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Abstract: The Ningshan pegmatite district in the South Qinling Orogen hosts numerous Rb-(Be)
mineralized pegmatites. In this study, whole-rock geochemistry, mineral geochemistry, and zircon
U–Pb isotopes of the Rb-rich and barren pegmatites were determined. The barren pegmatites consist
mainly of muscovite, microcline, albite, quartz, and garnet, whereas the Rb-rich pegmatites are
mainly composed of muscovite, albite, quartz, and beryl, with minor chrysoberyl, cassiterite and
columbite-group mineral. The muscovite and albite are the main Rb-bearing minerals. The U–Pb
zircon dating of the Rb-rich and barren pegmatites yielding an age of 212–203 Ma, which is similar to
that of the neighboring two-mica monzogranites distributed in the Ningshan area. Compared with
the two-mica monzogranites, geochemical features, such as the Zr/Hf, Rb/Sr and Nb/Ta ratios and
trace element contents indicated that the Rb-rich and barren pegmatites derived from fractionation
of the two-mica monzogranites. In combination, the current and previous results suggest that the
fractionation of the two-mica monzogranites caused the generation of the affinitive residual melts
that, finally, crystallized to form the pegmatites. Compared to those from the barren pegmatites, the
apatite from the Rb-rich pegmatites have higher MnO (14.51–19.12 wt.%) and Cl (0.12–0.16 wt.%)
contents and lower F/Cl rartios (20–29). We conclude that these differences reflect unique geochemical
signatures, and the geochemical composition of the apatite can be used as exploration guidance for
rare metal-rich pegmatites.

Keywords: whole-rock geochemistry; mineral geochemistry; zircon U–Pb age; pegmatite; rubidium
mineralization; South Qinling Orogen

1. Introduction

Rare metals, such as lithium, beryllium, cesium, rubidium, tin, niobium, tantalum, and uranium,
are important to the economy and defense of the country. Today, many geologists are increasingly paying
attention to granitic pegmatites since they are important sources of rare metals [1]. The classification
of rare-element pegmatite into LCT (rich in Li, Cs, and Ta, in addition to Rb, Be, Sn, B, P, and F),
NYF (rich in Nb, Y and F, in addition to Be, REE, Sc, Ti, Zr, Th, and U), and mixed petrogenetic
families [2–4] is the most widely applied today. LCT family is suggested to be associated usually with
I- or S-type granite derived from a sedimentary source in a late- or post-orogenic setting. The NYF
family is suggested to be associated with A-type granite derived from a mixed source of lower crust
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and mantle in a post- or anorogenic setting [3,5]. As regards pegmatite genesis, two genetic models
exist. The most accepted model assumes an igneous origin, with most pegmatites originating from
volatile-rich residual melts derived from the crystallization of parental granitic magmas. In this model,
pegmatite is assumed to be linked genetically with fertile granite(s) exposed at the surface or buried at
depth [1,3,5–9]. The other model assumes an anatectic origin (e.g., in migmatitic terranes), whereby the
pegmatites form by direct partial melting of metasedimentary rocks, and have no petrogenetic relation
to the neighboring granite(s) [10–20].

Three large granitic pegmatite regions are distributed in the Qinling Orogenic Belt in China:
the Shangnan, Baoji, and Ningshan pegmatite districts. Detailed studies have been conducted
on the Shangnan pegmatite district, with the classification, internal structure, mineral assemblage,
mineralization characteristics, metallogenetic epoch, and genetic relationships between granites and
pegmatites having been reported [21–25]. In contrast, the Ningshan pegmatite district, located in South
Qinling Orogen, is poorly investigated. All the pegmatites in the Ningshan district are distributed in
the outer contact zone on the south side of the Triassic granitoids in the Wulong-Ningshan area, but the
pegmatite–granite genetic relationship remains puzzling. Notably, Rb and Be enrichment is observed in
some of the pegmatites. It is therefore very important to understand the distinct geochemical patterns
between the barren and Rb-rich pegmatites since it can not only enhance the knowledge about the
pegmatite petrogenesis but also provides useful information for rare metal exploration regionally.

In this study, we performed mineralogical, geochemical, and zircon U–Pb isotopic data on
Lizhaping, Dazengxigou, Xinjian barren pegmatites, and Xinjian Rb-rich pegmatites from the Ningshan
pegmatites district. Subsequently, by undertaking a detailed geochemical comparison among the barren
pegmatites, Rb-rich pegmatites, and the neighboring granites, we attempted to clarify the petrogenesis
of the pegmatites. Furthermore, by comparing apatite composition of the barren pegmatites with that
of Rb-rich pegmatites, we attempted to evaluate the application of apatite as an indicator mineral in
rare metal exploration.

2. Geological Setting

The Qinling Orogenic Belt (QOB) is located in central China and is bounded to the north by
the Lingbao–Lushan Fault and to the south by the Mianlue–Bashan Fault, connecting the North
(NCB) and South China Block (SCB) (Figure 1a) [26–28]. As proposed by Meng and Zhang (1999) [26],
two important sutures are located in the QOB, namely, the Shangdan suture in the north and the Mianlue
suture in the south (Figure 1b). It is generally accepted that the Shangdan suture records the middle
Paleozoic northward subduction of the Shangdan (Paleo-Qinling) Ocean along the southern margin of
the Norh Qinling Belt (NQB) and the amalgamation of the NQB and South Qinling Belt (SQB) [27,29].
The Mianlue suture represents the late Paleozoic Mianlue (Paleo-Tethys) Ocean that closed in the
early Mesozoic, followed by the final collision between the SCB and the united NCB-SQB [30–33].
The main geologic framework of the QOB was built up by the middle Paleozoic and early Mesozoic
subduction–collision events of the NCB (including the NQT), SQB, and SCB at the Shangdan and
Mianlue sutures [26,27,32].

Tectonically, with the Shangdan and Mianlue sutures and the Luonan–Luanchuan fault (LL),
the QOB is divided into, from north to south, the southern margin of the NCB, NQB, SQB, and the
northern margin of the SCB (Figure 1b) [30,34]. The SQB is characterized by south-verging thrusts and
folds, showing an imbricated thrust-fold system [35]. The SQB consists of Proterozoic metamorphic
sequences, late Paleozoic sedimentary sequences [35], and numerous Triassic granitoids [36–39]
(Figure 1b). These Triassic granitoids intruded into the SQB as a result of the subduction and collision
between the SQB and SCB along the Mianlue suture (M) [36–39]. From west to east, the granitoids have
been classified into three suites, which are the Guangtoushan, Huayang-Wulong-Ningshan (including
the Huayang, Wulong, Laocheng, Xichahe, and Yanzhiba plutons), and Dongjiakou suites (Figure 1b).
These granitoids extends along the SQB roughly parallel to the Mianlue suture, forming a ca. 400 km
long granitoid belt.
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Figure 1. (a) simplified tectonic map of China showing major tectonic units and the location of the Qinling Orogen; (b) geological map showing the distribution of 
the granitoids in the middle segment of the Qinling Orogen (modified from [36,37,39,40]; (c) geological sketch map of Ningshan pegmatite district (modified from 
[21]). Abbreviations: NCB = North China Block; NQB = North Qinling Belt; SQB = South Qinling Belt; SCB = South China Block.

Figure 1. (a) simplified tectonic map of China showing major tectonic units and the location of the
Qinling Orogen; (b) geological map showing the distribution of the granitoids in the middle segment
of the Qinling Orogen (modified from [36,37,39,40]; (c) geological sketch map of Ningshan pegmatite
district (modified from [21]). Abbreviations: NCB = North China Block; NQB = North Qinling Belt;
SQB = South Qinling Belt; SCB = South China Block.

Three large granitic pegmatite regions are distributed in the Qinling Orogenic Belt, namely,
the Shangnan, Baoji, and Ningshan pegmatite districts. The Shangnan and Baoji pegmatite districts are
distributed north of the Shangdan suture. The Ningshan pegmatite district is located on the south of
the Triassic granitoids in the Wulong-Ningshan area in the middle segment of SQB (Figure 1b,c) [21,22].
In terms of rare metal mineralization, mainly Nb, Ta, Be, Rb, and Li mineralization developed in the
Shangnan pegmatite district; mainly Nb, U, REE mineralization developed in the Baoji pegmatite
district; and mainly Be, and Rb mineralization are developed in the Ningshan pegmatite district [21,22].

3. Pegmatite and Sample Description

The pegmatites we studied are located 5 km NE of the township of Taishanmiao, and are
distributed to the south of the Yanzhiba pluton (Figure 1c). Previous geological surveys indicated
that these pegmatites have high Rb content, with muscovite mainly being the Rb-bearing mineral.
Be mineralization is also found in some Rb-rich pegmatites [41].

In this study, we collected more than 20 representative samples from barren pegmatites along the
road-cuts of Lizhaping (location: 33◦20′10”, 108◦36′17”), Dazengxigou (location: 33◦19′16”, 108◦34′2”)
and Xinjian (location: 33◦17′13”, 108◦35′27”) country. These pegmatites are ca. 20–30 m long and
20 cm–2 m wide (Figure 2a,b). Some of the barren pegmatites intruded into the two-mica monzogranites,
with a progressive evolution contact (Figure 2a). These pegmatites have nonsignificant internal texture,
and are composed of biotite, muscovite, K-feldspar, albite, and quartz. Other barren pegmatites
are hosted in the sericite slate and quartz sandstone-siltstone of lower-middle Silurian Meiziya
Formation (Figure 2b). These pegmatites have irregular internal texture, and two discontinuous
mineralogical-textural zones can be distinguished. The outermost zone is mainly composed of
medium-fine grained muscovite, K-feldspar, albite, and quartz (Figure 2c,d). The granophyric
albite–quartz intergrowth margins are partially visible in the outermost zone. The inward zone mainly
contains medium-coarse grained muscovite, microcline, albite, quartz, and garnet (Figure 2e,f).
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Figure 2. Field-, macro- and micro-photographs of the barren pegmatite dikes. (a,b) outcrops of the barren pegmatite; (c,d) photographs and micrographs of the 
barren pegmatite in outermost zone, with medium-fine-grained texture; (e,f) photographs and micrographs of the barren pegmatite in inward zone, with medium-
coarse-grained texture. Abbreviation: Mus = muscovite; Q = quartz; Grt = garnet; Mc = microcline; Ab = albite. 

Figure 2. Field-, macro- and micro-photographs of the barren pegmatite dikes. (a,b) outcrops of the
barren pegmatite; (c,d) photographs and micrographs of the barren pegmatite in outermost zone,
with medium-fine-grained texture; (e,f) photographs and micrographs of the barren pegmatite in
inward zone, with medium-coarse-grained texture. Abbreviation: Mus = muscovite; Q = quartz;
Grt = garnet; Mc = microcline; Ab = albite.

More than 10 representative samples from Rb-rich pegmatites along the road-cuts of the Xinjian
country were collected. These pegmatites are ca. 20–30 m long and 1–3 m wide (Figure 3a). Wall rocks
of the Rb-rich pegmatites are mainly the lower-middle Silurian Meiziya Formation (Figure 3a).
The internal texture of the Rb-rich pegmatites is nonsignificant. The Xinjian Rb-rich pegmatites
are mainly coarse-medium grained (Figure 3b), and mainly composed of muscovite, albite, quartz,
and beryl (Figure 3c,d). The beryl forms euhedral to subhedral crystals varying in size from several
hundred micrometers to several millimeters (Figure 3d). Other minerals include chrysoberyl, cassiterite,
and columbite-group mineral, which commonly occur as accessory minerals (Figure 3d–f).
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Figure 3. Field-, macro- and micro-photographs of the Rb-rich pegmatite dikes. (a) outcrops of the Xinjian Rb-rich pegmatite, and showing sharp contact 
relationships between the pegmatites and their wall rocks; (b) photographs of the Xinjian Rb-rich pegmatite in hand specimen, with coarse -medium grained texture; 
(c,d) micrographs of the Xinjian Rb-rich pegmatites; (e,f) BSE images of the Xinjian Rb-rich pegmatites. Abbreviation: Mus = muscovite; Ab = albite; Brl = beryl; Cbr 
= chrysoberyl; Cst = cassiterite; CGM = columbite-group mineral. 

Figure 3. Field-, macro- and micro-photographs of the Rb-rich pegmatite dikes. (a) outcrops of the
Xinjian Rb-rich pegmatite, and showing sharp contact relationships between the pegmatites and their
wall rocks; (b) photographs of the Xinjian Rb-rich pegmatite in hand specimen, with coarse -medium
grained texture; (c,d) micrographs of the Xinjian Rb-rich pegmatites; (e,f) BSE images of the Xinjian
Rb-rich pegmatites. Abbreviation: Mus = muscovite; Ab = albite; Brl = beryl; Cbr = chrysoberyl;
Cst = cassiterite; CGM = columbite-group mineral.

4. Analytical Methods

4.1. Whole-Rock Compositional Analysis

Fresh whole-rock samples from Rb-rich muscovite-albite (Mus-Ab) pegmatite and inward zone
of barren muscovite-microcline-albite (Mus-Mc-Ab) pegmatite were trimmed to remove weathered
surfaces, cleaned with deionized water, crushed in a steel jawcrusher and then powdered to <200 mesh
using an agate mill. Sample preparation and whole-rock major and trace elements were determined
at the National Research Center for Geoanalysis, Chinese Academy of Geological Sciences (CAGS),
Beijing, China. Major element concentrations were analyzed by X-ray fluorescence (XRF) spectrometry,
with analytical uncertainties of ≤0.5 wt.%. Ferric and ferrous iron measurements were performed
via wet chemical analysis (titration). The analytical precision for major oxides was based on certified
standards (GSR-1, GSR-3). Trace elements were determined using ICP-MS. The analytical uncertainties
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are 10% when the element abundance is <10 ppm, and around 5% when the element abundance
>10 ppm.

4.2. Mineral Compositions Analysis

Back-scattered electron (BSE) images and quantitative chemical analyses of minerals were
performed from polished thin sections using a JEOL JXA-8100 electron probe micro-analyzer (EPMA,
JEOL Ltd., Akishima, Tokyo, Japan). Silicate minerals and apatite from barren Mus-Mc-Ab pegmatite
were obtained at Beijing Research Institute of Uranium Geology, China. Silicate mineral and apatite
from Rb-rich Mus-Ab pegmatite at Institute of Geology and Geophysics, Chinese Academy of Sciences,
Beijing. The operating conditions were set at an acceleration voltage of 15 kV, a probe current of 10 nA
and a beam diameter of 5 µm. Element peaks and off-peak backgrounds were measured with counting
times of 10 s and 5 s, respectively, except for F, Cl (20 and 10 s) and Rb (20 and 10 s). Standards used for
analyses were as follows: diopside (Mg, Si, Ca), rutile (Ti), plagioclase (Al), garnet (Fe), rhodonite (Mn),
albite (Na), sanidine (K), apatite (P), pollucite (Rb), durango (F), tugtupite (Cl). Data reduction was
performed using the internal ZAF matrix correction of JEOL.

4.3. Zircon CL Images and LA-ICP-MS U–Pb Dating

Zircons were separated from the three least altered samples (LZP01 and DZXG03:
barren Mus-Mc-Ab pegmatite, XJ01-4: Rb-rich Mus-Ab pegmatite) by standard density and magnetic
separation techniques followed by hand-picking under a binocular microscope for purification. Prior to
the in-situ zircon U-Pb isotope analyses, the morphology and internal structure of these zircons were
studied using a binocular microscope and cathodoluminescence (CL) images, which were used as
guides during the selection of the U-Pb dating spots. The zircon U–Pb dating and trace element
analyses were conducted synchronously employing laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) at the Institute of Mineral Resources, CAGS, in Beijing, China. Detailed
information on the operating conditions for the laser ablation system, the ICP-MS instrument, and the
data reduction process have been described previously by Liu et al. (2008, 2010) and Hou et al.
(2009) [42–44].

5. Results

5.1. Whole-Rock Geochemistry

We analyzed six pegmatite samples from barren Mus-Mc-Ab pegmatite (LZP03-1, LZP03-2,
DZXG01-1, DXZG01-2, DZXG01-3, and XJ01-3) and two sample from Rb-rich Mus-Ab pegmatite
(XJ01-1 and XJ01-2) for major and trace element compositions (Table 1).

The barren Mus-Mc-Ab and Rb-rich Mus-Ab pegmatite had similar major element compositions.
They are characterized by high SiO2 (72.27–76.71 wt.%), Al2O3 (13.46–17.57 wt.%), and alkali
(K2O + Na2O = 7.12–10.08 wt.%) contents. In the A/NK vs. A/CNK diagram, they plot in the
peraluminous field (Figure 4). Nevertheless, the trace element compositions of barren Mus-Mc-Ab
and Rb-rich Mus-Ab pegmatite are significantly different. The total REE (

∑
REE) concentrations of

barren Mus-Mc-Ab pegmatite ranged from 17.84 to 51.96 ppm, and the chondrite-normalized REE
diagrams are characterized by seagull-like normalized REE pattern, with significant negative Eu
anomalies (Eu/Eu* = 0.12–0.37) and low (La/Yb)N ratios (1.58–3.14; Figure 5a). On the primitive
mantle-normalized spider diagrams (Figure 5b), most barren Mus-Mc-Ab pegmatites show positive in
Rb and U anomalies, and negative anomalies of Ba, Nb, Sr, Zr, and Ti. In contrast, Rb-rich Mus-Ab
pegmatite have much lower

∑
REE concentrations (4.74–4.94 ppm) and further display a light REE

(LREE) enrichment [(La/Yb)N = (27.67–35.50)] without significant Eu anomalies (Figure 5a). Their trace
element abundance diagrams are characterized by pronounced enrichment in Rb, Nb, P, Sr, and Hf
(Figure 5b).
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Table 1. Major (wt.%) and trace elements (ppm) of the barren Mus-Mc-Ab and Rb-rich
Mus-Ab pegmatite.

Sample
Barren Pegmatite Rb-Rich Pegmatite

LZP03-1 LZP03-2 DZXG01-1 DZXG01-2 DZXG01-3 XJ01-3 XJ01-1 XJ01-2

SiO2 75.05 72.27 76.71 74.58 74.73 73.87 72.46 -
Al2O3 14.50 16.34 13.46 14.89 15.03 14.75 17.57 -
MgO 0.10 0.16 0.10 0.11 0.13 0.11 0.04 -
Na2O 2.61 2.96 4.03 5.21 5.31 3.93 4.18 -
K2O 5.76 5.84 4.17 3.00 2.12 6.15 2.94 -
P2O5 0.08 0.10 0.12 0.10 0.15 0.06 0.29 -
TiO2 0.07 0.11 0.06 0.05 0.07 0.09 0.04 -
CaO 0.73 0.80 0.76 0.95 1.17 0.68 0.47 -
FeOT 0.50 0.67 0.42 0.62 0.52 0.39 0.21 -
MnO 0.10 0.12 0.06 0.13 0.04 0.02 0.08 -
LOI 0.67 0.96 0.55 0.54 0.77 0.46 1.61 -
Sum 100.19 100.32 100.44 100.17 100.03 100.51 99.89 -

A/CNK 1.22 1.29 1.07 1.10 1.14 1.03 1.61 -
A/NK 1.38 1.46 1.21 1.26 1.36 1.12 1.74 -

Na2O + K2O 8.37 8.80 8.19 8.21 7.43 10.08 7.12 -
Li 18.18 28.26 73.58 59.30 96.59 30.67 17.60 16.91
Be 4.41 7.41 5.61 5.92 6.01 3.41 184.09 171.15
Sc 3.54 8.04 2.56 3.24 3.52 6.35 0.88 0.75
Ti 205.22 442.16 108.27 71.36 147.59 322.60 6.39 6.52
V 4.16 2.73 0.69 0.62 3.11 3.16 1.04 0.99
Cr 2.02 3.73 1.70 5.56 4.54 4.23 2.59 4.22
Mn 707.55 875.58 453.39 908.04 259.98 145.26 501.43 505.98
Co 0.19 0.25 0.20 0.10 0.10 0.28 0.05 0.06
Ni 0.68 1.29 0.30 2.14 1.67 1.68 1.09 1.96
Cu 0.03 9.20 2.31 0.64 0.03 3.40 bdl. bdl.
Zn 12.37 24.85 27.24 30.65 30.11 15.71 33.33 33.09
Ga 20.23 31.20 14.37 15.55 15.25 22.62 22.46 21.48
Rb 192.11 213.40 205.16 161.39 119.79 237.85 1043.29 1049.65
Cs 6.25 7.61 11.26 17.85 12.77 10.35 657.84 650.40
Sr 56.76 64.64 21.46 20.11 29.59 69.69 49.53 49.57
Y 25.28 21.59 10.90 10.24 10.55 10.07 1.09 1.05

Nb 16.24 29.67 12.82 14.80 15.92 17.61 133.74 125.07
Ta 1.35 2.30 1.45 1.82 2.28 1.77 65.50 69.14
Mo 0.09 0.10 0.13 0.07 0.03 0.13 0.09 0.11
Sn 4.74 9.20 5.64 6.10 6.51 6.82 126.40 127.38
Ba 229.45 232.63 28.52 8.16 9.20 151.98 9.95 9.35
La 7.99 5.46 3.27 3.79 3.68 3.14 1.79 1.72
Ce 17.66 11.85 6.73 7.81 7.94 5.45 1.57 1.52
Pr 2.10 1.39 0.84 0.85 0.88 0.64 0.23 0.21
Nd 7.62 5.15 3.11 2.82 3.22 2.33 0.81 0.77
Sm 2.73 1.92 1.05 1.00 1.15 0.77 0.13 0.13
Eu 0.26 0.23 0.09 0.04 0.06 0.21 0.04 0.04
Gd 2.91 2.17 1.06 1.01 1.28 0.93 0.13 0.12
Tb 0.64 0.51 0.25 0.25 0.29 0.21 0.01 0.01
Dy 4.12 3.44 1.54 1.66 1.84 1.53 0.12 0.12
Ho 0.76 0.66 0.32 0.29 0.32 0.30 0.01 0.01
Er 2.18 1.98 1.01 0.81 0.86 0.94 0.05 0.05
Tm 0.33 0.32 0.20 0.13 0.12 0.15 bdl. bdl.
Yb 2.34 2.37 1.48 0.96 0.84 1.10 0.04 0.04
Lu 0.32 0.33 0.25 0.12 0.11 0.16 bdl. bdl.
Zr 43.47 34.19 20.55 28.61 31.46 15.50 26.73 27.33
Hf 2.40 1.94 1.13 1.64 1.54 1.00 3.10 3.51
W 1.39 2.51 1.12 1.76 1.81 1.65 4.27 4.32
Tl 0.89 0.94 0.88 0.70 0.47 1.15 6.31 6.33
Pb 36.48 35.78 33.69 24.30 20.63 39.61 22.60 21.98
Th 5.67 3.75 1.79 2.18 2.34 2.02 1.01 0.96
U 4.81 5.06 2.05 3.50 2.32 5.60 1.68 1.62

ΣREE 51.96 37.78 21.22 21.54 22.59 17.84 4.94 4.74
(La/Yb)N 2.45 1.65 1.58 2.83 3.14 2.05 35.50 27.67

δEu 0.28 0.35 0.26 0.12 0.16 0.37 0.99 0.97
Nb/Ta 12.02 12.91 8.86 8.15 6.97 9.95 21.07 21.17
Zr/Hf 18.09 17.61 18.18 17.48 20.41 15.55 8.64 7.78
Rb/Sr 3.38 3.30 9.56 8.03 4.05 3.41 2.04 1.81

Notes: LOI = loss on ignition; A/CNK = molecular Al2O3/(CaO + Na2O + K2O); A/NK = molecular Al2O3/(Na2O +
K2O); bdl. = below the detection limit.
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CaO 0.73 0.80 0.76 0.95 1.17 0.68 0.47 - 
FeOT 0.50 0.67 0.42 0.62 0.52 0.39 0.21 - 
MnO 0.10 0.12 0.06 0.13 0.04 0.02 0.08 - 
LOI 0.67 0.96 0.55 0.54 0.77 0.46 1.61 - 

Figure 4. A/NK versus A/CNK plot (after Maniar and Piccoli, 1989) [45] indicating that the pegmatites
are peraluminous.
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Literature data of Yanzhiba and Lanbandeng two-mica monzogranites are from Jiang et al., 2010;
Yang et al., 2012 [47,48].
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5.2. Mineral Geochemistry

Analytical data of mica composition are summarized in Table 2. Micas in the studied samples are all
compositionally homogeneous (Figure 6a,b). The micas from barren Mus-Mc-Ab pegmatite have high
K2O (9.91–10.91 wt.%) content, as well as low F (0–0.44 wt.%) and Cl (0–0.05 wt.%) contents. The Rb2O
content was only detected (800 ppm) in one mica from Mus-Mc-Ab barren pegmatite. K/Rb values of
the barren pegmatites are more than 117. In contrast, the micas from Rb-rich Mus-Ab pegmatite have
lower K2O (8.01–8.31 wt.%), F (0.01–0.13 wt.%) and Cl (0–0.20 wt.%) content. The micas in Rb-rich
Mus-Ab pegmatite have higher Rb2O (2900–4100 ppm). K/Rb values of Rb-rich pegmatites range from
26 to 18. According to mica classification in terms of composition and octahedral site occupancy [49],
diocthedral micas from barren Mus-Mc-Ab pegmatite are classified mainly as muscovite and ferroan
muscovite, whereas micas from Rb-rich Mus-Ab pegmatite are muscovite (Figure 7).Minerals 2020, 10, 582 11 of 28 
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Figure 6. Back-scattered electron (BSE) images of typical muscovite (a,b) and apatite (c,d) from the
barren Mus-Mc-Ab pegmatites and the Rb-rich Mus-Ab pegmatites. Abbreviation: Mus = muscovite;
Grt = garnet; Q = quartz; Ab = albite; Ap = apatite.
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Table 2. Electron microprobe analyses in wt.% of micas from barren Mus-Mc-Ab and Rb-rich Mus-Ab pegmatite.

Sample
Muscovite from Barren Pegmatite Muscovite from Rb-Rich Pegmatite

LZP03-1-5 LZP03-1-6 LZP03-1-7 DZXG01-1-4 DZXG01-1-5 DZXG01-1-6 XJ03-1-6 XJ03-1-7 XJ03-1-8 XJ01-1-12 XJ01-1-13 XJ01-1-14 XJ01-1-15

SiO2 45.84 45.44 45.84 45.87 45.94 45.73 47.58 47.42 48.14 48.21 48.89 46.48 46.14
TiO2 0.27 0.23 0.27 0.21 0.17 0.14 0.47 0.97 0.64 0.03 bdl. bdl. 0.02

Al2O3 35.14 35.37 35.43 34.06 34.30 34.33 32.78 30.1 30.52 36.48 35.16 37.18 37.17
FeO 2.10 1.98 1.92 2.29 2.35 2.25 2.48 3.00 3.64 0.63 0.32 0.33 0.28
MnO 0.03 bdl. 0.02 0.04 0.03 0.07 0.00 0.03 0.00 bdl. 0.08 0.02 bdl.
MgO 0.67 0.71 0.64 0.57 0.55 0.61 0.54 1.62 1.10 0.02 bdl. bdl. bdl.
CaO 0.03 0.03 0.07 bdl. bdl. bdl. 0.02 bdl. 0.06 0.02 0.01 0.03 bdl.

Na2O 0.54 0.57 0.64 0.49 0.45 0.56 0.10 0.16 0.14 0.52 0.75 0.96 0.89
K2O 10.04 9.96 9.91 10.28 10.21 10.51 10.65 10.91 10.24 8.26 8.01 8.31 8.27
Rb2O bdl. bdl. bdl. 0.08 bdl. bdl. bdl. bdl. bdl. 0.29 0.41 0.41 0.38

Cl bdl. bdl. 0.05 bdl. bdl. bdl. 0.02 bdl. 0.03 bdl. 0.02 bdl. bdl.
F bdl. 0.29 bdl. 0.36 0.26 0.44 bdl. 0.2 0.26 0.05 0.13 0.08 0.01

Li2O * 0.01 0.24 0.01 0.29 0.22 0.36 0.01 0.17 0.22 0.05 0.12 0.08 0.02
H2O * 4.47 4.32 4.47 4.25 4.31 4.22 4.46 4.32 4.31 4.54 4.46 4.47 4.48

O = F,Cl 0.00 0.12 0.01 0.15 0.11 0.19 0.00 0.08 0.12 0.02 0.06 0.04 0.00
Total 99.14 99.03 99.26 98.66 98.69 99.05 99.11 98.90 99.30 99.08 98.31 98.31 97.66
K/Rb - - - 117 - - - - - 26 18 18 20

O = 22 atoms per formula unit (a.p.f.u.)

Si 6.15 6.10 6.14 6.20 6.20 6.17 6.40 6.44 6.50 6.33 6.46 6.18 6.17
Al IV 1.85 1.90 1.86 1.80 1.80 1.83 1.60 1.56 1.50 1.67 1.54 1.82 1.83
Al VI 3.71 3.70 3.73 3.63 3.66 3.62 3.59 3.26 3.35 3.98 3.94 4.00 4.03

Ti 0.03 0.02 0.03 0.02 0.02 0.01 0.05 0.10 0.06 0.00 0.00 0.00 0.00
Fe 0.24 0.22 0.21 0.26 0.27 0.25 0.28 0.34 0.41 0.07 0.04 0.04 0.03
Mn 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Mg 0.13 0.14 0.13 0.11 0.11 0.12 0.11 0.33 0.22 0.00 0.00 0.00 0.00
Li 0.01 0.13 0.01 0.16 0.12 0.19 0.01 0.09 0.12 0.03 0.06 0.04 0.01
Ca 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Na 0.14 0.15 0.17 0.13 0.12 0.15 0.03 0.04 0.04 0.13 0.19 0.25 0.23
K 1.72 1.71 1.69 1.77 1.76 1.81 1.83 1.89 1.76 1.38 1.35 1.41 1.41
Rb 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.04 0.03
F 0.00 0.12 0.00 0.15 0.11 0.19 0.00 0.09 0.11 0.02 0.06 0.04 0.00
Cl 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

OH * 4.00 3.88 3.99 3.85 3.89 3.81 4.00 3.91 3.88 3.98 3.94 3.96 4.00

Notes: Li2O calculated after Van Lichtervelde et al. (2008) [50]; H2O calculated after Tindle and Webb (1990) [51]; * means values calculated by stoichiometry; bdl. means below the
detection limit.
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Figure 7. Classification diagram for trioctahedral and dioctahedral micas after Tischendorf et al.
(1997) [49]. Micas from the barren Mus-Mc-Ab and Rb-rich Mus-Ab pegmatite are plotted. mgli = Mg-Li,
feal = Fe + Mn + Ti − AlVI.

Composition of K-feldspar and albite from the barren Mus-Mc-Ab pegmatite and albite from
Rb-rich Mus-Ab pegmatite are presented in Table 3. The orthoclase component of the K-feldspar ranges
between Or92 and Or96 from the barren Mus-Mc-Ab pegmatite. K-feldspar is absent from the Rb-rich
Mus-Ab pegmatite. The albite component of the albite from barren Mus-Mc-Ab pegmatite ranges
between Ab89 and Ab98, whereas that of the albite from Rb-rich Mus-Ab pegmatite ranges between
Ab99 and Ab100. The Rb2O content was detected (0–1000 ppm) in K-feldspar from Mus-Mc-Ab barren
pegmatite. Albite from Rb-rich Mus-Ab pegmatite all contain Rb2O content, ranging from 1000 to
1400 ppm.
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Table 3. Electron microprobe analyses in wt.% of feldspars from barren Mus-Mc-Ab and Rb-rich Mus-Ab pegmatite.

Sample
Albite from Barren Pegmatite K-Feldspar from Barren Pegmatite Albite from Rb-Rich Pegmatite

DZXG01-1 DZXG01-2 DZXG01-3 DZXG01-4 XJ03-2 DZXG01-1 DZXG01-2 DZXG01-3 DZXG01-4 XJ03-3 XJ01-2 XJ01-3 XJ01-4 XJ01-5 XJ01-6 XJ01-8

SiO2 65.61 67.85 66.14 65.95 67.97 64.62 64.12 64.45 64.35 64.68 69.01 69.45 68.31 67.81 68.18 68.22
Al2O3 20.39 19.13 19.93 20.08 19.25 17.86 17.86 18.11 17.90 17.98 19.80 19.62 19.53 19.52 19.10 19.30
CaO 2.10 0.44 1.98 2.01 0.35 0.03 0.02 0.03 0.02 0.06 0.09 0.04 0.05 0.03 bdl. 0.02

Na2O 10.51 11.37 10.71 10.79 11.62 0.55 0.44 0.81 0.62 0.90 11.30 11.30 11.17 11.49 11.41 11.57
K2O 0.27 0.09 0.19 0.21 0.12 16.20 16.47 15.71 15.82 15.99 0.06 0.04 0.08 0.09 0.11 0.14
P2O5 0.14 0.13 0.11 0.18 0.05 0.06 0.09 0.12 0.05 0.09 0.45 0.04 0.08 0.22 0.14 0.28
Rb2O bdl. bdl. bdl. bdl. bdl. 0.06 0.10 bdl. bdl. bdl. 0.12 0.10 0.12 0.13 0.14 0.10
Total 99.02 99.01 99.06 99.22 99.36 99.38 99.10 99.23 98.76 99.70 100.84 100.58 99.33 99.28 99.07 99.63

O=8 atoms per formula unit (a.p.f.u.)

Si 2.92 3.00 2.94 2.93 2.99 3.01 3.00 3.00 3.01 3.00 2.99 3.01 3.00 2.99 3.01 3.00
Al 1.07 1.00 1.04 1.05 0.99 0.98 0.99 0.99 0.99 0.98 1.01 1.00 1.01 1.01 0.99 1.00
Ca 0.10 0.02 0.09 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na 0.91 0.97 0.92 0.93 0.99 0.05 0.04 0.07 0.06 0.08 0.95 0.95 0.95 0.98 0.98 0.98
K 0.02 0.01 0.01 0.01 0.00 0.96 0.98 0.93 0.94 0.94 0.00 0.00 0.00 0.00 0.01 0.01
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01

Rb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

End-member components (moles %)

An 9.80 2.10 9.20 9.20 1.60 0.20 0.10 0.20 0.10 0.30 0.43 0.17 0.26 0.16 0.00 0.10
Ab 88.70 97.40 89.80 89.60 97.70 4.90 3.90 7.30 5.60 7.90 99.21 99.63 99.29 99.34 99.39 99.11
Or 1.50 0.50 1.10 1.20 0.70 95.00 96.00 92.60 94.30 91.90 0.36 0.20 0.45 0.50 0.61 0.79

Notes: bdl. means below the detection limit.
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Most apatite grains from the studied samples are euhedral, and no prominent zonation was
observed (Figure 6c,d), indicating a magmatic origin. The analytical data of apatite composition
are summarized in Table 4 and Figure 8. The P2O5 contents of the apatite from barren Mus-Mc-Ab
pegmatite (41.47–42.20 wt.%) are more or less the same with those from Rb-rich Mus-Ab pegmatite
(41.12–42.83 wt.%) (Figure 8a), whereas the CaO contents of the apatite from the barren Mus-Mc-Ab
pegmatite (54.39–55.18 wt.%) are higher than those of the apatite from Rb-rich Mus-Ab pegmatite
(36.29–40.17 wt.%) (Figure 8b). Moreover, the MnO contents of the apatite from the Rb-rich Mus-Ab
pegmatite (14.51–19.12 wt.%) are much higher than those of the apatite from barren Mus-Mc-Ab
pegmatite (0.34–0.54 wt.%) (Figure 8c). All of the apatite grains analyzed have high fluorine
contents (2.85–3.56 wt.%) (Table 4), classifying them as fluorapatite. However, fluorine contents
were indistinguishable between barren Mus-Mc-Ab and Rb-rich Mus-Ab pegmatite (Figure 8d).
In contrast, chlorine contents are lower and are well distinguished between barren Mus-Mc-Ab and
Rb-rich Mus-Ab pegmatite, with the latter displaying higher Cl contents (1200–1600 ppm) (Figure 8d).
Furthermore, apatite F/Cl ratios of Rb-rich Mus-Ab pegmatite (20–29) are much lower than those of
barren Mus-Mc-Ab pegmatite (164–169) (Figure 8f).
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Table 4. Electron microprobe analyses in wt.% of apatites from barren Mus-Mc-Ab and Rb-rich
Mus-Ab pegmatite.

Sample
Apatite from Barren Pegmatite Apatite from Rb-Rich Pegmatite

LZP03-1-1 LZP03-2-1 LZP03-2-2 DZXG01-1-1 DZXG01-1-2 DZXG01-1-3 XJ01-1-1 XJ01-1-2 XJ01-1-3 XJ01-1-4 XJ01-1-5 XJ01-1-6

P2O5 42.00 42.16 42.13 42.20 41.90 41.47 41.62 42.83 41.49 41.12 42.12 42.24
CaO 54.71 55.18 54.89 54.39 54.68 54.92 36.93 38.72 36.53 36.74 36.29 40.17
FeO 0.13 0.15 0.30 0.06 0.25 0.25 0.78 0.37 0.82 0.80 0.73 0.25
MnO 0.34 0.42 0.54 0.36 0.45 0.45 19.12 16.28 18.96 18.98 18.53 14.51
MgO bdl. 0.02 0.02 bdl. 0.03 bdl. bdl. 0.01 bdl. bdl. bdl. bdl.
Na2O 0.11 0.11 0.05 0.10 bdl. 0.11 0.12 0.01 0.11 0.12 0.11 0.04

Cl bdl. 0.02 bdl. bdl. 0.02 bdl. 0.12 0.14 0.16 0.12 0.15 0.14
F 3.56 3.27 2.85 3.32 3.38 3.30 2.97 3.20 3.37 3.28 2.86 2.85

H2O * 0.09 0.23 0.43 0.20 0.17 0.20 0.30 0.20 0.09 0.13 0.34 0.35
O=F,Cl −1.5 −1.38 −1.2 −1.4 −1.43 −1.39 −1.28 −1.38 −1.46 −1.41 −1.24 −1.23
Total 99.44 100.18 100.01 99.23 99.45 99.31 100.66 100.39 100.06 99.88 99.89 99.31

P 6.01 5.99 5.99 6.03 6.00 5.96 6.09 6.20 6.11 6.08 6.17 6.17
Ca 9.90 9.92 9.88 9.84 9.90 9.99 6.84 7.09 6.80 6.87 6.73 7.42
Fe 0.02 0.02 0.04 0.01 0.04 0.04 0.11 0.05 0.12 0.12 0.11 0.04
Mn 0.05 0.06 0.08 0.05 0.06 0.06 2.80 2.36 2.79 2.81 2.72 2.12
Mg 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na 0.04 0.04 0.02 0.03 0.00 0.04 0.04 0.00 0.04 0.04 0.04 0.01
Cl 0.00 0.01 0.00 0.00 0.01 0.00 0.03 0.04 0.05 0.03 0.04 0.04
F 1.90 1.74 1.51 1.77 1.81 1.77 1.62 1.73 1.85 1.81 1.56 1.55

OH* 0.10 0.26 0.49 0.23 0.19 0.23 0.34 0.23 0.10 0.15 0.39 0.41

Notes: * means values calculated by stoichiometry; bdl. means below the detection limit.

5.3. Zircon U–Pb Ages

Zircon crystals from barren Mus-Mc-Ab pegmatite (LZP03 and DZXG01) and Rb-rich Mus-Ab
pegmatite (XJ01-4) samples display variable sizes (e.g., LZP03: 100–200 µm; DZXG01: 50–120 µm;
XJ01-4: 100–300 µm) (Figure 9). The U–Pb dating data are shown in Table 5. The plotted zircon U–Pb
ages are shown in Figure 10.

Table 5. Result of LA-ICP-MS zircon U–Pb dating of the Lizhaping and Dazengxigou barren pegmatites
and Xinjian Rb-rich pegmatites.

SampleTitle
Element (ppm)

Th/U
Isotope Ratio Age (Ma)

Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ

Sample LZP03

1 816 586 1.393 1.1429 0.0247 0.1270 0.0018 774 12 771 10
2 1458 1114 1.308 0.5944 0.0150 0.0760 0.0013 474 10 472 8
3 1089 888 1.226 0.7227 0.0210 0.0916 0.0017 552 12 565 10
4 1259 2493 0.505 0.2266 0.0060 0.0327 0.0006 207 5 208 4
5 1179 1679 0.702 0.9216 0.0163 0.1084 0.0015 663 9 664 9
6 771 649 1.189 1.2463 0.0303 0.1375 0.0025 822 14 831 14
7 491 2275 0.216 0.2310 0.0060 0.0334 0.0005 211 5 212 3
8 1868 727 2.569 1.0417 0.0214 0.1174 0.0017 725 11 716 10

Sample DZXG01

1 218 10,836 0.020 0.3170 0.0067 0.0355 0.0006 280 5 225 4
2 491 7240 0.068 0.6655 0.0283 0.0361 0.0009 518 17 229 5
3 793 9015 0.088 0.4844 0.0338 0.0362 0.0010 401 23 230 6
4 186 12,941 0.014 0.5848 0.0561 0.0411 0.0011 468 36 260 7
5 1115 4882 0.228 0.5825 0.0250 0.0354 0.0006 466 16 225 4
6 323 8437 0.038 1.6545 0.0509 0.0519 0.0011 991 19 326 7
7 1358 5266 0.258 0.7202 0.0388 0.0369 0.0007 551 23 234 4
8 179 6978 0.026 0.3182 0.0092 0.0342 0.0007 281 7 217 4
9 758 10,702 0.071 1.2831 0.1187 0.0466 0.0010 838 53 294 6

Sample XJ01-4

1 1863 1674 1.113 0.2292 0.0079 0.0316 0.0008 210 7 200 5
2 1485 1321 1.124 0.2299 0.0079 0.0313 0.0005 210 7 199 3
3 1816 1405 1.292 0.2237 0.0056 0.0315 0.0004 205 5 200 2
4 806 1094 0.737 0.2260 0.0089 0.0333 0.0008 207 7 211 5
5 542 771 0.703 0.2238 0.0087 0.327 0.0006 205 7 208 4
6 446 700 0.637 0.2127 0.0091 0.0320 0.0006 196 8 203 4
7 295 501 0.589 0.2246 0.0095 0.0329 0.0006 206 8 209 4

Most zircons separated from the sample LZP03 display oscillatory zoning, as shown in the
cathodoluminescence (CL) images (Figure 9a), which indicates a magmatic origin. We obtained
analyses of eight zircons from sample LZP03 (Figure 10a). The U concentrations of the analyzed zircons
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range from 586 to 2493 ppm, Th contents range from 491 to 1868 ppm, and the Th/U ratios range
from 0.216 to 2.569. All eight analyses give apparent 206Pb/238U ages between 208 Ma and 831 Ma,
with analyses spots #4 and #7 yielding apparent 206Pb/238U ages of 208 ± 4 and 212 ± 3 Ma, respectively
(Figure 10a), which is considered the crystallization age of these pegmatites. The remaining six analyses
yielded apparent 206Pb/238U ages of 472–831 Ma, which were obviously older than the analyses spots
#4 and #7 (Figure 10a), suggesting that these older zircons had been inherited.
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Zircons separated from sample DZXG01 show spongy and porous features on CL images
(Figure 9b), suggesting that they have been subjected to metamictization or recrystallization,
likely ascribable to high U concentrations or deuteric fluid [52–54]. These features are commonly seen
in rare-element pegmatites from other places because of high fluxes and the presence of late-stage
hydrothermal fluids [24,25,55–57]. We obtained the analyses of nine zircons from sample DZXG01
(Figure 10b). The zircons analyzed have variable U concentrations (4882–12,941 ppm), Th contents
(4179–1358 ppm), and Th/U ratios (0.014–0.258). The 206Pb/238U ratios for these nine spots yielded a
lower intersection point age of 206 ± 18 Ma, with a MSWD of 9.9 (Figure 10b).
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Zircons separated from the sample XJ01-4 display oscillatory zoning, as shown in the
cathodoluminescence (CL) images (Figure 9c), indicating a magmatic origin. We obtained a total of
seven analyses of six zircons from sample XJ01-4 (Figure 10c). The analyzed zircons have U and Th
concentrations ranging from 501 to 1674 ppm, and 295 to 1863 ppm. The zircons have high Th/U
ratios ranging, from 0.589 to 1.292 (with an average of 0.89), indicative of a magmatic origin [58].
The 206Pb/238U ratios for these seven spots yielded a weighted mean age of 202.9 ± 4.2 Ma, with a mean
square weighted deviation (MSWD) of 1.7 (Figure 10c).
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6. Discussion

6.1. Age of Pegmatites

Although zircon U–Pb dating for granitic pegmatites has a few problems, including huge amounts
of inherited zircons, or strongly metamicted zircons, the U–Pb zircon geochronometer is one of the
most important dating methods for rare metal-rich pegmatite, as the closure temperature of the zircon
U–Pb system is close to the temperature of the magmatic stage of pegmatites [24,25,55–60]. In this
study, two spot ages of 208 ± 4 and 212 ± 3 Ma for the Lizhaping barren pegmatite (sample LZP03),
and a lower intersection age of 206 Ma for the Dazengxigou barren pegmatite (sample DZXG01) were
determined, as well as a weighted mean age of 202.9 ± 4.2 Ma for the Xinjian Rb-rich pegmatite
(sample XJ01-4) (Figure 10a–c). We interpreted these ages (212–203 Ma) as the emplacement ages of the
pegmatites. These results are similar to those of previous U–Pb dating studies that demonstrated the
existence of Late Triassic magmatic activity in the middle segment of SQB [39,47,48,61–65].

6.2. Relationship between the Pegmatites and Granites

Triassic Granitic plutons are widespread in the Foping–Ningshan area in the middle segment
of SQB. Geochronological data indicate that these plutons were emplaced during the Triassic
(230–200 Ma) [39,47,48,61–65]. These plutons include Xiba, Huayang, Wulong, Qinlingliang, Xichahe,
Laocheng, and Yanzhiba plutons (Figure 1b), which consist of diorite, granodiorite, monzogranite,
and biotite granite.

Granitic pegmatite is generally considered a product of volatile-rich (e.g., B, F, P) residual magma
through the differentiation of parental granitic magma [6,7,9]. The pegmatite field surrounding a source
granite is generally zoned with respect to the distribution of rare elements [1,2,4]. As emphasized by
Dill (2015) [66], the temporal relation between pegmatites and neighboring granites plays a key role in
distinguishing the origin of pegmatites. According to Selway et al. (2005) [67], pegmatite dikes with
the most economic potential for Li-Cs-Ta deposits occur the greatest distance (up to 10 km) from the
parent granite. In our study area, pegmatites are juxtaposed with the Yanzhiba pluton (Figure 1c).
Some of the pegmatites intruded into the monzogranites, with a progressive evolution contact
(Figure 2a). The Yanzhiba pluton can be divided into Yanzhiba granodiorites [48], Yanzhiba two-mica
monzogranites [47], and Lanbandeng two-mica monzogranites [48]. Previous chronological study has
shown that the Yanzhiba granodiorite formed at ~220 Ma [48], and the two-mica monzogranites in
Yanzhiba and the Lanbandeng intrusion formed at ~210 Ma [47,48]. As mentioned above, the pegmatites
formed in the Late Triassic (212–203 Ma), slightly younger than the two-mica monzogranites in Yanzhiba
and the Lanbandeng intrusion. The spatial and temporal distribution of pegmatites and granites
reveals that the Yanzhiba and Lanbandeng two-mica monzogranites are the potential parental granite
of these pegmatites.

For geochemical comparison, we collected data of the Yanzhiba and Lanbandeng two-mica
monzogranites published by Jiang et al. (2010) and Yang et al. (2012) [47,48]. The Zr/Hf, Rb/Sr or
Nb/Ta ratios are used generally as an indicator of pegmatite evolution [8,68–75]. The trends of
the plots of La versus Zr/Hf ratios (Figure 11a) could be interpreted in terms of zircon fractional
crystallization from monzogranites and two-mica monzogranites to the pegmatites. The plots of La
versus Rb/Sr ratios (Figure 11b) show evolution trends that could be interpreted in terms of feldspar
and mica (biotite and/or muscovite) and fractional crystallization. The trends of the plots of La versus
Nb/Ta ratios could be interpreted in terms of mica (biotite and/or muscovite) fractional crystallization
(Figure 11c). The reasons for these hypotheses are as follows: (1) Previous experimental studies have
shown that the ratio DHf/DZr of the partition coefficients of Zr and Hf between zircon and melt are
low (0.5 to 0.2) for metaluminous and peraluminous melts [72]. Consequently, zircon fractionation
strongly decreases Zr/Hf in some peraluminous granites [8,70,71,74]. (2) Sr is more compatible in
feldspar, whereas Rb is more compatible in mica. In response to feldspar fractionation and mica
concentration, there is a marked depletion of Sr and enrichment of Rb, resulting in a high Rb/Sr
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ratio [68,69]. (3) Experimental studies have shown that Nb preferentially partitions into mica relative
to Ta in the granitic system [75]. Thus, Ta concentrates in residual melt relative to Nb. As a result,
the residual melt becomes enriched in Ta relative to Nb and yields lower Nb/Ta ratios. Accordingly,
the barren and Rb-rich pegmatites in the study area are both derived from the fractionation of Yanzhiba
and Lanbandeng two-mica monzogranites.
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two-mica monzogranites are from Jiang et al., 2010; Yang et al., 2012 [47,48].
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This hypothesis is supported also by other geochemical signatures. In the chondrite-normalized
REE pattern (Figure 5a), the barren pegmatites show a seagull-like normalized REE pattern, with a
depleted LREE and a pronounced negative Eu anomaly. In contrast, Yanzhiba and Lanbandeng
two-mica monzogranites show a right-declined pattern with a weak Eu anomaly. Those negative Eu
anomalies are more pronounced in pegmatite than in two-mica monzogranites can be interpreted as
being caused by feldspar fractionation during granite emplacement because Eu prefers to partition into
plagioclase. The depleted LREE pattern was caused by accessory minerals, considering that LREE are
incorporated generally in the early-crystallizing accessory minerals such as monazite (80–85 wt.%) and
apatite (~10 wt.%), which is virtually devoid in the last solidified pegmatites [76,77]. Rb-rich Mus-Ab
pegmatite have a significantly different REE pattern, with much lower

∑
REE concentrations and the

lack of an Eu anomaly. Fractionation of the accessory minerals (i.e., apatite and monazite) in parental
granite can cause the depletion of LREE in the residual magma, and fractionation of garnet result
in the depletion HREE. As for the lack of an Eu anomaly, this phenomenon can be also observed in
some other rare metal-bearing pegmatites [8,78,79]. Previous study pointed out that oxidation of
Eu2+ to Eu3+ can make it less compatible in the Ca sites of plagioclase [80–82]. The REE data for
plagioclase show a decrease of the positive Eu-anomaly and then a change to negative Eu-anomaly
from the wall and intermediate zone to the more evolved inner zones [83,84]. Thus, the absence of an
Eu anomaly can be attributed to the elevated oxidation state during the pegmatite evolution. Evidence
for the oxidizing conditions during the formation of Rb-rich Mus-Ab pegmatite is recorded in the
abundance of cassiterite and columbite-group mineral. On the primitive mantle normalized spider
diagram, compared with granite, the pegmatites show positive in Rb, U, and P anomalies, and negative
anomalies of Ba, Sr, Zr, and Ti (Figure 5b). The positive in Rb, U, and P anomalies in the pegmatites is
ascribed to their high incompatible properties, i.e., they do not favor crystallization of their individual
(accessory) minerals at the early magmatic stage [85–88]. The depletion in Ba and Sr in the pegmatite
can be ascribed to feldspar fractionation in the two-mica monzogranites [89], whereas depletion in Ti
and Zr is the result of early-crystallized ferromagnesian minerals (biotite and Fe–Ti oxides) fractionation
and zircon fractionation, respectively [77,90]. The trace element abundance diagrams of the Rb-rich
pegmatites are characterized by pronounced enrichment in Rb, Nb, P, Sr, and Hf (Figure 5b). The highly
fractionated residual magma caused the concentration of these incompatible elements. Therefore,
fractional crystallization from the Yanzhiba and Lanbandeng two-mica monzogranites to the barren
and Rb-rich pegmatites explains the trace element distribution in the pegmatites in the study area.

6.3. Tectonic Setting and Petrogenesis of Pegmatite

As emphasized by Černý, 1991 [2], the trace element signatures of most rare-element pegmatites
can be grouped into just two distinctive families: one that is enriched in lithium, cesium, and tantalum
(LCT) and the other characterized by enrichment in niobium, yttrium, and fluorine (NYF). In this study,
the Rb-rich pegmatites are also variably enriched in Cs, Be, Ta, Nb, and Sn (Table 1). There are abundant
beryl and chrysoberyl (Figure 3c,d). Cassiterite and columbite-group mineral seem to form the most
important accessory minerals (Figure 3e,f). Following the classification schemes of Černý (1991) [2] and
Černý and Ercit (2005) [4], the Rb-rich pegmatites belong to the LCT family based on the rare element
association, and more specifically to the rare element pegmatite class. Based on the rare element
mineralogy, they are consistent with the beryl-type (beryl-columbite subtype). As discussed above,
the barren and Rb-rich pegmatites are derived by fractionation from the Yanzhiba and Lanbandeng
two-mica monzogranites. Therefore, we propose a petrogenetic model of the peraluminous granites
and pegmatites, which resulted from decompression melting of the thickened lower crust during a
post-collisional extensional tectonic regime. Notably, the post-orogenic setting is also consistent with
the required tectonic setting for LCT-type rare-metal pegmatites worldwide [2,4,5].

As noted above, the granitic plutons are extensive in the Ningshan area in the middle segment of
SQB (Figure 1b,c). Previous studies have shown that the intrusion of these plutons is considered the
result of multi-stage granitic magmatism during the structural evolution of the Qinling Orogenic Belt.
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During this evolution, SQB and SCB experienced a series of subduction, collision, and post-orogenic
collapse events along the Mianlue suture [39,47,48,61–64]. Combining the post-collision magmatism
and granite-pegmatite genetic relationship, we summarize the petrogenesis of the pegmatites as
follows: During extension of the thickened crust, the crust-derived magma moved upward though
extensional fractures and along lithological boundaries and was stored in the shallow crust in a magma
chamber. The process ultimately gave rise to the formation of peraluminous granites after fractional
crystallization and intrusion. The fractionation of these peraluminous granites caused the generation
of the affinitive more evolved felsic magma (the residual melts). They continued to intrude into the
fissures of early granites and overlying sedimentary rocks and, subsequently, crystallized to form
the pegmatites.

6.4. Importance of Mineral Compositions to Rare Metal Exploration

Rubidium is highly incompatible in quartz and plagioclase because of its exceptionally large ionic
radius and cesium behaves similarly [87]. Quartz, feldspar, and mica are the dominant minerals that
crystallize from granitic melts. The extreme fractionation resulting from the extended crystallization
of quartz and plagioclase from granitic melts could generate exceptionally high concentrations of
Rb and Cs in residual melts. The mineral crystallization of the residual melt caused Rb and Cs to
enter micas and alkali-feldspar because their ionic radius is closer to that of K [87]. In this study,
the muscovite and albite are the main Rb-bearing minerals in the Rb-bearing Mus-Ab pegmatite.
The Rb-rich pegmatites are also enriched in Cs, but have low Li content. In agreement with low Li
content in whole-rock geochemistry, no Li-muscovite and other Li-bearing minerals are observed.
This is analogous to that displayed by similar Li-bearing mineral lacking a central intermediate zone of
the best-studied LCT-family Tanco pegmatite [91]. As pointed out by Stilling et al. 2006 [91], Li, Cs,
and Ta are produced from different zones at Tanco pegmatite. Li and Cs mineralizations may have had
different controls [87]. In the case of only barren Mus-Mc-Ab and Rb-rich Mus-Ab pegmatites having
been identified, it is difficult to speculate further on the potential distribution of Li mineralization
pegmatites in the area.

As emphasized by Selway et al. (2005) [67], the presence of Mn-rich fluorapatite indicates that the
pegmatite has economic Li-Cs-Ta potential. The Mn contents of apatite are pointed out to be relatively
high in rare metal bearing pegmatites [92,93]. In the spodumene pegmatites from the Tin–Spodumene
Belt, with apatite containing up to 3.26 wt.% MnO [94], and in the Altay Koktokay no. 3 pegmatites,
almost all the apatite contains more than 2.00 wt.% MnO [95]. The Mn contents in apatite appear
to be related to the Fe2+/Fe3+ ratios in their melt source and/or the redox conditions during apatite
crystallization [92,93]. Miles et al. (2014) [96] presented an equation using Mn content in apatite as an
oxybarometer in intermediate and silicic igneous rocks. Their study proposes a negative correlation
between Mn in apatite and oxygen fugacity (fO2). However, the relationship of Mn in apatite as a
measure of oxygen fugacity was refuted by Marks et al. (2016), who concluded that the presence of
other Mn-bearing phases affecting the Mn content in the apatite [97]. In this study, compared with the
MnO content (0.34–0.54 wt.%) in apatite from the Mus-Mc-Ab barren pegmatite, the apatite in our
study has relatively much higher MnO content (14.51–19.12 wt.%) from Rb-rich Mus-Ab pegmatite.
It can be observed that garnets are abundant in the barren Mus-Mc-Ab pegmatite (Figure 2d,f and
Figure 6a). Garnet would incorporate Fe and Mn into its structure during crystallization. Therefore,
the Mn-content in apatite is mostly dependent on the presence garnet or other Fe-Mn minerals. Our
results indicate that the Mn-content of apatite may be used to distinguish between barren pegmatites
and Rb-rich pegmatites.

Apart from the difference in MnO-content, apatites from Rb-rich Mus-Ab pegmatites have higher
Cl content and lower F/Cl ratios in comparison to those of barren Mus-Mc-Ab pegmatites (Figure 8e,f).
Previous works demonstrated that halogen contents, especially fluorine and chlorine, could be
evaluated using the composition of apatite in igneous rocks [98,99]. The reasons for the differences in Cl
contents and F/Cl ratios between the Rb-rich Mus-Ab pegmatites and barren Mus-Mc-Ab pegmatites are
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most likely related to melt compositions. As mentioned above, the Rb-rich pegmatites are crystallized
from the more evolved magmas than the barren pegmatites. It should be enriched in Cl due to the
fractionated of the magmas. In summary, the Mn-content and Cl-contents (or F/Cl ratios) of apatite
could be used as an indicator of the rare metal mineralization potential for the pegmatites in this area.

7. Conclusions

(1) The formation age of the barren and Rb-rich pegmatites from Ningshan pegmatite district is
212–203 Ma, which is consistent with the two-mica monzogranites in the middle segment of SQB.

(2) The Rb-rich pegmatite from Ningshan pegmatite district belongs to the LCT family. The magma
of the barren and Rb-rich pegmatites originated from the thinned lower crust and formed in a
post-collisional environment. The Yanzhiba and Lanbandeng two-mica monzogranites are the potential
parental granite of these pegmatites.

(3) The Mn-content in apatite is mostly dependent on the presence garnet or other Fe-Mn minerals.
The Rb-rich pegmatite has higher Mn and Cl content and lower F/Cl ratios than the barren pegmatite,
indicating that it can be regarded as an indicator of rare metal mineralization potential.
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87. Linnen, R.L.; Van Lichtervelde, M.; Černý, P. Granitic pegmatites as sources of strategic metals. Elements
2012, 8, 275–280. [CrossRef]

88. Bea, F.; Fershtater, G.; Corretgé, L. The geochemistry of phosphorus in granite rocks and the effect of
aluminium. Lithos 1992, 29, 43–56. [CrossRef]

89. Blundy, J.D.; Wood, B.J. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase
feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta 1991, 55, 193–209. [CrossRef]

90. Chappell, B. Aluminium saturation in I-and S-type granites and the characterization of fractionated
haplogranites. Lithos 1999, 46, 535–551. [CrossRef]
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