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Abstract: This paper analyses the mineralogical composition, texture, and structure of a stalactite 

sampled from the city-wall storerooms of the Nueva Tabarca fortress (southeast Spain). This 

speleothem presents an uncommon mineral assemblage: aragonite, brucite, gypsum, silica, and 

halite. Internally, it shows complex structure: (1) a central soda-straw composed by aragonite; (2) an 

external puff-pastry cone-crust formed preferentially by aragonite and brucite; and (3) an internal 

branching of coralloids, showing a subtle layering between brucite and aragonite. Gypsum, halite, 

and silica locate in the outer coating of the cone-crust. The sequent mineral precipitation sequence 

has been established: aragonite > brucite > gypsum/silica > halite. Speleothem formation is directly 

related to the chemical weathering of the rocks and mortars used as building materials of the city-

wall. Brucite precipitates has been always linked to the presence of MgO-based geomaterials. 

However, the lack of these compounds as building materials in Nueva Tabarca fortress makes this 

investigation a unique example of brucite precipitation. PHREEQC calculations showed that 

interaction between pore waters and the minerals of mortar aggregates (dolomite, pyroxene, and 

amphibole) leads to rich-magnesium solutions. Evaporation modelling of lixiviated waters describes 

the precipitation of the mineral assemblage of the brucite-aragonite speleothems. 
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1. Introduction 

The presence of brucite (Mg(OH)2) as constitutive of building materials in cultural heritage is 

very scarce and it is almost exclusively limited to dolomitic limes [1,2]. The main mineral phases in 

dolomitic limes are portlandite (Ca(OH)2) and brucite that react during the carbonation process, out  

of which comes out calcite (CaCO3), hydromagnesite (Mg5(CO3)4(OH)2·4H2O), and a variety of 

hydroxycarbonates whose formation depends on the water content of the mortar as well as the carbon 

dioxide and moisture content of the air [3]. In the past, the choice of using dolomitic or calcitic limes 

in constructions depended mostly on the availability of the geological source (namely the proximity 

to stone quarries to be exploited for obtaining the raw materials) [1]. 

Brucite is also found as weathering product of cement-based materials, resulting from the 

dissolution and reprecipitation of ions from the cement past and pore waters, especially in marine 

exposure [4–6]. Brucite, in these cases, use to form layered precipitates, frequently intermixed with 

other mineral phases (i.e., calcite, aragonite, and ettringite) filling cracks in the concrete mass. These 

fillings can close totally or partially the initial fracture, making difficult the ingress of aggressive 

substances and improving the durability of the structure. Self-healing mechanisms in cementitious 
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materials can be promoted using suitable healing agents [7]; however, sometimes it occurs 

spontaneously without previous design in an autogenetic self-healing [6,7]. 

Further constructive contexts where Mg(OH)2 can be presented in geomaterials are related to 

special binders. On the one hand, MgO can be added in repair mortars as alkali-activated slag in 

order to enhance their mechanical properties, bonding performance and workability [8,9]. In this case, 

brucite can be found as hydrated product results from the reaction of magnesium oxide with water 

[10]. On the other hand, MgO-based cements, where MgO is used as the main binder, have been used 

in industrial practices, for more than 150 years, as an alternative paste to ordinary Portland cement 

[11]. The major benefits of MgO cement are the relatively lower calcination temperatures used during 

its production and its ability to gain strength by carbonation curing. The hydration of MgO during 

the first stages of the process results in the formation of brucite, which gives rise to the formation of 

a variety of hydroxycarbonates during CO2 curing. 

All these materials and additives (dolomitic limes, MgO-based cements, MgO slags, and even 

Portland cement) have been previously identified as Mg-sources in all the bibliographic cases where 

brucite appears in constructional contexts. However, to the best of the authors’ knowledge, the 

current study case constitutes the unique published example where brucite is the main weathering 

product of historic building materials where none of them are present. The weathering products 

studied in this paper constitute chemical precipitates developed over the both the ceiling and the 

walls of two vaulted rooms located in the lower internal level of the city-wall of Nueva Tabarca 

(southeast Spain). Therefore, this case constitutes a particular case study due to the fact that an 

alternative Mg-source for the brucite precipitates must be found. 

This paper aims therefore, to characterize both the mineralogy and texture/structure of the 

weathering products sampled from the city-wall of Nueva Tabarca village, paying special attention 

to Mg provenance as well as to the analysis of the geochemical conditions in which its dissolution 

and reprecipitation takes place. The unusual mineral assemblage of these precipitates and their 

complex both textures and structures highlight the interest of this study. Moreover, findings obtained 

from this work contribute to the knowledge of the brucite stability under real conditions, contributing 

new examples of the brucite precipitation contexts as well as to the background studies about 

autogenic shelf-healing processes. 

2. Case Study, Local Geology, and Raw Materials Characterization 

Nueva Tabarca is a small island (1800 m in length and 450 m in width) located at 22 km from 

Alicante city (southeast Spain, Figure 1). In the western part of the island, a fortified settlement was 

built in the 18th century. Nowadays, the Nueva Tabarca fortified village constitutes an exceptional 

example of homogeneous baroque architectural heritage protected under several local and national 

figures [12]. One of the most distinctive elements of the architectural complex is the defensive 

structure. The city-wall is a robust construction adapted to the irregular coastline that reaches up to 

10 m width in its widest segments. At these points, several storerooms were built in the inner lower 

level of the construction (Figure 2). Currently, the ceiling and walls of these storerooms are covered 

by chemical precipitates forming crusts and stalactites (Figure 2), which are the study object of this 

work. 
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Figure 1. Location (top left) and geological map (top right) of Nueva Tabarca island. Photographs 

(first raw) and photomicrographs (second raw) of the main lithologies used as building rocks in the 

architectural heritage of the island. 

The city-wall was built with regular stone ashlars in its external surfaces whereas the inner 

volume was filled by masonry (Figure 2). Due to the insularity conditions, the building materials 

supply was restricted to the local resources. In this sense, the architectural ensemble can be 

considered as a self-supplied system in which local geological resources are optimized and exploited. 

 

Figure 2. Constructive sketch of the city-wall of Nueva Tabarca showing the location of the studied 

vaulted storerooms and the used geomaterials of the building. 

From a geological point of view, the island can be divided in two sectors according to the spatial 

distribution of rocks (Figure 1). The eastern sector of the island consists of a basement of fine-grained 

metagabbros, grey limestones, and orange dolosilts, all of them Triassic in age [13]. The Triassic 

basement is overlaid by a thin layer of Quaternary red silts and marine conglomerates. The western 

sector is dominated by a thick calcarenite deposit that overlies an erosive unconformity with the 

lower Triassic materials [14]. These calcarenites, Late Miocene in age [15,16], were called “Tabarca 
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Unit” by [16] and they are interpreted as an open marine platform grading upwards to more distal 

deposits. 

Most of these rocks were used as raw materials for the construction of the Nueva Tabarca 

fortification. Firstly, the rock with the best characteristics for ashlars carving and sculptural elements 

was the Miocene calcarenite (Figure 1). Consequently, it was the main building material used in the 

outer parts of the city wall (Figure 2). Secondly, both grey limestones and metagabbro blocks were 

used as rubble stones included in the masonry filling of the construction. Finally, both metagabbro 

and dolosilt gravel (mainly collected from beach deposits) were incorporated to lime mortars as 

aggregates. 

Petrographically, calcarenites are characterized by a variable content of both bioclasts (mainly 

algal rhodolith and briozoa fragments) and lithoclasts (rock fragments of both volcanic rocks and 

limestones), as well as by a variable average grain size, defining both calcarenite (average grain size 

lower than 2 cm) and calcirudite levels (>2 cm) throughout the stratigraphic deposit. A complete 

description of these rocks (and the different lithostratigraphic levels) can be found in [17]. Grey 

limestones correspond to a homogeneous equigranular cryptocrystalline rock with frequent veins 

filled with white calcite cement (Figure 1). Metagabbro is a dark-green medium to coarse-grained 

rock. Crystals of augite and hornblende enclose tabular crystals of plagioclase in ophitic textures 

(Figure 1). These crystals show slightly to moderate alteration degree. Finally, dolosilt is a yellowish-

orange deposit composed of low-consolidated (or even unconsolidated) silt-sized dolomite grains. 

Table 1 shows the mineralogical composition of all the rock types used as raw materials in the 

construction of the Nueva Tabarca fortified village. 

Historic lime mortar was also made from local resources (grey limestones) in the ancient limekiln 

built expressly in the island. Their composition corresponds to calcite in all cases (Table 1). 

The aggressiveness of the local environment causes the fast deterioration of the city-wall [18] 

and it was restored during the decade of 1970, incorporating local and foreign building stones as 

reintegration materials. A grey biocalcarenite from inland quarries (Novelda Stone, [19]) and a 

detrital limestone (biocalcirudite) were used as new building stones. The mortar used in the modern 

reconstructions was calcitic lime mortars (with dolomitic aggregates) in all cases (Table 1). 

Table 1. Average values of mineral content (%) of the Nueva Tabarca geomaterials analyzed using X-

ray diffraction. Px: pyroxene; Plg: plagioclase; Ep: epidote; Cl: chlorite; Anf: amphibole; Btt: biotite; 

Qtz: quartz; Cc: calcite; Dol: dolomite; Ill: illite; and * trace content. Values in brackets refer to mineral 

composition of mortar aggregates. 

Original Building Materials 

Building Material Px Plg Ep Cl Amph Btt Qtz Cc Dol Ill 

Metagabbro 9.8 25.6 5.5 13.7 25.0 8.4 12.0 - - - 

Grey Limestone - - - - - - * 99.9 * - 

Calcarenite - - - - - - 5.7 77.8 11.1 * 

Dolosilt - - - - - - 4.5 30.3 55.1 10.1 

Lime mortar - (18.8) - - (20.7) - (4.9) 39.9 (14.4) - 

Restoration materials 

Building Material Px Plg Ep Cl Amph Btt Qtz Cc Dol Ill 

Lime mortar - - - - - - (4.2) 45.2 (50.4) - 

Biocalcarenite - - - - - - 20.2 68.4 * 11.4 

Biocalcirudite - - - - - - 2.5 97.5 - * 

3. Methodology 

Two speleothem samples were collected from the ceiling of the room; most of the analysis being 

focused on the stalactite due to its higher textural complexity (Figure 3). Firstly, the stalactite structure 

and its inner textures were studied in a non-destructive way using a high-resolution X-ray computed 

microtomography (µCT-RX) (Figure 3E). After that, stalactite was cut in three fragments (Figure 3F), 

using both the first and the last one (s1 and s3 in Figure 3F) for the mineralogical determination and 

the central one (s2) for textural observations. 
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Figure 3. (A): general view of the studied storeroom. (B) and (C): details of different dripping points 

and initial stages of stalactites. (D) and (E): Studied stalactite. (F): samples obtained for mineralogical 

analysis (s1 and s3) and textural observations (s2). 

The µCT-RX system used in this study is a BIR Actis 130/150 with a polychromatic X rays 

generator (Bio-Imaging Research Inc., Lincolnshire, IL, USA). Energy of 100 keV/80 mA was used to 

scan the sample. 3D images were reconstructed both with Actis and Avizo-Fire software (v.n. 2019.2, 

Thermo Fisher Scientific, Waltham, MA, USA). The dimensions of the voxel, corresponding to the 

resolution of the images, were 10 × 10 × 10 µm. 

Samples for mineralogical analysis were powdered using an agate mortar and they were 

analyzed by means of X-ray diffractometry using a Bruker D8-Advance diffractometer (Bruker, 

Karlsruhe, Germany). Diffractometer is equipped with a generator of X-ray Kristalloflex K 760-80F 

(3000 W, voltage: 20–60 KV, 4–70° 2θ explored area and current 5–80 mA, Bruker, Karlsruhe, 

Germany) with a tube of RX with copper anode. 

Inner textures and structures were observed under scanning electron microscope in 

backscattering electron mode (BSE-SEM). To do so, the central fragment of the stalactite was cut along 

its both cross and longitudinal sections. Uncovered surfaces were studied in a HITACHI S-3000 N 

(Oxford Instruments plc, Abingdon, UK) variable pressure SEM working at low vacuum. An energy 

dispersion spectrometer (Bruker-XFlash 3001 EDS, Oxford Instruments plc, Abingdon, UK) was 

attached for chemical microanalysis and compositional mappings. 

The geochemical reaction of dissolution–precipitation was modelled with PHREEQC code using 

3.4.0 version (USGS, Reston, VA, USA) [20]. PHREEQC calculated the saturation index, SI, as SI = log 

(IAP/K). IAP is the ion activity product and K is the equilibrium constant. The saturation index 

determined, from thermodynamically point of view, whether the water was saturated (equilibrium, 

SI = 0), undersaturated (mineral dissolution, SI < 0), or supersaturated (mineral precipitation, SI > 0), 

with respect to the given mineral or phase. 

The geochemical reaction simulations involved two steps: (1) the estimation of the composition 

of lixiviated waters. We considered that these reactions were produced in contact with deionized 

water in order to simulate the interaction with meteoric water, in isothermal conditions (temperature 

= 15 °C). According to the microstructure properties of mortars, we established that the residence 

time of the meteoric waters inside of the mortar was sufficient to dissolve calcite until reaching the 

saturation (SI = 0), whereas the less reactive Mg-bearing minerals remained unsaturated. According 

to their reactivity [21,22], we computed that the SI = −0.5 for dolomite and SI = –2.0 for diopside and 

tremolite. (2) Evaporation was accomplished by removing water an irreversible reactant with a 

negative reaction coefficient through REACTION keyword. We used the Minteq thermodynamic 

database for the equilibrium constants. 

4. Results 

Mineralogical determination of speleothems using X-ray diffraction showed that they are mainly 

composed of brucite (49%), aragonite (24%), gypsum (19%), halite (8%), and amorphous silica 



Minerals 2020, 10, 599 6 of 14 

 

(identified by the broad peak at low diffraction angles). This mineralogical composition remained 

quasi-constant along the whole stalactite, registering a slight increase in the salt content in the lower 

sample (the closest one to the tip). 

Stalactites presented a complex structure with three differentiated parts (Figure 4): (a) central 

soda straw, (b) external puff-pastry cone-crust, and (c) branching of coralloids. Similar structures 

have been reported by [23] developed in artificial environments such as tunnels, bridges, and cellars. 

In all these cases, speleothems present a tufaceous mineral texture that is associated to their formation 

from crack-fed solutions suffering sudden pressure, temperature, or moisture changes. 

Observations under BSE-SEM and EDS mapping show a spatial segregation of the different 

mineral phases (Figure 5). The soda-straw are preferentially composed by aragonite, while the 

external crust structure includes brucite, aragonite, gypsum, silica, and halite. 

 

Figure 4. Inner structure of the studied stalactite studied by means of microCT-RX. (A) Orthogonal 

sections showing the main structural elements (cc: cone-crust; ss: soda-straw; and bc: branching of 

coralloids). (B) 3D reconstruction of the stalactite. 
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Figure 5. Scanning electron microscope in backscattering electron mode (BSE-SEM) images (A–L) and 

geochemical mappings (A’, B’, and C’) of different parts of the stalactite. Colour code of the 

geochemical maps: green > Ca; blue > Mg; orange > S; and turquoise > Si. Grey level code of BSE-SEM 

images: dark grey > brucite; light grey > aragonite. Images (G–H) correspond to aragonite textures in 

the branching of coralloids. Images (J,K) correspond to brucite botryoidal textures in the branching 

of coralloids. Image (L) shows aragonite radial textures of the cone-crust (image (I) shows a detail of 

a fibrous aragonite crystals fan). The arrow in image (L) indicates a sphere of brucite on the surface 

of the aragonite precipitate. 
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The quasi-layered arrangement of brucite and aragonite in the cone-crust, instead formed a 

homogeneous mixed mass with both minerals, indicating that there exists a mineral precipitation 

sequence. The complex relationship between both phases makes it difficult to stablish the order in 

which they precipitate. However, the free-growing botryoidal structures developed by aragonite, 

covered at some points by dense brucite masses (Figure 5A), suggests that aragonite precipitated first. 

Moreover, the cone-crust presents a primary structure composed of thick asymmetrical concentric 

rings of aragonite. Hollows between them were mostly filled by brucite (Figure 5C), reinforcing the 

idea of an aragonite > brucite sequence. Similar mineral sequences were found in [24]. 

Figure 5A shows the outer position of irregular silica-gypsum layers in the cone-crust. At some 

points, silica filled corrosive gaps developed in the aragonite-brucite structures (turquoise masses in 

Figure 5B), as well as gypsum precipitates accommodated on the irregular shape of botryoidal 

aragonite masses (orange phases in Figure 5B). Consequently, the sequent mineral precipitation 

sequence is proposed: aragonite > brucite > gypsum/silica > halite. 

Branching of coralloids were formed exclusively by aragonite and brucite, showing a subtle 

layering between both minerals (Figure 5). 

Aragonite exhibited high diversity of crystalline textures, from massif cementation texture in the 

soda-straw to striking acicular, to needle-like morphologies forming spheroidal aragonite clusters in 

the inner coralloids (Figure 5G,H). Aragonite layers in the outer cone-crust alternated from massif to 

blocky textures that became needle-like in the internal part (facing the center of the stalactite). The 

most frequent aspect of the brucite masses was the compact texture, varying at some points to brucite 

cluster of interlocking flakes with narrow spaces between crystals. In the surrounding of the soda-

straw, brucite also occurred as botryoidal masses with amorphous forms (Figure 5J,K). Finally, 

gypsum and silica precipitates appeared as amorphous and massive fillings of the space between the 

brucite-aragonite layers of the external levels of the cone-crust (Figure 5A’). 

5. Discussion 

5.1. Magnesium Provenance 

Previous published papers linked the presence of brucite in constructive contexts to the use of 

specific building materials such as MgO-based binders (dolomitic limes or MgO-based cement) [1,11], 

Portland cement [5], or mortars with MgO additives [8]. However, Table 1 shows that none of them 

are present in the city-wall of Nueva Tabarca fortress. In this case, other Mg-rich minerals are present 

in the rocks used as aggregates in both original and restoration calcitic mortars. Dolomite (from 

dolostones and dolosilt) and pyroxene and amphiboles (from metagabbro) act as Mg-sources, 

providing Mg-ions to the pore water. Nevertheless, these Mg-bearing minerals are more stable, and 

their dissolution will occur, but in lower proportion compare to calcite. Thus, dolomite is chemically 

very stable and its dissolution rate is estimated to be lower by a factor of 3 to 60 than these of 

limestones [25]. Similarly, pyroxenes and amphiboles also present even a lower chemical reactivity 

[22]. Consequently, Mg enrichment of the pore water only occurs when the water flux is low enough 

for allowing the effective interaction between water and minerals. 

Accordingly, two situations are contemplated depending on the residence time of the meteoric 

water flowing through the built structure: 

1. Long residence times associated with meteoric water flowing slowly through the calcitic 

mortars. Flux is low through these geomaterials due to their complex porous systems, which are 

characterized by open porosity values ranging between 15.26% and 23.33% and average porous 

radius of 1.4 µm. According to this pore structure properties, the mortar permeability can be 

classified as very-low permeability material (under 1 mD ∼10−15 m2 ∼ 10−8 m/s [26]). In this 

case, meteoric water dissolves the calcite of the calcitic lime due to its higher solubility, 

increasing the relative proportion of Ca2+ and CO32− into the solution. Nevertheless, the long 

residence time also allows the effective dissolution of the less soluble minerals, transferring Mg2+ 

to the pore water from dolomite, pyroxene, and amphibole. The magnesium present in the 
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lixiviate water is significant due to the high-volume fraction of the Mg-bearing minerals in both 

original and restoration mortars (Table 1). 

2. Short residence times associated with meteoric water flowing rapidly through fractures and 

ashlar joins. High water flow occurs during heavy rains and causes a low interaction water–

minerals. The associated lixiviate water is low chemically modified. 

In both cases, the proximity of the sea constitutes a secondary source of magnesium. Pore system 

of building materials is partially saturated with meteoric water influenced by wave-splash and sea 

spray due to its location in the supralittoral zone. Mg in marine and coastal rain is 6 × 10−6 mol/L [21]. 

In spite of the fact that these quantities are much lower than those transferred from mineral 

dissolution, a small magnesium contribution to the water system can be attributed to the sea spray. 

Rainfall regime in the Nueva Tabarca island is characterized by long periods of drought, with 

sporadic torrential rainfalls, especially during autumn and winter [18]. Therefore, the predominant 

situation in the water system of the city-wall is the low flows throughout the mortars (situation 1), 

with occasional fast water circulation through fractures and/or ashlar joins during rainfalls (situation 

2). 

To estimate the geochemistry evolution of the pore water, we calculated with PHREEQC the 

interaction between water and mineral assemblage in the mortar. We considered that calcite 

dissolution is produced until reaching the saturation (SI = 0.0) whereas the less reactive Mg-bearing 

minerals remain unsaturated (SI = −0.5 for dolomite and SI = −2.0 for diopside and tremolite) at 15 °C. 

Under these conditions, concentrations of calcium, magnesium, total carbon, and silica in the 

lixiviated waters were, respectively, 1.23 × 10−4, 4.49 × 10−5, 6.53 × 10−5, and 6.95 × 10−8 mol/kg H2O, and 

an alkaline pH value of 10.67. 

5.2. Textural/Structural Analysis and Precipitation Sequence 

Soda straw is formed in association with water drops that come off from the roof (Figure 3B,C) 

and it is considered as the first and basic structure from which the stalactite growths and develops. 

The formation of the subsequent conical envelope is due to the crystallization from lixiviated water 

flowing on the external walls of the speleothem. At the beginning, the crust formation follows the 

soda straw creation, but after this first stage, both structures form together and simultaneously [23]. 

The composition, thickness, and morphology of the asymmetrical concentric rings and hollows of the 

cone-crust around the central soda straw suggests environmental changes (even hiatuses) in the 

development of the speleothem. 

Branching of coralloids covers the inner surfaces of the central channel of the stalactite. It is 

globular in shape and its well-developed and complex structure indicates quiet and steady 

precipitation conditions [27]. 

Therefore, the central soda straw constitutes a division structure that defines two differentiated 

microenvironments (Figure 6): the outer surface where the cone-crust develops strongly influenced 

by the room conditions, and the inner volume where branching of coralloids grows partially isolated 

from external variations. 

5.2.1. Cone-Crust Formation 

The development of the cone-crust is strongly discontinuous, controlled by the regular 

succession of growth events (dominated by mineral precipitation), and both corrosive (dissolution) 

and non-corrosive (lack of precipitation) hiatuses [23]. 

Growth Events 

Constructive events are associated with precipitation from Mg-enriched lixiviate waters 

(described in the situation 1 of the Section 5.1). Figure 6A shows the proposed hypothetical 

constructive sequence for a single envelop of the cone-crust. Particularly, Figure 6A could represent 

the formation of the area market in Figure 4A (white square). Proposed sequence starts when a stable 

water film covers the outer perimeter of the soda-straw and a rapid evaporation of the lixiviated 
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water takes place (Figure 6: A-1). Under these conditions, a thin aragonite layer appear in the water–

air interface (Figure 6: A-2), creating an asymmetrical concentric ring in the cone-crust deposit 

corresponding to the perimeter of the covering water film (see stalactite cross section in Figure 4A). 

Aragonite layers show the sequent textural evolution (Figure 5A–C): thin massive (or fine-grained 

blocky texture) crust (Figure 6: A-2); irregular (botryoidal) massive layer (Figure 6: A-3) and; finally, 

a thin fibrous aragonite layer that covers completely the residual cavity (Figure 6: A-4). This set 

becomes the substrate for later growth of brucite, massive in texture (sometimes in spherical 

aggregates) at the first stages and crystalline (with narrow spaces between the flaky crystals) later on 

(Figure 6: A-5). Similar mineral and textural sequences were observed in the crystalline crusts 

precipitated at the air–water interface of the alkaline spring systems of Oman [24]. In fact, similar 

aragonite-brucite sequences are very common in the crack pieces of self-healed Portland cement 

concrete exposed to seawater [5,6,28]. 

The evolution from massive to fibrous aragonite firstly and from massive to flaky brucite 

secondly indicate an initial increase of the Mg/Ca ratio in the solution (associated to the aragonite 

precipitation) followed by a pH decrease as the brucite formation implies a consumption of hydroxyl 

ions (OH−). On the one hand, the presence of Mg2+ ions favors the development of fibrous aragonite 

crystals [24,29,30]. On the other hand, the size and morphology of brucite crystals depends strongly 

on pH [31]. High pH values (pH > 11.5) favor the crystal nucleation against the crystal growth and 

consequently brucite appears as micro-crypto crystalline masses. When pH is lower than 11.5, the 

brucite growth kinetics is surface reaction limited and the formation of crystalline clusters are favored 

[31]. 

Discontinuous precipitates of gypsum, halite, and silica are located only in the outer layers of 

the cone-crust (Figure 5A’,B’). Salt deposits are related to the sea spray condensation and dry 

deposition on the cone-crust surface, whereas silica comes from the dissolution of silicate minerals of 

mortar aggregates. When these waters flow over the cone-crust, silica precipitates after intense 

evaporation. Moreover, microbial mediation in silica precipitation in this kind of speleothems cannot 

be entirely ruled out as it discussed in [30]. 

Dissolution Events 

Corrosive hiatuses are associated with Mg-depleted lixiviate waters (described in the situation 

2 of the Section 5.1). When this water flows over the cone-crust it partially dissolves the pre-existent 

deposits (Figure 6: A-6). Dissolution affects preferably brucite and salts (brucite is unstable at pH 

lower than 9.6) [24], whilst the aragonite layers remain quasi-unaltered. Partial dissolution of pre-

existent deposits contributes to develop the puff-pastry aspect of the cone-crust, characterized by big 

cavities in the brucite masses (Figure 6: A-6). These cavities appear eventually covered by aragonite-

brucite precipitates in semi-spherical acicular aggregates (Figure 5I,L; Figure 6: A-7) and are 

associated to the refilling of the existing gaps with new Mg-enriched lixiviated waters. 

5.2.2. Branching of Coralloids Sequence 

Branching of coralloids forms under subaqueous conditions and its growth is controlled by 

diffusive feeding of solutes [27]. The aragonite-brucite alternation in the mineral composition of the 

branching of coralloids (Figure 5D–F) indicates that a relatively homogeneous and constant supply 

of Mg-enriched lixiviate water arrives to the soda-straw. In contrast to the cone-crust conditions, the 

soda-straw structure gives a stable environment, keeping it under still conditions and low 

evaporation rate. The continuity in the coralloid structure, without corrosive scars or brucite partial 

dissolution, indicates that the inner space of the soda-straw remains isolated from the corrosive 

events associated to strong rainfalls. Moreover, the absence of salts (gypsum and halite) in the 

coralloids composition highlights the inaccessibility of sea spray to the inner soda-straw volume. 

Branching coralloids grow in a solution with a low supersaturation degree (quasi-saturated 

solution). When the saturation index for aragonite is exceeded after a certain evaporation degree, it 

precipitates causing a depletion of solute (Ca2+) from the surrounding solution (Figure 6B). As a 

consequence, aragonite is progressively less saturated in the water near the speleothem and brucite 
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starts to precipitate as a result of the relative Mg2+ enrichment of the solution. Alternatively, a Mg2+-

Ca2+ concentration gradient is created in the inner of the soda-straw from the farthest to the closest to 

the coralloid surface (blue dished lines in the Figure 6B), causing diffusion of Ca2+ and Mg2+ toward 

the growth surface (brown dished arrows in the Figure 6B) and favoring the faster growth on the on 

the prominences of the coralloid [23,27]. 

 

Figure 6. Sketch of the suggested genesis of the studied stalactite. The final obtained structure 

corresponds with that market in Figure 4a (white square). (A) sequence of the formation of the cone-

crust. (B) Formation of the branching of coralloids (blue dished lines represent solute concentration 

isopleths). 

5.3. Geochemical Model of the Mineral Assemblage 

Speleothems are highly sensitive systems. They are the product of the physic-chemical balance 

between the geochemical composition of water and that one of the cavity air where they are growing 

[23]. In this study case, the anthropic structure that host the stalactite establish the hypogean 

environment necessary for speleothemic growth. These microclimatic conditions are characterized 

by moderate luminosity and high connection between internal and external environments through 
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several doors and windows. These microclimatic conditions permit the evaporation of lixiviated 

waters and the deposition of sea spray on speleothems (cone-crust surface). 

As we previously discussed, mortars present an important pore fraction where water–mineral 

reactions are easily produced. Moreover, they present low permeability values due mainly to the 

small size of pores. In this geochemical environment, meteoric waters remain a long residence time 

that leads to Mg-rich waters. We supposed that lixiviated waters are saturated in calcite and 

unsaturated for dolomite, diopside, and tremolite. As a result, lixiviated waters are unsaturated in 

aragonite and brucite. 

Lixiviated waters become more concentrated by evaporation. Thus, if lixiviated waters are 

slightly concentrated by 1.2-fold, the resulting waters are saturated in aragonite and supersaturated 

in calcite, although still undersaturated with respect to brucite. Kinetics factors support the 

precipitation of aragonite: (1) The nucleation of a metastable phase is kinetically favored over less 

soluble analogues (aragonite over calcite) because of the lower interfacial energy (and thus lower 

nucleation energy) between minerals and solution (Ostwald step rule). (2) The presence of 

magnesium [22] and dissolved silica from the dissolution of siliceous minerals of mortars [32] may 

inhibit the calcite precipitation and the transformation from aragonite to calcite. The saturation of 

brucite occurs for the concentration by 1.5-fold. 

The cone-crust over the soda-straw undergoes the sea spray deposition and intensive 

evaporation. Thus, as in the formation of coralloids, aragonite and brucite firstly precipitate and 

gypsum and halite, more soluble minerals, grow in the last stage of the precipitation sequence 

together with silica. 

6. Conclusions 

This study discusses the geochemical weathering processes acting on the constructive 

geomaterials of the Nueva Tabarca fortress, as well as the main mechanisms involved in the 

formation of the weathering products. 

Studied speleothems are mainly composed of brucite, aragonite, gypsum, halite, and silica. 

Dolomite, pyroxene, and amphiboles present in mortar aggregates act as Mg-sources, providing Mg-

ions to the pore water. Mineral–water interaction is favored by the low permeability of calcitic 

mortars, which causes long residence times of water flowing through the monument. The high- 

volume fraction of Mg-bearing minerals in both original and restoration mortars justify the significant 

magnesium concentration in the lixiviate water. The calculated composition of the lixiviated water 

using PHREEQC confirms that Mg concentration is 4.49 × 10−5 mol/kg/H2O, which is critical for the 

brucite precipitation and the calcite inhibition. 

The analysis of the inner structure of the studied stalactite under X-ray computed 

microtomography allows distinguishing three different parts: (a) the central soda-straw, with smooth 

cylindrical walls; (b) the cone-crust, characterized by puff-pastry texture; and (c) the inner branching 

of coralloids. Cone-crust develops discontinuously, alternating constructive events (dominated by 

mineral precipitation) and corrosive hiatuses (dissolution). Constructive events are associated with 

precipitation from Mg-enriched lixiviate waters and each event results in the sequent (total or partial) 

sequence: (1) thin massive aragonite crust in the water–air interface, (2) botryoidal massive aragonite 

layer, (3) thin fibrous aragonite coating, and (4) massive (or in spherical aggregates) brucite 

precipitates. 

Corrosive hiatuses are associated with Mg-depleted lixiviate waters. These waters are associated 

with low chemically modified meteoric waters that circulate rapidly through factures and ashlar joins 

during the torrential rainfalls that characterized the semiarid climate of Nueva Tabarca island. When 

this water flows over the cone-crust it dissolves partially the pre-existent deposits. Dissolution affects 

preferably brucite whilst the aragonite layers remain quasi-unaltered. Partial dissolution of pre-

existent deposits contributes to develop the puff-pastry aspect of the cone-crust. 

Discontinuous precipitates of gypsum, halite, and silica are located in the outer layers of the 

cone-crust. Salt deposits are related to the sea spray condensation and dry deposition on the cone-

crust surface, whereas silica comes from the dissolution of silicate minerals of mortar aggregates. 
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Branching of coralloids forms under subaqueous conditions and its growth is controlled by 

diffusive feeding of solutes. The continuity in the coralloid structure indicates that a relatively 

homogeneous and constant supply of Mg-enriched lixiviate water arrives to the soda-straw. 

Moreover, the absence of corrosive scars and brucite partial dissolution reflects the complete isolation 

of the inner microenvironment from the corrosive events associated to strong rainfalls. 

The PHREEQC model for the evaporation process of Mg-rich lixiviated waters describes the 

precipitation of the mineral assemblage of the brucite-aragonite speleothems. When lixiviated waters 

evaporate they are slightly concentrated, and the resulting waters are saturated in aragonite and 

supersaturated in calcite, although still undersaturated with respect to brucite. The saturation of 

brucite occurs for the concentration by 1.5-fold. The precipitation of aragonite (instead of calcite) is 

supported by the fact that the nucleation of a metastable phase (aragonite) is kinetically favored over 

less soluble analogues (calcite), as well as because of the presence of magnesium and dissolved silica 

that inhibit the calcite precipitation and the transformation from aragonite to calcite. 
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