linear fitting slope is 1, indicating
that DCo (Co,Co/Ca,Co) will become 10 times as hydroxide ion concentration increases 10 times.
Therefore, we can adjust extraction equilibrium pH to control the cobalt distribution between the
organic phase and the aqueous phase. As the equilibrium pH increases, the concentration of cobalt
in the organic phase will increase as well, and more cobalt ions will transit from aqueous leachate to
complex with organic extractant.
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Figure 13. Correlation of extraction equilibrium pH to distribution coefficient of cobalt (Experimental
conditions: 0.15-M cobalt; 0.15-M nickel; 0.7-M ammonium thiocyanate; P-507/heptane—1:4 v/v;
saponification: 60%; O/A—1:1.
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Figure 14. Correlation of extraction equilibrium pH to distribution coefficient of nickel. Experimental
conditions were the same as described in Figure 13.

Figure 14 shows two segments of linear relationships between LogDNi and extraction equilibrium
pH from 3.9 to 5.0 and from 5.0 to 6.1, respectively. One linear fitting slope from pH 3.9 to 5.0 is 0.2.
Another linear fitting slope from pH 5.0 to 6.1 is 1.2. The results indicated that DNi (Co,Ni/Ca,Ni) will
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increase only 1.6 times as hydroxide ion concentration increases 10 times during pH from 4 to 5 and
increase 16 times as hydroxide ion concentration increases 10 times during pH from 5 to 6.

In other words, when the extraction equilibrium pH is in the range from 3.9 to 5.0, the slope of
LogDNi vs. pH is 0.2, indicating that the distribution coefficient (DNi) of nickel in the organic/aqueous
phase only become 1.6 times as pH value increase 1. In the meantime, the distribution coefficient
(DCo) of cobalt in the organic/aqueous phase during the same pH range is 10 times. Along with
increasing extraction equilibrium pH from 3.9 to 5.0, the concentration of cobalt in organic phase
increases drastically while nickel increases slowly. The finding should be the same as we suggest
in Section 3.4.3 that Co(SCN)2(NH4SCN)2 is more conducive to directly perform an ion exchange of
cobalt with saponified P-507.

After the extraction equilibrium pH reaching 5.0, the concentration of cobalt in organic phase
increases slowly, because the remaining cobalt in aqueous phase is little. Along with increasing
extraction equilibrium pH from 3.9 to 5.0, the concentration of nickel in the organic phase increases
slowly. After extraction equilibrium pH reaching 5.0, the concentration of nickel in organic phase
increases drastically because the distribution coefficient increases suddenly and meanwhile the
remaining nickel in aqueous phase is still rich.

3.5. Comparing Conventional Solvent Extraction to Complexation-Assisted Solvent Extraction

As shown in Table 4, the recovery percentage of cobalt extraction with one-stage conventional
solvent extraction and complexation-assisted solvent extraction is 70% and 85%, respectively. The purity
of cobalt extracted with one-stage conventional solvent extraction and complexation-assisted solvent
extraction is 70% and 98%, respectively. The latter’s high extraction percentage and purity of cobalt are
due to the specific diluent and complexing reagent. The cobalt purity is 98% with a single stage of
complexation-assisted solvent extraction and even still higher than 94% with six-stage conventional
solvent extraction. In contrast, the cobalt extraction percentage of 95% from six-stage conventional
solvent extraction is higher than 85% of a single-stage complexation-assisted solvent extraction.
The six-stage conventional solvent extraction process has tried all possible means to extract cobalt but
can only reach 94% purity. The separation factor of 372 by complexation-assisted solvent extraction,
which effectively reduces the number of extraction stages from six to one, is five times that of the
conventional solvent extraction. It also can save the cost of extraction-stripping equipment and
acid/alkali consumption. The cathode materials from spent LIBs were also examined with the optimum
operation parameters of complexation-assisted solvent extraction process. The results were 85%
Co extraction percentage and 95% purity because of a little impurity in spent LIBs and previous
recovery procedure.

Table 4. Comparison of cobalt–nickel separation factor, cobalt recovery percentage and purity
demonstrated by conventional solvent extraction and complexation-assisted solvent extraction.

Types of Solvent Extraction in This Study Separation Factor
βCo/Ni

Co Extraction Percentage
(%) Co Purity (%)

Conventional solvent extraction 72
95 (six stages) 94 (six stages)
70 (one stage) 70 (one stage)

Complexation-assisted solvent extraction 372 85 (one stage) 98 (one stage)

4. Conclusions

We demonstrated an overall process to recover metals from spent NMC type LIBs. Leaching
kinetics of Li, Ni, Co and Mn were studied. The results indicated the validity of linearly fitting by
Avrami equation. The value of n in H2SO4 + H2O2 leaching media for each metal was higher than in
any other leaching media, which showed reducing agent H2O2 greatly increases the leaching efficiency.
The optimal leaching conditions were 4-N H2SO4, 3% v/v H2O2, 50 ◦C and three hours of leaching time.
Comparing with recovered cathode powder, SEM images of leached residue surface emerged plenty of
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pores with different sizes. The XRD analysis indicated that most leached residue were graphite as a
result of removal of the metals.

We also performed a bench scale continuous-countercurrent-extraction process to separate metals
from leachate and developed a complexation-assisted solvent extraction to improve the separation
factor between cobalt and nickel. With the assist of diluent heptane and complexing reagent ammonium
thiocyanate, the facile process demonstrated a separation factor 372, which is five times higher than
conventional solvent extraction with a single extraction stage identically. The optimal extraction
parameters were identified as follows: volume ratio of extractant to diluent (1:4), saponification
percentage (60%), diluent (heptane), complexing reagent (ammonium thiocyanate) and volume ratio
of organic phase to aqueous phase (1:1). The separation tendency would be interpreted by the
relationship between extraction equilibrium pH and log distribution coefficient. We propose that
Co(SCN)2(NH4SCN)2 is more conducive to directly perform an ion exchange of cobalt with saponified
P-507. Moreover, the number of extraction stages could be reduced from six to one, which can greatly
decrease the consumption of acid, alkali and energy during the facile extraction process.

The recovered Mn, Co, Ni and Li could be further refined for the manufacturing of cathode
material precursor and practice the circulation of cathode materials from a waste Li-ion battery to a fresh
Li-ion battery. However, the interfacial properties between metal-complexing and metal-extracting
speciation in the complexation-assisted solvent extraction process is essential to be studied.
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