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Abstract: Modeling the global markets is complicated due to the existence of uncertainty in the
information available. In addition, the lithium supply chain presents a complex network due to
interconnections that it presents and the interdependencies among its elements. This complex supply
chain has one large market, electric vehicles (EVs). EV production is increasing the global demand for
lithium; in terms of the lithium supply chain, an EV requires lithium-ion batteries, and lithium-ion
batteries require lithium carbonate and lithium hydroxide. Realistically, the mass balance in the global
lithium supply chain involves more elements and more markets, and together with the assortment of
databases in the literature, make the modeling through deterministic models difficult. Modeling the
global supply chain under uncertainty could facilitate an assessment of the lithium supply chain
between production and demand, and therefore could help to determine the distribution of materials
for identifying the variables with the highest importance in an undersupply scenario. In the literature,
deterministic models are commonly used to model the lithium supply chain but do not simultaneously
consider the variation of data among databases for the lithium supply chain. This study performs
stochastic modeling of the lithium supply chain by combining a material flow analysis with an
uncertainty analysis and global sensitivity analysis. The combination of these methods evaluates an
undersupply scenario. The stochastic model simulations allow a comparison between the known
demand and the supply calculated under uncertainty, in order to identify the most important variables
affecting lithium distribution. The dynamic simulations show that the most probable scenario is
one where supply does not cover the increasing demand, and the stochastic modeling classifies the
variables by their importance and sensibility. In conclusion, the most important variables in a scenario
of EV undersupply are the lithium hydroxide produced from lithium carbonate, the lithium hydroxide
produced from solid rock, and the production of traditional batteries. The global sensitivity analysis
indicates that the critical variables which affect the uncertainty in EV production change with time.

Keywords: lithium; batteries; electric vehicles; supply chain; demand; uncertainty

1. Introduction

Lithium has become a strategic material since it plays an essential role in the development of a
low-carbon economy [1]. The leading consumer of lithium is the battery industry, accounting for 65%
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of the global lithium market [2], making battery production a key process in the global lithium supply
chain. Electric vehicles (EVs) cover the majority of the battery market, which has increased in recent
years, growing from 25,000 tons of lithium carbonate equivalent (LCE), in 2015, to 205,000 tons of LCE,
in 2025, according to the Deutsche Bank [3]. The Swiss Resource Capital reports projected growth
from 25,760 tons of LCE, in 2015, to 202,920 tons of LCE, in 2025 [4]. The growth of EV participation
in the battery market is apparent, but the magnitude of how much this participation has grown can
vary depending on the databases used as a result of how their corresponding calculations have been
completed. The use of exact data in the calculation of EV production makes the results vary depending
on the database. This means that if the model starts with database A and database B, it will always
obtain result C, with A and B representing the reports in the literature and C being EV production.
The EV production calculation changes only by changing the database used, and this calculation uses a
deterministic model [5]. Several investigations have utilized material flow analysis (MFA) as a mass
balance method to represent the transformation of matter through the lithium supply chain [6–8],
and the majority of these studies have incorporated deterministic models [6,8–11]. Modeling the
lithium supply chain with deterministic models limits the estimation of EV production with determined
databases. There are several sources of information on the lithium supply chain, and the data vary
according to the selected report and the year of its publication [12]. Furthermore, choosing the best
database to model the production of EVs starting from lithium reserves is not a trivial task.

A typical network used for representing the lithium supply chain has the following three stages:
(i) The resource mining stage, where lithium is present in the form of brine and solid rock; (ii) the
chemical production stage, where the lithium takes the form of lithium carbonate, lithium hydroxide,
lithium chloride, and lithium concentrate; and (iii) the product manufacturing stage, where lithium
takes the form of the lithium contained in batteries, ceramics, lubricants, polymers, air treatment,
aluminum, continuous casting powder, etc. [3,7,8,13]. In the lithium supply chain, it is very challenging
to determine the quantity of lithium present in each stage over the years because of the complexity of
the network. The historical extraction of lithium from brine and solid rock has been reported in the
literature [2,14,15]. Chile, Australia, Argentina, and China provide more than 92% of global lithium
extracted from solid rock and brine [12,14]. These countries include large projects in their budgets,
as well as the most significant reserves of lithium [3,16]. They also have a potential increase in the
new projects that are expected to start shortly. For example, in Argentina, new plants, such as Olaroz,
Orocobre, and Galaxy, will soon begin extracting lithium. Australia also has new projects, such as
Pilbara, Altura, Mt. Marion, and Mt. Catlin. Chile and China are developing expansions in their actual
plants [16]. The United States Geological Survey (USGS), Signumbox, British Broadcasting Corporation
(BBC), the British Geological Survey, etc. [8,17] quantified the mass flows between the different stages
of the lithium supply chain. The reported mass flows vary depending on the stage of the supply chain
in the database under examination and the year of publication. Each database focuses on a specific
part of the lithium supply chain. Some databases report only the quantity of the flow, but it is not
possible to determine how they calculate the mass flow. This lack of transparency in the databases
and the variability in the reported lithium supply stage contribute to the necessity of using several
databases in one model. Using several databases in one model for calculating EV production requires
a stochastic model. This kind of model uses an assortment of databases as its input, and therefore
introduces uncertainty.

The uncertain production of EVs can be compared with a specific demand to determine the
probability of an undersupply scenario. The fast-increasing demand for lithium-ion batteries used
in electric vehicle fabrication will significantly increase demand in the battery market in the coming
years [18–21]. Different scenarios of battery production could lead to an undersupply scenario [22,23].
A comparison between uncertain battery production with a specific demand supports the probability
of an undersupply scenario [24].

We use several databases to model the material flow throughout the supply chain. Unlike a
deterministic model where the model has fixed input, this research uses stochastic modeling by
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introducing uncertainty in the model input. The stochastic modeling of the global lithium supply chain
identifies the variables that lead to a possible undersupply scenario. The model input uncertainty has
two classifications, i.e., uncertainty over the country’s lithium extraction and uncertainty of the mass
flow between stages. This research decomposes the mass flow between the three stages in several paths.
The distribution variables determine the percentage of mass that flows from the beginning to the end
of each path, and each path has a distribution variable. The percentage variation in the distribution
variables introduces mass flow uncertainty to the model. The limits of percentage variation depend
strongly on the databases included in the model.

Given the variations in the information among databases, the objective of the present study is the
use of stochastic modeling to represent the global lithium supply chain uncertainty in EV production
by using a combination of three main methods, material flow analysis, uncertainty analysis, and global
sensitivity analysis. Then, a comparison between the uncertain production and a specific demand
determines the probability of occurrence of an EV undersupply scenario.

2. Methodology

Our methodology has the following six parts: a mathematical representation of the supply
chain using stock and flow modeling, data collection, uncertainty analysis of historical production,
uncertainty analysis for future estimations of production, a sensitivity analysis using the global
sensitivity analysis (GSA) technique, and a classification of the variables using Monte Carlo filtering
(MCF). First, we needed a mathematical representation of the supply chain that considered uncertainty
in the distribution variables. Then, the uncertainty in the supply chain was determined, considering
the uncertainty of the future production of the countries added to the uncertainty of the distribution
variables. A sensitivity analysis selects the most sensitive variables involved in a supply chain.
This analysis was applied to future matter distribution simulations. Finally, the most important
variables within the supply chain under a possible undersupply scenario were selected using Monte
Carlo filtering. Figure 1 provides a detailed graphical representation of the methodology.

Figure 1. The methodology representing the six steps for the supply chain assessment.
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2.1. Mathematical Representation by Stock and Flow Modeling

2.1.1. Conceptual Model

The first step in the methodology involved a representation of the supply chain. The lithium
supply chain was constructed based on the material flow analyses in different studies [7,8,12].
The following three main parts of the supply chain were determined: mining and extraction, processing,
and manufacturing.

We used MFA because it is used for quantifying the stocks, flows, inputs, and losses of a
resource [25]. For lithium, some studies reported the material flow using different approaches.
Ziemann et al. proposed an MFA of lithium, in 2012, and separated the stages of the lithium supply
chain into production, manufacture, use, and recycling waste management [10]. In 2017, Hao et al.
presented an MFA of lithium in China for 2015; the stages of the supply chain in this work were
resource mining, chemical production, product manufacturing, product use, and waste management [6].
Sun et al. presented a trade-linked material flow analysis in 2017. The stages in the supply chain
were similar to those in the previous study but included the material distribution between different
countries using 2016 databases [7]. In 2018, Sun et al. presented the global material flow between 1994
and 2015. The supply chain stages remained the same as those in the Sun et al. studies. This study
used three databases to represent the material flow, providing results for 1995, 2005, and 2015. In this
past study, the lithium in the supply chain was shown to increase from 1995 to 2015 [8]. In the
present study, we applied the MFA representation of Sun et al. to define the supply chain network of
lithium. The stages considered were resource mining, chemical production, and product manufacturing.
This modeling did not include the product use and waste management stages. We only considered
values up to the product manufacturing stage because our interest focused on the possible undersupply
of batteries. Some elements included in the three selected stages were minerals, basic chemicals, and
products. The definitions of these elements can be found in Sun et al. [6,8,26].

2.1.2. Mathematical Model

Asimulation material and substance flow analysis uses stock and flow modeling. Müller reviewed
the application of this technique to MFA, noting that MFA was a method frequently used to assess
the past, present, and future stocks and flows of metals [27]. In the present work, we conducted
a dynamic simulation of the supply chain to analyze the past and future of lithium, focusing on
electric vehicle production. Stock and flow modeling is the most suitable technique to simulate the
lithium supply chain. Glöse stated that fewer static than dynamic simulations had been conducted [28].
One contribution of the present work is the use of a dynamic simulation combined with an uncertainty
and sensitivity analysis. Suomalainen [29] used stock and flow modeling to determine dynamic
modeling resource use and classified the different modeling techniques. Here, we used dynamic
MFA modeling to show the evolution of the flows in the coming decades. This dynamic MFA is a
mathematical representation of the lithium supply chain.

Dynamic MFA mathematically simulates the dynamic behavior of the lithium processing stages.
The stock equation is given as follows [27,30]:

Stockt =

∫ t

t0
(in f lowt − out f lowt)dt + Stockt0 (1)

where t0 is the initial year, t is the final year considered, and Stockt is the mass accumulated in the
system at time t during that period due to the influx in f lowt and loss out f lowt. This model calculates
the material flow from one stage to the next. Based on this calculation, the stock depend on time and
also on the stage of simulation. Equation (2) represents the stock considering both time and stage
as follows:

Stockt,i =

∫ t

t0
(in f lowt,i − out f lowt,i)dt + Stockt0,i (2)
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where i represents the stage of the supply chain. The material flow starts with the production of lithium
from the countries. Then, it passes through the supply chain to finally end in the production of electric
vehicles. The inflow and outflow are stage and time dependent. The stage inflow corresponds to
the output of the previous stage. The outflow of a stage is dependent on the stock of the stage and
the variable of distribution. Equation (3) is a mathematical representation of the inflow at each stage
as follows:

in f lowt,i = out f lowt,i−1 =

∫ t

to
(Stockt,i−1)dt×VDi−1 (3)

where VDi represents the variable of distribution. This variable depends only on the stage, not on
time. The distribution variable represents the flow distribution between stages. Each stage has various
elements, including the distribution of material between the elements of Stockt,i−1 and the elements of
Stockt,i. The distribution variables are expressed in terms of percentage, defining how much material
flows through its respective path.

2.2. Data Collection

Reports from the historical production of lithium from 1981 to 2019 comprised the data collected.
Then, data on the possible increases in production were used to estimate the production from 2019 to
2025. These data were introduced to the mathematical model to perform simulations. Both periods
have uncertainty in their distribution variables. The period from 2019 to 2025 entails an increase
in production from the leading countries of the lithium market, i.e., Chile, Argentina, China, and
Australia. These four countries have provided more than 92% of global lithium production [12,15].

One of the most commonly used databases in terms of lithium extraction is the United States
Geological Survey (USGS), which annually reports the reserves of lithium and lithium extraction by
country. The USGS has two kinds of reports, the Mineral Yearbook and the Mineral Commodity
Summaries. The Mineral Yearbook provides detailed information about lithium production, specifying
the production of the compounds in each country. The information given by these reports is available
only up to 2016. The Mineral Commodity Summary reports are available up to 2020, but they
only provide the total amount of extraction per country. The present research considers Mineral
Commodity Summary reports up to 2020 [2]. The historical national lithium production was mainly
obtained from USGS reports and complemented with other studies, such as the Macquarie report [2,31].
Different databases, such as Canaccord, Center of Energy Economics, USGS, and Macquarie, among
others, broke down the elements at different stages [2,16,31,32]. These databases are comprehensive
mainly from 2012 to 2016 because the present study considers open-source databases. More updated
databases are challenging to obtain, principally because of their high price. The current stochastic
modeling considers including several databases in the model, which means that including updated
databases to the model could increase the uncertainty in the input of the model. Including updated
databases could change the results if they are considerably different from the data used from 2012 to 2016.
Due to the uncertainty in these lithium supply chain databases, future product estimations introduce
the uncertainty of national production in possible new projects. The Canaccord and signumBox reports
present possible future projects in different countries [16]. The last step of the methodology compares
the specific demand with estimations of the supply uncertainty. Several studies have presented
estimations of demand in the lithium supply chain, but these data were not open source. Here, we
considered the Macquarie report data, which were used for comparisons with the estimations in our
mathematical model [31].

The main contribution of this work is related to the use of uncertainty in the variables.
Stochastic modeling, unlike deterministic modeling, is not dependant on one database. Therefore, new
databases can be included in the model making the results change according to the uncertainty that
these databases add to the model. Helton and Overkamp divided uncertainty into the following two
subtypes: aleatory uncertainty which arises because the system under study can potentially behave in
many different ways, and epistemic uncertainty which arises from a lack of knowledge about quantities
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that are fixed but poorly known [33]. The present work considered epistemic uncertainty due to our lack
of knowledge of the variables involved in the mathematical model. One problem was the insufficient
amount of data to determine the probability distribution of the variables. The characterization of
epistemic uncertainty in a uniform distribution uses the principle of insufficient reasons in the absence
of information to distinguish the credibility of alternatives [24,33,34]. To be precise, we considered all
distribution variables with a continuously uniform distribution function and maximum and minimum
values, where VDi ∼ U(a, b) means that the distribution variables have a maximum value “a” and
a minimum value ”b”, as well as equal probability. For the distribution variables, the range of
uncertainty was determined from the different reports in the literature.

2.3. Uncertainty Analysis of Historical Production

The mathematical model uses uncertainty analysis to study the uncertainty in the output variables
as a result of uncertainty in the input variables. According to the related literature, several theories are
available to perform this analysis, for example, the fuzzy theory and probability theory. The latter’s
process usually involves four steps [24]. First, the distribution functions are used to characterize the
uncertainty of the input variables. Second, a sample is generated from the distribution functions,
commonly using the Monte Carlo method. Third, the output variable of the model is evaluated for each
element of the sample. Fourth, the results are analyzed using statistical analysis. Note that uncertainty
is typically divided into stochastic and epistemic uncertainty [35,36]. The first is related to the inherent
and unpredictable variation of a given system, usually due to the random nature of the input variables.
The second emerges from the deficit of knowledge due to the quantities that possess fixed but poorly
known values [33]. In the absence of information, it is important to distinguish the credibility of the
alternatives; a uniform distribution should characterize epistemic uncertainty [24,33].

The following different methodologies exist for uncertainty assessments, each using a different
approach: data uncertainty engine (DUE), error propagation equations, expert elicitation, extended
peer review, inverse modeling, Monte Carlo analysis, multiple model simulation, Numerical Unit
Spread Pedrigree and Assessment (NUSAP), quality assurance, scenario analysis, sensitivity analysis,
stakeholder involvement, and an uncertainty matrix [37]. Two different perspectives have been used
to analyze uncertainty, i.e., uncertainty in the model parameters, which is studied through sensitivity
analysis, and uncertainty in the reference data, which is analyzed via uncertainty analysis. Both tools
are described by Suomalainen [29]. We focused on lithium batteries for electric vehicle production as
an output variable because this application of lithium has the most significant share in the lithium
supply chain in the future [31,38–40]. The assessment of electric vehicle production corresponds to the
uncertainty analysis. This article explores the propagation of the uncertainties from the input data
to the response variable. Morgan and Henrion proposed that the error propagation method should
be used only when variables have a normal distribution and the uncertainties are low. When these
conditions are not satisfied, the Monte Carlo method is often used [41]. According to the principle
of insufficient reason (also called the principle of indifference), a uniform distribution characterizes
epistemic uncertainty in the absence of information to distinguish the credibility of the alternatives [33].
According to the literature on the lithium supply chain, variables present epistemic uncertainty due
to the absence of sufficient information throughout the whole supply chain. The assessment of the
parameters involved in electric vehicle production corresponds to the sensitivity analysis. In this case,
the influence of individual parameters on electric vehicle production is studied by creating sensitivity
indices [42,43].

For historical production, uncertainty only exists in the distribution variables. The objective
of the uncertainty analysis in this period is to determine the uncertainty level in the supply chain,
considering uncertainty in the input of the model. To obtain representative results, the mathematical
model performs 1000 simulations.
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2.4. Uncertainty Analysis in the Future Estimations of Production

To estimate future production, we considered the uncertainty of the distribution variables, as well
as the country’s production uncertainty, which increases the uncertainty in the lithium supply chain.
The objective was to observe how much the uncertainty increases. In Section 2.3, we stated that
the output variable being analyzed involves the production of electric vehicles. The combination of
uncertainty in the distribution variables and the country’s production uncertainty increases uncertainty
in the production of electric vehicles.

2.5. Variable Sensitivity Determination with Global Sensitivity Analysis (GSA)

Sensitivity analysis involves identifying the contribution of the uncertainties of the input variables
with the uncertainties of the output variables in the mathematical model. The present sensitivity
analysis includes both local and global approaches. Each variable is measured, one at a time, which
shows the disadvantage of depending on the choice of the evaluation point. Second, we take all input
variables and examine the uncertainty range all at once. Global sensitivity analysis (GSA) involves
six steps [44]. First, select the output variable of the model. Second, select the input variables of the
model. Third, assign the distribution function to the input variables. Fourth, generate samples from
the distribution functions. Fifth, evaluate the model using the samples. Sixth, perform the GSA and
determine the effect of the uncertainty of input variables on the output variables of the studied model.

According to related theories, many methods are available to perform GSA. Among these methods,
we focus on those based on the method of Sobol due to their versatility [45]. Similarly, Saltelli et al. [45]
compared several approaches based on Sobol’s method under distinct scenarios. The authors reported
that the Sobol–Jansen method iwas the most robust. Similar results were found using performance
profiles to benchmark GSA methods [46]. The Sobol–Jansen method involves calculating the first-order
sensitivity index (S j) and the total sensitivity index (ST

j ) for input variables X j of the mathematical
model. The first is used when the aim is to determine which of the input variables is most influential
in the output variable of the mathematical model. The total sensitivity index is used when the aim is
to determine both the direct and indirect contributions of the input variables in the output variable
of model. Note that if ST

j ≈ 0, then the input variable X j is not influential in the model output, and,
consequently, this variable can take any given value, which reduces the dimensions of the model.

2.6. Variable Importance Classification Using Monte Carlo Filtering (MCF)

The Monte Carlo filtering (MCF) method aims to identify which input variables are most important
in driving the mathematical model to perform desired and unwanted behaviors. The MCF method
involves dividing the realization space into two subsets. The first set (B) brings together the values of
the input variables that provide the desired results of the model output. The second set (B) brings
together the values of the input variables that provide the unwanted results of the model output.
In general, the subsets defined earlier come from the different unknown probability density functions
fB(Xi/B) and fB

(
Xi/B

)
, where Xi is an input variable of the model. To identify the input variables that

influence the model to output to B or B, the density functions fB(Xi/B) and fB
(
Xi/B

)
are compared.

In this work, density functions were compared using Kolmogorov–Smirnov statistical hypothesis
testing. This test employs p-values to determine if the input variable is important. Here, the p-value
P(Di

∣∣∣H0) , where P(Di
∣∣∣H0) is the probability of Di given the null hypothesis H0 ( fB(Xi/B) = fB

(
Xi/B

)
),

Di = sup||FB(Xi/B) − FB

(
Xi/B

)
||, and F is the cumulative probability function. The criterion of decision

used was the following: if p < 0.01, then the input variable is crucial; if 0.01 ≤ p− values ≤ 0.1, then the
input variable is important; if p− values ≥ 0.1, then the input variable is insignificant. According to
Saltelli et al. [47], MCF cannot be performed if the number of input variables is >20. Our practice has
shown that the fraction of set B is barely larger than 5% of the total simulations when the model is
large; in other words, a large model implies a lack of statistical power.
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3. Results

The results are divided into the following six parts: (1) the mathematical representation of the
supply chain as an MFA; (2) the range of uncertainty based on data collection; (3) the uncertainty
of the supply chain due to the distribution variables; (4) in addition to the uncertainty considering
the distribution variables, we also provide the uncertainty considering national production; (5) the
sensitivity indices are presented for future estimations of production. (6) and finally, the classification
of the Monte Carlo filtering, which compares the simulations of future production with an estimation
of demand, is used to present the most important variables in a scenario of undersupply. The results
correspond to each part of the methodology.

3.1. Mathematical Representation with Stock and Flow Modeling

A stock and flow model of lithium flows was constructed. This model consists of three major
segments, as shown in Figure 2. In the first stage (resource mining), we considered the production in
Chile, Argentina, Australia, China, Canada, Brazil, Portugal, Zimbabwe, Namibia, Russia, and the
United States. In the second stage, we studied chemical production corresponding to the processes
for making butyl lithium, lithium metal, lithium chloride, lithium carbonate, lithium hydroxide, and
lithium concentrate. Finally, the third stage involved products containing lithium, such as polymers,
batteries, air treatment equipment, aluminum alloys, metal casting powders, ceramics and glasses,
lubricant greases, and others. The connections among these stages reflect the paths in the supply chain.
Figure 2 shows the 32 paths, or flows, represented as arrows.

The distribution variables determine the mass flow on each path. The sum of all the variables that
come from the same element is 100%, i.e., the distribution variables from Brine are I1 and I2 (91% and
9%, respectively). Figure 2 represents the paths with the distribution variables using just one database,
which is the Center of Energy Economics in 2015 [32]. Note that every variable in the system model
was calculated at each time step. For example, in this simulation, we considered a time step of one
year, as the input data were based on yearly reports. The stages in Figure 2 represent resource mining
in blue, chemical production in yellow, and product manufacturing in green. In the present work, we
analyzed the distribution of matter from the batteries to their applications. Figure 2 also shows the
distribution variables at different stages, with resource mining as In, chemical production as IIn, and
product manufacturing as IIIn. Notably, the inflow of the first stage of the supply chain corresponds to
the lithium production of the countries.

3.2. Data Collection

In our model, we only considered the distribution variables involved in lithium-ion battery
application. This reduced the paths to five paths in the resource mining stage, 14 paths in the chemical
production stage, and four paths in the product manufacturing stage, as shown in Figure 3. Pink arrows
in the figure represent the paths that are subtracted from the stocks used in the battery industry; these
paths are considered to be a loss since they cannot be used to produce lithium-ion batteries.

The upcoming sections explain the uncertainty at each stage of the supply chain. The uncertainty
in future national production is due to two factors: The capacity of the production of each country is
not 100%, and new projects could possibly emerge. Table 1 shows the production capacity of each
country, in 2015, as reported by Canaccord. We assumed that the capacity of the companies would
reach 90% capacity by 2025. Four countries represent 92% production in the resource mining stage [12].
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Table 1. Capacity utilization rate of countries that represent 92% of the global production at the resource
mining stage [12,16].

Country 2015 Production Capacity

Argentina 51%

Australia 65%

Chile 62%

China 20%

Figure 2. Material flow analysis of lithium: Resource mining is in blue, chemical production is in
orange, and product manufacturing is in green. Arrows represent the paths between the supply chain
stages. The ovals indicate the value of the distribution variable (%) for each path; data from Center of
Energy Economics [32].
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Figure 3. Material flow analysis of lithium-ion batteries, resource mining in blue, chemical production in
orange, and product manufacturing in green. Blue arrows are the paths involved in lithium-ion battery
applications. The purple paths represent losses. The ovals show the percentage of each variable (%) [32].

Figure 4. Unspecified project, uncommitted projects, committed projects, and the assumed full capacity
of 90% for the main countries expressed as the lithium carbonate equivalent [16].
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In terms of new projects, Figure 4 shows how the production of each country can increase.
The Canaccord report considers the following three types of future projects: committed-projects in
the short term, uncommitted projects in the medium term, and unspecified projects for long-term
production. The report mentions 19.062 kt of lithium carbonate equivalent (LCE) produced in Argentina,
77.368 kt of LCE produced in Australia, 55.639 kt of LCE produced in Chile, and 10.700 kt of LCE
produced in China in 2015. This creates uncertainty in the future production of lithium [16,26,31].
Considering the full capacity and new projects, Argentina, Australia, Chile, and China have limits based
on the uncertainty of their production (113.920, 225.181, 108.502, and 68.142 kt of LCE, respectively)
by 2025.

In the first stage of the supply chain, five paths are considered (Figure 3). These paths include the
amounts of lithium carbonate, lithium hydroxide, and lithium concentrate from the brine and solid
rock reserves. The distribution variable uncertainty of these paths depends on time and the source
of data. A report from the Deutsche Bank, in 2015, showed that the percentage of lithium carbonate
makes up 50% of global lithium chemicals and that lithium hydroxide composes 20% of global lithium
chemicals [3,32]. A report from Macquarie University, in 2016, broke down the lithium chemicals
into 49% for lithium carbonate, 44% for lithium concentrate, 4% lithium chloride, and 2% to lithium
hydroxide. [31]. The uncertainty of the distribution variables is shown in Table 2, where the uniform
distribution values of minimum and maximum are presented as “a” and “b”, respectively.

Table 2. Maximum and minimum values for the uniform distribution in the first stage of the supply
chain. The paths extend from resource mining to chemical production.

Parameters of the Uniform Distribution

Supply Chain Stage Distribution Variable Path Min
a

Max
b

Stage I

DV-I1 Brine to LiCl 4% 10%

DV-I2 Brine to Li2CO3 53% 91%

DV-I3 Solid rock to Li2CO3 27% 47%

DV-I4 Solid rock to LiOH 4% 45%

DV-I5 Solid rock to Lithium concentrate 33% 90%

There are 14 paths in the second stage of the lithium supply chain (Figure 3). These paths have
distribution variables featuring uncertainty and were calculated like those in the previous stage. In this
case, the variables represent the percentage of material flow between chemical production and product
manufacturing. All the possible applications of lithium are presented in the product manufacture
stage. The objective of the present work was to analyze battery production. This process is represented
in Figure 3. There are different reports on the percentage of batteries in the global market. Grosjean, for
example, reported 25% of the battery share [48]. The Karlsruher Institut für Technologie cited a report
from Roskill in 2009 that reported 20% of the global market share for batteries [49]. The Deutsche Bank
differentiates the lithium market into battery and non-battery applications, reporting that the share of
batteries is 40% [3]. The USGS reported that the share of batteries is 35% [50]. The Macquarie research
reported that the share of batteries is 22% [31]. The share of batteries is also the core of the present
study. The rest of the applications of lithium were also considered because the material that is not used
in batteries is used for other applications. Gruber reported a 19%, 20%, and 25% share for 2006, 2007,
and 2008, respectively [17]. Table 3 lists the values of the distribution variables in the second stage of
the supply chain.
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The distribution of the batteries in the third stage of the lithium supply chain is shown in Figure 3.
At this stage, among the four distribution variables, the most important is the distribution variable that
determines the lithium required to produce electric vehicles. Deutsche Bank’s report mentioned that
the battery share distributed to electric vehicles is 34% [3]. The Karlsruher Institut für Technologie
developed an estimation where electric vehicles were dominant or pluralistic. Both scenarios suggest
that electric vehicles will grow but also that the percentages of the distribution variables will change;
the study proposed 23% distribution to electric vehicles [49]. Macquarie’s research reported that the
percentage of electric vehicles (EVs) in 2015 was 33% [31]. Canaccord reported that the percentage of
batteries allocated to EVs in 2015 was 10% [16].

Since distribution variables have uncertainty, this model considers a normalization of the
distribution variable values to guarantee 100% distribution mass by path. The uncertainty obtained in
Tables 2–4 corresponds to the open-source databases studied. The minimum-maximum range in the
tables can vary when including more detailed or updated databases. However, stochastic modeling has
the capacity for including several databases, and therefore the model is able to calculate the uncertain
mass flow of lithium through the supply chain when adding a new minimum-maximum range.

Table 3. Maximum and minimum values for the uniform distribution in the second stage of the supply
chain. The paths extend from chemical production to manufacturing.

Parameters of Uniform Distribution

Supply Chain Stage Distribution Variable Path Min
a

Max
b

Stage II

DV-II1 Metallic lithium to others 22% 25%

DV-II2 Metallic lithium to butylithium 56% 70%

DV-II3 Metallic lithium to batteries 22% 50%

DV-II4 LiCl to lithium metallic 30% 64%

DV-II5 LiCl to air treatment 36% 36%

DV-II6 LiOH to batteries 29% 59%

DV-II7 LiOH to lubricants 24% 50%

DV-II8 Li2CO3 to LiCl 7% 10%

DV-II9 Li2CO3 to LiOH 15% 30%

DV-II10 Li2CO3 to batteries 21% 44%

DV-II11 Li2CO3 to others 9% 11%

DV-II12 Li2CO3 to aluminum 1% 9%

DV-II13 Li2CO3 to continuous casting molds 5% 8%

DV-II14 Li2CO3 to ceramics 11% 19%

Table 4. Maximum and minimum values for the uniform distribution in the third stage of the supply
chain. The paths represent the distribution of batteries.

Parameters of Uniform Distribution

Supply Chain Stage Distribution Variable Path Min
a

Max
b

Stage III

DV-III1 Batteries to electric vehicles 17% 45%

DV-III2 Batteries to energy storage systems (ESS) 1% 5%

DV-III3 Batteries to traditional batteries 30% 62%

DV-III4 Batteries to two wheeler electric vehicles 4% 10%
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3.3. Uncertainty Analysis of Historical Production

Historical production shows that uncertainty exists in the lithium supply chain due to the
uncertainty of the distribution variables. The variation estimated in EV production (output variable)
ranges from 15,195 to 84,058 tons of LCE. This means that the database considered has large uncertainty
in the amount of lithium carbonate equivalent used to produce electric vehicles. One thousand
simulations were performed to determine the uncertainty in the electric vehicle production from 2005
to 2019. Figure 5 shows the uncertainty analysis using Monte Carlo simulations. Here, the production
of electric vehicles presents a normal distribution within all the years of the simulation. We noted
a trend toward a lower value. This probability in Figure 5 is demonstrated by a boxplot of electric
vehicle production every two years. Outliers are provided in all the graphics at the top. These values
represent the low probability values for the production of electric vehicles.

Figure 5. Uncertainty analysis of electric vehicle production from 2005 to 2019 and the probability of
electric vehicle production for 2007, 2009, 2011, 2013, 2015, 2017, and 2019 expressed in terms of the
lithium carbonate equivalent (LCE).

The result of the uncertainty analysis for the historical production of EV shows that uncertainty
exists in the lithium supply chain when considering the uncertainty of the distribution variables within
it. The objective of this analysis was to demonstrate the existence of uncertainty in the lithium supply
chain but not to compare the amount of EVs produced until 2019. This comparison is conducted in the
last part of the methodology along with the estimation of future production.

3.4. Uncertainty Analysis for the Future Estimations of Production

We added the uncertainty of national production to the uncertainty analysis of the future
production of EVs. The uncertainty analysis in the future instance shows that the future uncertainty is
greater than that in historical instances. We performed 10,000 simulations to obtain representative
results. Figure 6 shows the uncertainty of electric vehicle production in the future. Similar to historical
production, the boxplot shows outliers at the top of the graphics, which indicates that this is a less
probable scenario.
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Figure 6. (a) Uncertainty analysis of electric vehicle production from 2019 to 2025; (b) The probability
of electric vehicle production for 2019, 2021, 2023, and 2025 expressed in terms of the lithium carbonate
equivalent (LCE).

3.5. Determination of the Most Sensitive Variables with GSA

Global sensitivity analysis obtains sensitivity indices from the simulation of future production.
The sensitivity analysis shows that the sensitivity indices will change over time due to the dynamic
nature of the simulation. The variables that represent 98% of the total uncertainty in the first year
are not the same as those in the last year. Figure 7 shows the sensitivity indices and how they vary
according to time.

Figure 7. Normalized sensitivity indices during the period from 2019 to 2025 with the distribution of
EV production (III1) and without III1.

To visualize this change, a comparison of the sensitivity indices in 2019, 2022, and 2025 is shown
in Figure 8. Notably, III1 has a strong influence from the beginning of the simulations. Over time, its
importance decreases until 2025.
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Figure 8. Sensitivity indices change over time in 2019, 2022, and 2025.

From the results of the sensitivity analysis, seven variables were selected. These variables represent
98% of the uncertainty in the future production of electric vehicles. Table 5 lists the variables selected
from the analysis. Two national productions were considered along with five distribution variables.
Australia and Argentina were relevant because they have the most projects proposed in the future.
III1 is expected to be important because it is the variable that determines the number of EVs produced
in the battery market. The distribution from batteries to traditional batteries is important because,
in the future, a lower percentage of traditional batteries and a higher percentage of electric vehicles
should be produced (III3). The importance of lithium hydroxide for electric vehicles is represented by
variables which include the distribution from lithium hydroxide to lubricants (II7), the distribution of
material from lithium carbonate to lithium hydroxide (II9), and the distribution from pegmatite to
lithium hydroxide (I4). These results are contrasted with the Monte Carlo filtering.

Table 5. Selected variables with the greatest relevance to the future production of electric vehicles.

Variables with Uncertainty Description

III1 Distribution from batteries to electric vehicles

Au The Australian production of lithium

III3 Distribution from batteries to traditional batteries

II9 Distribution from lithium carbonate to lithium hydroxide

II7 Distribution from lithium hydroxide to lubricants

Ar Argentinian production of lithium

I4 Distribution from pegmatite to lithium hydroxide

3.6. Selection of the Most Important Variables Using MCF

The objective of this research was to determine the importance of the variables that could yield
an undersupply in the production of electric vehicles. A case study was considered, where a report
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of demand from Macquarie University was compared with the estimated production [31]. Note that
little information exists in the literature about the dynamic demand of electric vehicles, which is why
the Macquarie report was used to identify which of the variables are important for an undersupply
scenario. Figure 9 shows the comparison of the results from the simulation versus those of the demand
described by Macquarie.

Figure 9. Electric vehicle production uncertainty vs. the reported demand from Macquarie [31]
from 2019 to 2025.

The Monte Carlo filtering technique (MCF) identifies which of the variables are critical for the
possible undersupply. The results obtained from both the sensitivity analysis and Monte Carlo filtering
agree with each other. The MCF technique classified the variables according to their effect in a likely
undersupply scenario. As with the sensitivity analysis, the analysis showed that the results changed
over time. For MCF, the three classifications are crucial, important, and insignificant. Table 6 shows
the ten most relevant variables for every two years of the simulation.

Table 6. Variable classification with Monte Carlo filtering.

Variable
Year

2017 2019 2021 2023 2025

III1
Batt_EV crucial crucial crucial crucial important

Australia insignificant insignificant insignificant insignificant insignificant

III3
Batt_Tbatt crucial crucial crucial crucial crucial

II9
LCE_LiOH crucial crucial important important important

II7
LiOH_Lub important crucial crucial important insignificant

Argentina insignificant crucial crucial important insignificant

I4
Solid Rock _LiOH important crucial crucial important crucial
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This classification considers ten variables every year. The variable classification changes per year
are based on their relevance. Among all the variables, the following three variables were always
considered to be crucial: the distribution of EV production (III1), the distribution of the material from
batteries to traditional batteries (III3), and the distribution of material from lithium carbonate to lithium
hydroxide (II9). As per Section 2.6, the simulations classify the variables considering an undersupply
scenario. Figure 10 represents the classification of the 10,000 simulations using the crucial variables,
where NB represents the EV undersupply scenario. This NB group features simulations where supply
is lower than specific demand. The upper figure shows the classification in 2021, and the lower figure
shows the classification in 2025. The number of simulations that fit in the NB group in 2025 is larger
than that in 2021.

Figure 10. Regionalization of variables III1, the distribution of the material from batteries to traditional
batteries (III3), and the distribution of material from lithium carbonate to lithium hydroxide (II9) from
the simulations for 2021 and 2025.

4. Discussion

The lithium supply chain was modeled by introducing uncertainty into the material flow, unlike
other material flow analyses in the literature. This study model used open-source documentation
to include uncertainty in electric vehicle production. We compared the production uncertainty and
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demand from 2019 to 2025, which showed that the undersupply scenario is more probable in 2025 than
in 2021, as presented in Figure 10. Other studies have estimated the supply versus the demand [49],
but the present work interpreted the supply using uncertainty. The main contribution of our research
is the use of an analysis of the lithium supply chain with uncertainty to discover the sensitivity and
importance of the main variables that lead to an undersupply scenario. The results from Sections 3.1–3.4
demonstrate that considerable uncertainty exists in the EV production calculated using open source
databases. The applied methodology classifies the variables under uncertainty in terms of their
sensitivity and importance. The sensitivity indicates the impact of the input variables (distribution
variables and country’s production) on the output variable (electric vehicle production). Note that this
model uses sensitivity indices to quantify global sensitivity and uses Monte Carlo filtering to quantify
the importance of the variables in a possible undersupply scenario [47].

Figure 11 compares the importance and sensibility of the variables from 2021 to 2025.
MCF determines the critical variables in a process within a specific period. The results from
Sections 3.5 and 3.6 were ultimately combined to select the variables. The importance (blue dots) of
variables is related to the effect of the variables in an undersupply scenario. The sensibility (bar charts)
is associated with the impact of the variables on the output variable, which is EV production in this
case. The sensitivity indices represent the supply of lithium, whereas the importance compares this
supply with a specific demand to determine the undersupply scenario. For the sensitivity indices, one
variable has a much larger value than the rest of the variables, i.e., the flow from batteries to electric
vehicles. This variable represents the output variable of the model; consequently, its sensitivity index
is always higher than the rest of the variables. Figure 11 depicts the rest of the variables’ sensitivity
indices from 0 to 0.2 to observe how they change over the years. The variable that most drastically
changed its sensitivity index was the production of Australia, which increased rapidly and made
the production of electric vehicles sensitive to this variable. The production of traditional batteries
affects the production of EVs because both of them use batteries as a source. The following variables
experience minimum variation in their sensitivity indices: the production of Argentina, the lithium
hydroxide produced from solid rock, the lithium hydroxide produced from lithium carbonate, and the
lubricants produced from lithium hydroxide. This absence of variation means that these indices affect
the output variable but do not change over the years. The present work expects that these sensitivity
indices will continue at the same rate in the following years.

Figure 11. Sensitivity vs. importance in electric vehicle production in 2021 and 2025.

Moreover, on the one hand, Figure 11 shows the importance of the variables that lead to an
undersupply scenario. This importance is assessed on a scale of insignificant (1), important (2),
and crucial (3). Both the production of traditional batteries and the production of lithium hydroxide
from solid rock have crucial importance in a future undersupply scenario. The lithium hydroxide
converted from lithium carbonate is important in a future undersupply scenario. Indeed, this variable
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could lead to an undersupply scenario but not with the same importance as the two variables mentioned
above. The production of lithium hydroxide from lithium carbonate maintains its importance over the
years. This means that these variables will lead to a future undersupply scenario independent of the
material flow.

On the other hand, some variables decrease their importance over the years, i.e., EV production
importance decreases from crucial to important between 2021 and 2025. The lithium hydroxide
used in the production of lubricants and Argentinian production experience a drastic change from
crucial to insignificant over time. Australian production maintains its insignificant importance for an
undersupply scenario in the future.

5. Conclusions and Future Recommendations

In conclusion, stochastic modeling represents the global lithium supply chain under uncertainty
and classifies the variables in the global lithium EV production in terms of importance and sensitivity.
The importance and the sensitivity of each variable with uncertainty can vary with time; some variables
have high importance or have high sensitivity index at the beginning, and then they decrease,
and vice verse. A variable with a high sensitivity index at a given time, is not necessarily crucial
to an undersupply scenario, i.e., EV production is the variable with the highest sensitivity index
at the beginning, but its importance decreases over the years. The comparison of supply versus
specific demand (calculated under uncertainty) showed that lithium hydroxide produced from lithium
carbonate, lithium hydroxide produced from solid rock, and the production of traditional batteries are
important and crucial variables that do not change over time. The production of traditional batteries
is a critical variable in which uncertainty varies the EV production because it directly affects the
EV production. Another critical variable, in an undersupply scenario, is the production of lithium
hydroxide, which complements the variable of the lithium hydroxide produced from lithium carbonate.
In this case, lithium hydroxide production is crucial to the EV production undersupply scenario.

Future research could consider more detailed sources of information, including not only uncertainty
in the supply but also in the demand for lithium. Long-term lithium supply and demand could include
uncertainty determined via the logistic, Richards, and Gompertz models [51].

Author Contributions: Conceptualization, D.C.-A. and L.A.C.; methodology and research, D.C.-A., S.H.-L. and
F.A.L.; writing—original draft preparation, D.C.-A. and S.H.-L.; development of algorithms and simulations,
D.C.-A. and F.A.L.; writing—review and editing, D.C.-A. and L.A.C.; project administration and funding
acquisition, L.A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Agencia Nacional de Investigacion y Desarrollo (ANID), Fondecyt program
grant number 1180826.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. De Koning, A.; Kleijn, R.; Huppes, G.; Sprecher, B.; van Engelen, G.; Tukker, A. Metal supply constraints for
a low-carbon economy? Resour. Conserv. Recycl. 2018, 129, 202–208. [CrossRef]

2. Jaskula, B. USGS Science for a Changing World. Available online: https://www.usgs.gov/centers/nmic/

lithium-statistics-and-information (accessed on 1 April 2020).
3. Hocking, M.; Kan, J.; Young, P.; Terry, C.; Begleiter, D. Lithium 101; Deutsche Bank Markets Research:

Frankfurt, Germany, 2016.
4. Staiger, J.; Roedel, T. Lithium Report 2018; Swiss Resource Capital: Herisau, Switzerland, 2018; Volume 67.
5. Dalen, P. Understanding the Differences Between Deterministic and Stochastic Models. Available online:

https://www.linkedin.com/pulse/understanding-differences-between-deterministic-stochastic-paul-dalen
(accessed on 3 July 2020).

6. Hao, H.; Liu, Z.; Zhao, F.; Geng, Y.; Sarkis, J. Material flow analysis of lithium in China. Resour. Policy 2017,
51, 100–106. [CrossRef]

http://dx.doi.org/10.1016/j.resconrec.2017.10.040
https://www.usgs.gov/centers/nmic/lithium-statistics-and-information
https://www.usgs.gov/centers/nmic/lithium-statistics-and-information
https://www.linkedin.com/pulse/understanding-differences-between-deterministic-stochastic-paul-dalen
http://dx.doi.org/10.1016/j.resourpol.2016.12.005


Minerals 2020, 10, 604 20 of 21

7. Sun, X.; Hao, H.; Zhao, F.; Liu, Z. Tracing global lithium flow: A trade-linked material flow analysis.
Resour. Conserv. Recycl. 2017, 124, 50–61. [CrossRef]

8. Sun, X.; Hao, H.; Zhao, F.; Liu, Z. Global Lithium Flow 1994–2015: Implications for Improving Resource
Efficiency and Security. Environ. Sci. Technol. 2018, 52, 2827–2834. [CrossRef] [PubMed]

9. Kim, H.; Jang, Y.; Hwang, Y.; Ko, Y.; Yun, H. End-of-life batteries management and material flow analysis in
South Korea. Front. Environ. Sci. Eng. 2018, 12, 3. [CrossRef]

10. Ziemann, S.; Weil, M.; Schebek, L. Tracing the fate of lithium—The development of a material flow model.
Resour. Conserv. Recycl. 2012, 63, 26–34. [CrossRef]

11. Chang, T.C.; You, S.J.; Yu, B.S.; Yao, K.F. A material flow of lithium batteries in Taiwan. J. Hazard. Mater.
2009, 163, 910–915. [CrossRef] [PubMed]

12. Sun, X.; Hao, H.; Hartmann, P.; Liu, Z.; Zhao, F. Supply risks of lithium-ion battery materials: An entire
supply chain estimation. Mater. Today Energy 2019, 14, 100347. [CrossRef]

13. Speirs, J.; Contestabile, M. The Future of Lithium Availability for Electric Vehicle Batteries. In Behaviour of
Lithium-Ion Batteries in Electric Vehicles; Springer: Berlin, Germany, 2018; pp. 35–57.

14. Brown, T.; Walters, A.; Idoine, N.; Gunn, G.A.; Shaw, R.; Rayner, D. Lithium; British Geological Survey:
Nottingham, UK, 2016.

15. Brown, T. Measurement of mineral supply diversity and its importance in assessing risk and criticality.
Resour. Policy 2018, 58, 202–218. [CrossRef]

16. Spencer, R.; Hill, L. Specialty Minerals and Metals Industry Overview; Canaccord Genuity: Vancouver, BC,
Canada, 2016.

17. Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global lithium
availability. J. Ind. Ecol. 2011, 15, 760–775. [CrossRef]

18. Miedema, J.H.; Moll, H.C. Lithium availability in the EU27 for battery-driven vehicles: The impact of
recycling and substitution on the confrontation between supply and demand until 2050. Resour. Policy 2013,
38, 204–211. [CrossRef]

19. Lowe, M.; Tokuoka, S.; Trigg, T.; Gereffi, G. Lithium-Ion Batteries for Electric Vehicles: The US Value Chain;
Center on Globalization, Governance & Competitiveness, Duke University Press: Durham, NC, USA, 2010.

20. Notter, D.A.; Gauch, M.; Widmer, R.; Wager, P.; Stamp, A.; Zah, R.; Althaus, H.-J. Contribution of Li-ion
batteries to the environmental impact of electric vehicles. Environ. Sci. Tehnol. 2010, 44, 6550–6556. [CrossRef]

21. Martin, G.; Rentsch, L.; Hoeck, M.; Bertau, M. Lithium market research—Global supply, future demand and
price development. Energy Storage Mat. 2017, 6, 171–179. [CrossRef]

22. Ballinger, B.; Stringer, M.; Schmeda-Lopez, D.R.; Kefford, B.; Parkinson, B.; Greig, C.; Smart, S. The
vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy 2019, 255, 113844.
[CrossRef]

23. Pehlken, A.; Albach, S.; Vogt, T. Is there a resource constraint related to lithium ion batteries in cars? Int. J.
Life Cycle Assess. 2017, 22, 40–53. [CrossRef]

24. Lucay, F.A.; Gálvez, E.D.; Salez-Cruz, M.; Cisternas, L.A. Improving milling operation using uncertainty and
global sensitivity analyses. Miner. Eng. 2019, 131, 249–261. [CrossRef]

25. Clift, R.; Druckman, A. Taking Stock of Industrial Ecology; Springer: Berlin, Germany, 2016; ISBN 9783319205700.
26. Jaskula, B.W. Lithium, Minerals Yearbook-2015; US Geological Survey: Reston, VA, USA, 2017; pp. 41–44.
27. Müller, E.; Hilty, L.M.; Widmer, R.; Schluep, M.; Faulstich, M. Modeling Metal Stocks and Flows: A Review

of Dynamic Material Flow Analysis Methods. Environ. Sci. Technol. 2014. [CrossRef]
28. Glöser, S.; Soulier, M.; Espinoza, L.T.; Faulstich, M. Using Dynamic Stock & Flow Models for Global and

Regional Material and Substance Flow Analysis in the Field of Industrial Ecology: The Example of a Global
Copper Flow Model. In Proceedings of the 31st International Conference of the System Dynamics Society,
Cambridge, MA, USA, 21–25 July 2013.

29. Emilia, S. Dynamic Modelling of Material Flows and Sustainable Resource Use Case Studies in Regional Metabolism
and Space Life Support Systems Emilia Suomalainen; Université de Lausanne: Lausanne, Switzerland, 2012.

30. Gerst, M.; Graedel, T.E. In-Use Stocks of Metals: Status and Implications. Environ. Sci. Technol. 2008, 42.
[CrossRef]

31. Hodge, A.; Crowley, B.; Bairstow, H.; Ljubisavljevic, S.; Hamilton, C.; Morton, P.; Kejriwal, D.; May, C.;
Diyachkina, P.; South, F.; et al. Global Lithium Report; Macquarie Group Limited: Sydney, Australia, 2016.

http://dx.doi.org/10.1016/j.resconrec.2017.04.012
http://dx.doi.org/10.1021/acs.est.7b06092
http://www.ncbi.nlm.nih.gov/pubmed/29406757
http://dx.doi.org/10.1007/s11783-018-1019-x
http://dx.doi.org/10.1016/j.resconrec.2012.04.002
http://dx.doi.org/10.1016/j.jhazmat.2008.07.043
http://www.ncbi.nlm.nih.gov/pubmed/18723278
http://dx.doi.org/10.1016/j.mtener.2019.100347
http://dx.doi.org/10.1016/j.resourpol.2018.05.007
http://dx.doi.org/10.1111/j.1530-9290.2011.00359.x
http://dx.doi.org/10.1016/j.resourpol.2013.01.001
http://dx.doi.org/10.1021/es903729a
http://dx.doi.org/10.1016/j.ensm.2016.11.004
http://dx.doi.org/10.1016/j.apenergy.2019.113844
http://dx.doi.org/10.1007/s11367-015-0925-4
http://dx.doi.org/10.1016/j.mineng.2018.11.020
http://dx.doi.org/10.1021/es403506a
http://dx.doi.org/10.1021/es800420p


Minerals 2020, 10, 604 21 of 21

32. Foss, M.M.; Gülen, G.; Tsai, C.-H.; Quijano, D.; Elliott, B. Battery Materials Value Chains; Center for Energy
Economics (CEE): Austin, TX, USA, 2015.

33. Helton, J.C.; Oberkampf, W.L. Alternative representations of epistemic uncertainty. Reliab. Eng. Syst. Saf.
2004, 85, 1–10. [CrossRef]

34. Rowe, W.D. Understanding uncertainty. Risk Anal. 1994, 14. [CrossRef]
35. Helton, J.C.; Burmaster, D.E. Treatment of aleatory and epistemic uncertainty in performance assesments for

complex systems. Reliab. Eng. Syst. Saf. 1996, 54, 91–94. [CrossRef]
36. Oberkampf, W. Uncertainty quantification using evidence theory. In Proceedings of the Advanced Simulation

Computing Workshop, Albuquerque, MN, USA, 22–23 August 2005.
37. Christian, J.; Van Der Sluijs, J.P.; Lajer, A.; Vanrolleghem, P.A. Uncertainty in the environmental modelling

process e A framework and guidance. Environ. Model. Softw. 2007, 22, 1543–1556. [CrossRef]
38. Casals Casals, L.; Amante García, B.; Gonzáles Benítez, M. Modelling Li-Ion Battery Aging for Second Life Business

Models Lluc Canals Casals Modelling Li-Ion Battery Aging for Second Life Business Models; Universitat Politécnica
de Catalunya: Barcelona, Spain, 2016.

39. Richa, K.; Babbitt, C.W.; Gaustad, G.; Wang, X. A future perspective on lithium-ion battery waste flows from
electric vehicles. Resour. Conserv. Recycl. 2014, 83, 63–76. [CrossRef]

40. Mohr, S.H.; Mudd, G.M.; Giurco, D. Lithium resources and production: Critical assessment and global
projections. Minerals 2012, 2, 65–84. [CrossRef]

41. Morgan, M.G.; Henrion, M. A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis;
Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521365420.

42. Brunner, H.; Rechberger, P. Practical Handbook of Material Flow Analysis; Lewis Publishers: Boca Raton, FL,
USA, 2005; ISBN 1566706041.

43. Saltelli, A.; Trantola, S.; Campolongo, F.; Ratto, M. Sensitivity Analysis in Practice; Wiley: Hoboken, NJ, USA,
2004; ISBN 0470870931.

44. Lilburne, L.; Tarantola, S. Sensitivity analysis of spatial models. Int. J. Geogr. Inf. Sci. 2009, 23, 151–168.
[CrossRef]

45. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis
of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181,
259–270. [CrossRef]

46. Lucay, F.A.; Lopez-Arenas, T.; Sales-Cruz, M.; Gálvez, E.D.; Cisternas, L.A. Performance Profiles for
Benchmarking of Global Sensitivity Analysis Algorithms. Rev. Mex. Ing. Química 2020, 19, 423–444.
[CrossRef]

47. Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S.
Global Sensitivity Analysis. The Primer; John Wiley & Sons, Ltd.: Chichester, UK, 2007; ISBN 9780470725184.

48. Grosjean, C.; Herrera, P.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of
their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain.
Energy Rev. 2012, 16, 1735–1744. [CrossRef]

49. Wendl, M.; Wietschel, M.; Marscheider-Weidemann, F.; Angerer, I.G. Abschätzung des Künftigen
Angebot-Nachfrage-Verhältnisses von Lithium vor dem Hintergrund des Steigenden Verbrauchs in der
Elektromobilität; Karlsruhe Institut für Technologie: Karlsruhe, Germany; Fraunhofer-Institut für System-und
Innovationsforschung: Karlsruhe, Germany, 2009.

50. Jaskula, B.W. Lithium, Minerals Yearbook-2014; US Geological Survey: Reston, VA, USA, 2016; pp. 41–44.
51. Vikström, H.; Davidsson, S.; Höök, M.; Sonoc, A.; Jeswiet, J.; Idjis, H.; Attias, D.; Bocquet, J.C.; Richet, S.

A review of lithium supply and demand and a preliminary investigation of a room temperature method to
recycle lithium ion batteries to recover lithium and other materials. Procedia CIRP 2013, 110, 252–266.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ress.2004.03.001
http://dx.doi.org/10.1111/j.1539-6924.1994.tb00284.x
http://dx.doi.org/10.1016/S0951-8320(96)00066-X
http://dx.doi.org/10.1016/j.envsoft.2007.02.004
http://dx.doi.org/10.1016/j.resconrec.2013.11.008
http://dx.doi.org/10.3390/min2010065
http://dx.doi.org/10.1080/13658810802094995
http://dx.doi.org/10.1016/j.cpc.2009.09.018
http://dx.doi.org/10.24275/rmiq/Sim547
http://dx.doi.org/10.1016/j.rser.2011.11.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Mathematical Representation by Stock and Flow Modeling 
	Conceptual Model 
	Mathematical Model 

	Data Collection 
	Uncertainty Analysis of Historical Production 
	Uncertainty Analysis in the Future Estimations of Production 
	Variable Sensitivity Determination with Global Sensitivity Analysis (GSA) 
	Variable Importance Classification Using Monte Carlo Filtering (MCF) 

	Results 
	Mathematical Representation with Stock and Flow Modeling 
	Data Collection 
	Uncertainty Analysis of Historical Production 
	Uncertainty Analysis for the Future Estimations of Production 
	Determination of the Most Sensitive Variables with GSA 
	Selection of the Most Important Variables Using MCF 

	Discussion 
	Conclusions and Future Recommendations 
	References

