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Abstract: The Neoproterozoic era is a time of major environmental change in Earth history.
The Ediacaran period (635–541 Ma), the uppermost division of Precambrian time, is characterized by
the remarkable Shuram excursion (largest C isotope negative excursion), a deep ocean water oxidation
event, and Ediacaran biota. The Nafun Group of Oman provides a well-preserved and mostly
continuous section of an Ediacaran succession. Based on geochemical data from the Nafun Group,
the Shuram excursion (SE) and deep ocean oxidation hypotheses were proposed. Now, we sampled
this section at high stratigraphic resolution, and present here the petrographical and geochemical
analysis of the Khufai, Shuram and Buah Formations. The major and trace element analysis of
shales from the Shuram Formation indicates that northern Oman was an active continental margin
environment in Neoproterozoic times. The provenance of the Shuram Formation was primarily mafic
and intermediate igneous rocks. With the unsteady tectonic setting, the development of the Nafun
Group was influenced by hydrothermal supply and volcaniclastic input. Based on the V/Cr and U/Th
ratio of the samples from the Nafun Group, our study reveals the transition of the ocean water redox
environment, which is connected to the rise and fall of the Ediacaran biota. Our study constrains the
tectonic setting of northern Oman and the petrography and geochemical data from the Nafun Group
for the hydrothermal and volcaniclastic supply. Thus, our study acknowledges more factors for the
explanation of the Ediacaran conundrums.

Keywords: Oman; Nafun group; geochemical data; tectonic setting; hydrothermal fluid;
Shuram negative excursion

1. Introduction

Marine carbon isotope changes provide direct information on the global carbon cycle.
The Ediacaran Shuram Formation (Nafun Group in Oman) is well known for the Shuram Negative
Excursion (SE), which represents the largest carbon isotope excursion in geological history [1–4],
with carbonate carbon isotopes values down to −12%� VDB. Although there is a consensus on the
origin of the negative carbon isotope signature of interglacial cap carbonates, the origin of the SE is
still debated, and various hypotheses have been put forward to explain this shift around the globe [2].
The SE may have been caused by the oxidation of marine dissolved organic carbon (DOC) [5–8],
water column stratifications [9,10], burial diagenesis alteration [11], methane-derived 13C-depleted
authigenic carbonate [4,5,12–14], and terrestrial organic carbon through weathering [15,16].
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Based on the abundant terrestrial debris from the Fiq glaciation (underlying the Nafun Group) and
the average deposit accumulation rate of the Nafun Group, southern Oman is interpreted as late-stage
rifts or passive margin [17–19]. Grotzinger et al. [20] considered that an Andean margin developed
in eastern Oman and that the Nafun Group is related to subsidence of the lithosphere caused by the
subduction of oceanic lithosphere beneath the Arabian plate. However, by the lack of outcrops and
an incomplete understanding of tectonic evolution of the Huqf Supergroup (including Abu Mahara,
Nafun and Ara Group), the tectonic models of Oman are hampered [21].

Previous research has followed the SE with interest, and took carbon isotopes of the Shuram
Formation of Oman as a model for the relationship of the same abnormal excursion globally. The SE
provides an isochronous stratigraphic framework for the negative excursion among the Wonoka
Formation in Australia [22], Johnnie Formation in the USA [15], Doushantuo Formation in China [14],
and Bol’shoy Patom section in Siberia [23]. The ocean oxidation event in the Ediacaran period has
also been discussed [6,23–25]. Using the Shuram Formation (or the Nafun Group) as a reference,
the oxidation of the ocean could be divided into three stages [6,23,24]. Previous research focused on C,
O, S, Sr isotope and TOC of the Shuram Formation [1,3,6], but no other geochemical data of the Nafun
Group from Oman have been presented recently. However, other formations with identified SE have
been subject to numerous detailed isotopic and elemental analyses, having led to regional correlation
of 34S [8,14,26,27], 238U [4,23], major and trace elements [28–30], 15N [27] and Ca-Mg isotopes [31].

In this study, the first high-resolution whole-rock major and trace element data of the Nafun Group
in Oman are reported. Moreover, combined with C and O isotope and petrography data, we discuss
the tectonic setting of the Nafun Group and evaluate the role of hydrothermal fluids and volcaniclastic
input in the SE. Furthermore, our data reveal the transition of the ocean water redox environment and
determine the temporary oxidation of the deep water in the Shuram Formation. Our findings may
contribute to a better understanding of the largest negative carbon isotope excursion and present a
unique event of the carbon cycle through geological time.

2. Geological Setting

The Huqf Supergroup comprises the Abu Mahara Group, Nafun Group and Ara Group.
Interpretations of the Abu Mahara Group suggest a record of the global glaciations (Sturtian and
Marinoan) in Jabal Akhdar and stratigraphically equivalent to the felsic volcanics and volcaniclastics
of the Halfayn Formation volcanism in the Huqf area [18,19,21,32].

The Nafun Group crops out in the Jabal Akhdar area (northern Oman), the Huqf area (east-central
Oman), and the Mirbat area (southern Oman) (Figure 1A,B). The Nafun Group was subdivided into
the Masirah Bay, Khufai, Shuram, Buah and Hadash Formations (Figure 1C) [18,19]. At the base of
the Nafun Group, the Hadash Formation is directly overlying the Fiq glacial deposits or Halfayn
Formation felsic volcanics and is considered to be the cap carbonate after the Marinoan glaciation
(635 Ma) [18,19,33]. Moreover, the Hadash Formation is interpreted as the isochronous sedimentary
strata for the cover of the north–south basement in Oman.

The four overlying formations contain two siliciclastic to carbonate sequences made of the Masirah
Bay/Khufai and Shuram/Buah Formations, which represent transgression–regression cycles [18,33].
The shallow–deep marine sandstone, siltstone and shale of the Masirah Bay and Shuram Formations
change gradationally upwards to the carbonate ramp of the Khufai and Buah Formations [34].

The Ara Group overlies the Buah Formation and is made of fine-grained sediments, carbonates,
cherts and volcaniclastics in Jabal Akhdar. However, in the salt basins of central and eastern Oman,
the Ara Group consists of carbonates and evaporates and forms a structural high referred to as Eastern
Flank or Huqf High [35,36].
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Figure 1. (A) Regional map of Oman with the Neoproterozoic outcrops and salt basins. (B) Schematic 
geologic map of Jabal Akhdar area. (C) Stratigraphic column of the Nafun Group. Modified after 
[1,33]; Age data source: [19,21]. 

3. Materials and Methods 

3.1. Materials 

The Khufai, Shuram and Buah Formations in Jabal Akhdar were systematically sampled at high 
stratigraphic resolution. Fresh samples were taken at about every 15 m through the section (Figure 
1C), and a total of 76 samples were collected for petrographic and major and trace element analysis 
(see supplementary). Among them, five limestones from the Khufai Formation, three limestones 
from the Shuram Formation and four limestones and three dolostones from the Buah Formation 
were collected (Table 1). 

3.2. Analytical Methods 

The micrographs of the thin sections were taken by a Zeiss Axioscope A1 light microscope. 
Additionally, the thin section halves were stained with Alizarin Red S to distinguish calcite from 
dolomite, after the procedure described by [37]. 

All samples were analyzed with an X-ray fluorescence spectrometer to determine major and 
trace element concentrations. For this purpose, the hand specimens were cut and polished, and then 
the polished sample surface was analyzed using a hand-held Tracer IV-SD spectrometer, equipped 
with rhodium target and Silicon Drift Detector, and a Bruker 3V Vacuum pump. The analyses were 
collected using both the Trace MudRock (TMR) and Major MudRock (MMR) modes which operate 
at 40 kV and 15 kV, respectively. The vacuum conditions at which the analyses were run help 

Figure 1. (A) Regional map of Oman with the Neoproterozoic outcrops and salt basins. (B) Schematic
geologic map of Jabal Akhdar area. (C) Stratigraphic column of the Nafun Group. Modified after [1,33];
Age data source: [19,21].

3. Materials and Methods

3.1. Materials

The Khufai, Shuram and Buah Formations in Jabal Akhdar were systematically sampled at high
stratigraphic resolution. Fresh samples were taken at about every 15 m through the section (Figure 1C),
and a total of 76 samples were collected for petrographic and major and trace element analysis (see
Supplementary Materials). Among them, five limestones from the Khufai Formation, three limestones
from the Shuram Formation and four limestones and three dolostones from the Buah Formation were
collected (Table 1).

3.2. Analytical Methods

The micrographs of the thin sections were taken by a Zeiss Axioscope A1 light microscope.
Additionally, the thin section halves were stained with Alizarin Red S to distinguish calcite from
dolomite, after the procedure described by [37].

All samples were analyzed with an X-ray fluorescence spectrometer to determine major and trace
element concentrations. For this purpose, the hand specimens were cut and polished, and then the
polished sample surface was analyzed using a hand-held Tracer IV-SD spectrometer, equipped with
rhodium target and Silicon Drift Detector, and a Bruker 3V Vacuum pump. The analyses were collected
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using both the Trace MudRock (TMR) and Major MudRock (MMR) modes which operate at 40 kV and
15 kV, respectively. The vacuum conditions at which the analyses were run help prevent the absorption
of low energy radiation by air within the tube known to hinder the detection of light elements [38].

The samples for stable carbon and oxygen isotope were obtained using a dental drill and analyzed
by a Kiel IV automated carbonate device attached to a MAT 253 mass spectrometer in the Qatar
Stable Isotope lab of Imperial College London. The powder samples of between 90 and 150 µg
were reacted with orthophosphoric acid at 70 ◦C in individual vials. The resulting CO2 was then
trapped in a cold finger and cleaned before being automatically transferred to the mass spectrometer.
Results were corrected for instrumental drift using values for NBS 19 and an internal standard (ICCM,
Imperial College Carara Marble), and expressed in per mil relative to Vienna Peedee Belemnite (VPDB).
Reproducibility of the standards was 0.03%� for δ13C and 0.09%� for δ18O (one standard deviation).
The oxygen isotopic composition of samples with dolomite was corrected for acid fractionation using
the fractionation factors given by [39,40].

4. Results

4.1. Petrography

4.1.1. Khufai Formation

In Jabal Akhdar, the Khufai Formation mainly consists of fetid limestones, lime-mudstones,
siltstones, grainstones and dolomitic limestones (Figure 2A,B), and can be divided into three units.
The lower unit consists of lime-mudstones and siltstones which represent a deepwater environment.
The middle and upper unit are grainstones, fetid limestones and dolomitic limestones. The veins
and cement calcite occur widely in the carbonates of the Khufai Formation (Figure 2C). There is also
abundant organic matter in the rocks (Figure 2D).

The stratigraphic patterns indicate deposition in a deep outer-ramp environment [34,41].
The sections suggest that carbonate production replaces the siliciclastic influx because of sea-level rise
or decreased rates of uplift and/or erosion. The Masirah Bay/Khufai Formation sedimentary cycle was
interpreted as HST (highstand system tract) deposits after the Marinoan glaciation [18,41].

The dolomitic limestone at the top of the Khufai Formation is typically coarsely crystalline calcite
and finely crystalline dolomite (Figure 2B) and may be influenced by the hydrothermal fluid [42,43].
The carbonate veins in the upper unit and the remaining bitumens in the veins could be interpreted as
a past hydrocarbon migration process by the post-depositional fluids [44].

4.1.2. Shuram Formation

From bottom to top, the Shuram Formation consists of coarse conglomeratic sandstones, sandstones
interbedded with siltstones, siltstones interbedded with sandy limestones, organic-rich shales,
limestones and sandy limestones (Figure 2E–I). Based on thin section analysis, abundant extrusive
quartz, sedimentary pyrite, white mica and relicts of microorganisms are present in the Shuram
Formation limestones (Figure 2G–I). The minerals and microorganisms show the same crystallographic
orientation. In addition, Shuram Formation shales are rich in organic matter (Figure 2F,H), and some
veins in the carbonate rocks are filled with remaining bitumens and hydrothermal coarse calcites
(Figure 2I).

The Shuram Formation developed in a shallow-deepwater environment, and the facies deepened
from the Huqf area to the Jabal Akhdar area [18]. In the rocks sampled from Jabal Akhdar, there is
abundant sedimentary pyrite (mostly 5 to 35 µm). The precipitation of pyrite is linked to sulfate,
methane, microorganisms and hydrogen sulfide [45–47], and was most likely developed by activity
of microorganisms.

Quartz, calcite, pyrite and white mica show preferred orientation, revealing fluid flow in the
deepwater. Based on the abundant hyalophane-quartz and white mica, which indicates volcanic
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activity, the development of the Shuram Formation is probably influenced by submarine volcanism.
The volcaniclastics were introduced in the formation by hydrothermal fluid flow [48].
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Figure 2. Photomicrograph of the Nafun Group. (A) Sparry limestone, medium-coarsely
crystalline, sutured contact, Khufai Formation, orthogonal polarization; (B) Dolomitic limestone,
medium crystalline mosaic calcite and finely crystalline dolomite, concave-convex contact,
Khufai Formation, polarization; (C) Sparry limestone, medium-coarsely crystalline, abundant veins,
residual organic matter, Khufai Formation, polarization; (D) Sparry limestone, wavy organic matter,
maroon pyrite, Khufai Formation, polarization; (E) Siltstone, interbedded with same orientation
minerals, narrow tabular muscovite, calcareous cementation, Shuram Formation, polarization;
(F) Shale overlying sandy limestone, abundant organic matter in the shale, abundant quartz
and narrow tabular muscovite crystals in the limestone, all minerals in the same orientation,
Shuram Formation, orthogonal polarization; (G) Sandy limestone, very finely crystalline calcite
matrix, interbedded with same orientation quartz crystals, Shuram Formation, orthogonal polarization;
(H) Limestone, very finely crystalline calcite matrix, laminated quartz and muscovite crystals, pyrites and
microorganisms, Shuram Formation, polarization; (I) Limestone, micrite calcite matrix, calcite veins,
laminated pyrites, Shuram Formation, polarization; (J) Limestone, micrite calcite overlies finely
crystalline calcite, laminated pyrites, Buah Formation, orthogonal polarization; (K) Limestone,
finely crystalline calcite matrix, calcite veins, remaining bitumens in the veins, Buah Formation,
polarization; (L) Limestone, finely crystalline calcite, laminated abundant quartz and muscovite
crystals; microorganisms, sizes range mostly from 10 to 50 µm, occasionally from 200 to 800 µm;
Buah Formation, polarization. Minera abbreviations: Cal: Calcite; Dol: Dolomite; Q: Quartz; M:
Muscovite; P: Pyrite; MO: Microorganism.
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4.1.3. Buah Formation

The Buah Formation is composed of limestones, dolostones, stromatolites and ooid carbonates,
mudstones and sandy carbonates (Figure 2J–L). In Jabal Akhdar, there are limestones in the lower part
of the formation and dolostones in the upper part (Figure 1C). There are abundant quartz grains at the
top of the Buah Formation, and the quartzes show preferred orientation (Figure 2J,L). The abundant
veins filled by calcite crystals usually cut the layers and some veins in the carbonate rocks are filled
with remaining bitumens (Figure 2K). There are more relicts of microorganisms in comparison with
the underlying formations, and they are distributed along the layers (Figure 2L).

The Buah Formation carbonates are interpreted to have been deposited in a carbonate ramp,
and record a sedimentary facies transformation from deep to shallow water [34,49]. The abundant
veins are interpreted to have resulted from the post-depositional fluids. Furthermore, the largest
δ13C negative values (Shuram Excursion) change gradually back to the positive values in the Buah
Formation [1].

4.2. Major and Trace Elements

The composition of terrigenous sedimentary rocks provides a powerful tool to identify the
tectonic setting [50,51]. For effective geochemical analysis, we plotted the Shuram Formation
siliciclastic rocks into the Herron diagram (Figure 3A) [52], and subsequently, selected suitable
samples (30 shales and 2 calcareous siltstones samples in Supplementary Materials) for the tectonic
setting discrimination diagrams.
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Figure 3. (A) Geochemical classification of the sedimentary samples based on the Herron diagram [52];
(B,C) Tectonic setting discrimination diagrams for Shuram Formation shales: major elements [51,53]
and trace elements [50]. P1 (mafic): first-cycle basaltic and lesser andesitic detritus; P2 (intermediate):
dominantly andesitic detritus; P3 (felsic): acid plutonic and volcanic detritus; P4 (recycled):
mature polycyclic quartzose detritus. A1: arc setting, basaltic and andesitic detritus; A2: evolved arc
setting, felsitic-plutonic detritus.
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For distinguishing the provenance of sediments, a discriminant function diagram was
proposed [53]. In Figure 3B, most shales plot along the boundary between the P1 and P2 fields
and indicate a provenance from primary mafic and intermediate igneous rock sources. Roser and
Korsch [51] have demonstrated that SiO2/Al2O3 and K2O/Na2O ratios are good indicators for tectonic
setting discrimination, also providing a specific diagram for discriminating between four main
depositional environments. The samples from our study plot along the boundary between the active
continental margin and the evolved arc setting fields. Although authors usually discriminate tectonic
backgrounds by analyzing the major elements, there is risk and uncertainty in the discriminant
diagrams for tectonic settings [54].

In contrast to major elements, a comparison of trace element concentrations could be more
effective for inferring the tectonic settings, because they have a larger range of elements [55]. Bhatia and
Crook [50] created a tectonic discrimination diagram using Th-Co-Zr/10 to set an additional basis
for distinguishing between sediments deposited in a passive margin (PM), active continental margin
(ACM), continental island arc (CIA) and ocean island arc (OIA). Most of the samples plot close
to the OIA, CIA and ACM fields (Figure 3C). Basing their study on late Proterozoic clastic rocks,
Winchester and Max [55] considered positive Rb, Th, Nb, Sr and Y anomalies as common features for
ACM or CIA. In Table 1, these elements have obviously anomalous values. Furthermore, the large ion
lithophile elements (LILE) concentration of the Shuram shales is higher than in Proterozoic shales [56],
which suggests that the Shuram Formation developed in an ACM or CIA environment [55]. In addition,
a comparison between three different elemental profiles [57] and those of our samples suggests
that the Shuram Formation is in closest similarity to rocks deposited within an active continental
margin environment.

Table 1. Average trace element concentration of the Shuram Formation shales associated with different
tectonic settings.

Shuram Shales OIA ACM PM Proterozoic Shales PAAS NASC

Rb 178 30 62 50 165 160 125
Sr 144 362 274 72 108 200 142
Ba 1155 370 481 255 642 650 636
U 4 0.8 2.0 3.2 3.4 3.1 2.7
Cu 39 29 22 8
Pb 12 15 15 11 27 20 20
Y 32 15 17 24 35 27 35
Nb 14 5 9 7 16.8 18 13
Zn 102 88 73 49
Zr 188 99 146 302 196 210 200
Th 14 1.9 8.5 8.1 14.3 14.6 12.3
U 4 0.8 2.0 3.2 3.4 3.1 2.7
V 113 188 106 44 100 140 130
Cr 91 49 55 29 115 100 127
Ti 4852 6000 4200
Ni 70 22 31 15 52 60 58

The average element concentrations of different settings are from [57]; Proterozoic shales, post-Archean Australian
shale (PAAS) and north American average shale (NASC) are from [56,58]. Trace elements in ppm.

Major and trace elements also respond to paleoenvironmental evolving conditions. Several types
of discriminant diagrams have been proposed to reveal the hydrothermal origin of the sediments, e.g.,
(Co + Ni + Cu) × 10 − Fe −Mn [59–61], Zn-Ni-Co [62] and Al/(Al + Fe + Mn) [63]. These ratios can be
regarded as a sensitive indicator for hydrothermal authigenic origin and their use has been effectively
demonstrated in several studies [64,65]. In Figure 4, the samples of the Khufai, Shuram and Buah
Formation are located in the area indicative of hydrothermal deposits.
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4.3. Carbon and Oxygen Isotopes

The δ13C values in the Khufai Formation are positive, +4.4%� to +7.8%� (Table 2). Because of the
lack of much carbonate in the Shuram Formation, only three samples were obtained, and they are all
strongly negative, reaching a minimum of −10.4%� at the top of the Shuram Formation. The δ13C values
start to increase and return to positive towards the top dolostone of the Buah Formation. The δ18O
values in the Khufai, Shuram and bottom of the Buah Formation are negative, reaching a minimum of
−14.7%� in the bottom of the Shuram Formation. The δ18O increases to positive values towards the top
of the Buah Formation, co-varying with δ13C (Table 2).

The Mn/Sr ratio of carbonate rocks is widely used as a proxy for diagenetic alteration. It is proposed
that carbonate rocks with low Mn/Sr ratio (<2) can be regarded as unaltered [66], whereas some
consider that the ratio should be <2 in conjunction with δ18O > −10%� [67,68]. In Table 1, except for
the top three samples from the Buah Formation, which may indicate possible diagenetic alteration,
the other samples would be interpreted to have preserved their original isotopic compositions. Th Sr
concentrations in the Shuram Formation are high [11], in two cases >1400 ppm and one case >850 ppm.
Another important observation is that Sr concentrations in the Khufai and Buah Formations are
>2000 ppm and such high Sr could preclude the interpretation of C isotope values [11].
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Table 2. Reference composite δ13C isotope, δ18O isotope, Mn and Sr data of the Huqf Group in
Jabal Akhdar.

Formation Code Lithology Depth
(m)

Isotope Mn
(ppm)

Sr
(ppm) Mn/Sr

δ13C δ18O

Buah BAJ1 Dolostone 1330 1.23 0.09 251 84 2.99
Buah BAJ2 Dolostone 1314 1.12 0.00 292 91 3.21
Buah BAJ3 Dolostone 1240 −0.88 −1.43 228 89 2.56
Buah BAJ4 Limestone 1175 −6.11 −8.20 322 1761 0.18
Buah BAJ4B Limestone 1165 −6.86 −8.69 466 4957 0.09
Buah BAJ5 Limestone 1152 −6.83 −8.58 340 2972 0.11
Buah BAJ6 Limestone 1127 −6.87 −10.54 460 1142 0.40

Shuram BAJ7 Limestone 1124 −8.46 −10.16 916 1436 0.64
Shuram BAJ8 Limestone 1088 −10.38 −10.96 1631 1448 1.13
Shuram BAJ9 Limestone 1001 −9.54 −14.66 1676 851 1.97
Khufai BAJ10 Limestone 105 5.45 −10.52 158 1071 0.15
Khufai BAJ11 Limestone 79 7.52 −10.35 183 2571 0.07
Khufai BAJ12 Limestone 53 7.46 −9.70 197 2712 0.07
Khufai BAJ13 Limestone 27 7.81 −9.94 232 2019 0.11
Khufai BAJ14 Limestone 5 4.44 −10.26 319 2219 0.14

5. Discussion

5.1. Tectonic Setting

In the late Neoproterozoic-Cambrian transition, the Arabia plate, as part of East Gondwana,
was involved in the collision of East and West Gondwana [19,69]. The geological history of Oman,
which belonged to the Arabia plate, is expected to reveal the final amalgamation of greater Gondwana.
However, different tectonic interpretations have been proposed to explain the evolutionary history of
the Nafun and Ara Groups in Oman. With the restricted accumulation of the Abu Mahara and average
deposit accumulation rate of the Nafun Group, the sedimentary setting of northern Oman is interpreted
as late-stage rifts or passive margin [17–19,21]. However, for the regional subsidence in the Ediacaran
period, Grotzinger et al. [20] and Hisham and John [70] considered that an Andean margin developed
in eastern Oman and that the Nafun Group was related to subsidence of the lithosphere caused by the
subduction of oceanic lithosphere beneath the Arabian plate. A similar view is that the subsidence was
caused by the tectonic loading and development of a foreland basin [21]. Alessio et al. [71] studied the
igneous samples from Jebel Ja’alan (North eastern Oman) and concluded that they were formed in an
arc environment during the Tonian.

The Arabian plate was one of the terranes of the eastern Arabian-Nubian Shield, and southern
Oman was under its influence [19]. The study of the U-Pb geochronology of the Shuram Formation
shows that a large number of detrital zircons have ages between 600 and 900 Ma [18,19,21]. To explain
the sources of 600–640 Ma zircons in the Nanfun Group, Allen [19] considered a provenance from
the Arabian-Nubian Shield. Based on the tectonic setting discrimination diagrams (Figure 3B,C) and
Table 1, the sedimentary rocks from the Shuram Formation were primarily sourced from mafic igneous
and intermediate igneous rocks, and their geochemical composition indicates that the tectonic setting of
northern and eastern Oman during the Neoproterozoic was an active continental margin or continental
island arc. Additionally, Bowring et al. [21] suggested that the increase in volcanic and volcaniclastic
rocks in the Ara Group is unlikely due to simple passive margin subsidence. Hence, the evidence above
indicates that the tectonic setting was an unsteady continental margin, as opposed to not previous
models that proposed a passive margin setting.

From Neoproterozoic to Cambrian times, the basins of Oman show a clear N-S trend, including the
sedimentary basins of the Abu Mahara Group [72], the development of the Fiq Formation rift basins [33],
and the continuous salt basin of the Ara Group [19]. Such a geometry is compatible with major tectonic
structures (e.g., plate boundaries) trending similarly. Based on our geochemical analysis, we propose
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that eastern Oman was located in the upper plate to a subduction zone, towards the mainland flank of
a marginal, arc-related sedimentary basin (Figure 5). This basin would be affected by a Neoproterozoic
volcanic belt [72], as well as multiple phases of volcanic activity in Mirbat [73] and basaltic to rhyolitic
dykes in Al Hallaniyah Islands [74]. However, there is still uncertainty about the full geodynamic
setting and interrelationship between eastern Oman and the rest of adjacent tectonic plates, such as the
Iran plate [75] or India plate [71,76,77].
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5.2. Hydrothermal Activity

Based on the petrographical characteristics and geological background of the active continental
margin, we applied additional geochemical methods to reveal more earthbound environmental factors.
The hydrothermal deposits have Al/(Al + Fe + Mn) < 3.5 and Fe/Ti > 20, and these ratios are an
indicator of hydrothermal supply [64,78]. High Zr/Al2O3 or TiO2/Al2O3 ratios of black shales are signs
of active continental volcanism, reflecting active tectonics [79–81]. A Zr/Al2O3 ratio ≥0.001 indicates a
higher contribution from volcaniclastics [78,82].

It is well known that the typical SE occurred in Unit 1 of the Shuram Formation [6,7,18,83,84].
In our study, the isotopic anomaly occurs in unit 3, at the top of the Shuram Formation. In Figure 6,
the Al/(Al + Fe + Mn), Fe/Ti and Zr/Al2O3 profiles of unit 1 and 3 of the Shuram Formation show a
significant change in the supply and input. It seems clear that there are links between the isotopic
anomaly, the hydrothermal supply and the volcaniclastic input. Although unit 2 of the Shuram
Formation does not present much evidence of volcaniclastic input, the Zr/Al2O3 ratio is close to
the boundary line of the volcanic signals in Figure 6, so there could be a potential contribution of
volcaniclastic input and related hydrothermal fluids.

Just like the unsteady continental margin environment, the volcaniclastic layer overlying the Nafun
Group reflects active volcanism [21,33,84], which could have caused the abundant hydrothermal fluid
activity. This process affected the primary depositional features in the Mid-Late Neoproterozoic-Early
Cambrian period. Although the orientation of abundant quartz and white mica (Figure 2C,D,F) might
be explained by tractive current deposits, the phenomenon could indicate deep water fluid flow.

The high Sr content of carbonates of the Nafun Group (Table 2) is affected not only by its original
mineralogy, diagenetic process and seawater Sr concentration, but also by the terrigenous clastic flux
and submarine hydrothermal flux. There is large evidence on major hydrothermal events during parts
of the Neoproterozoic period [66], and the hydrothermal event could result in the flux of Sr to seawater,
to be incorporated into later carbonate formations. Furthermore, the ocean geochemical system
significantly changed from the Proterozoic to the Paleozoic. The late Neoproterozoic period must have
been an important transition period, and the Nafun Group is still an ideal target for further study.
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5.3. Shuram Excursion

Chemical proxies like redox-sensitive trace element compositions (Cu, Cr, V, Cd, Mo, U, Y, Zn
and REEs) in shales are effective methods to deduce the redox conditions of paleo-seawater [85].
The V/Cr and U/Th ratios are accepted as evidence of a certain redox regime, where 0 < V/Cr < 2
or 0 < U/Th < 0.75, 2 < V/Cr < 5 or 0.75 < U/Th < 1.25, and V/Cr > 5 or U/Th > 1.25 represent oxic,
dysoxic and anoxic conditions, respectively [86–88].

The Neoproterozoic ocean oxidation event was proposed by the indirect proxy of the SE [6] and was
driven by the strong tectonic movements during the amalgamation of Gondwana supercontinent [25,69].
One proposed mechanism for the SE is the oxidation of the deep-ocean pool of the dissolved organic
carbon (DOC) [5,6,89]. However, the extent and interval of widespread ocean oxygenation are poorly
constrained [23,25,90]. Based on the V/Cr and U/Th data, we propose that the Khufai, Shuram and
Buah formations recorded the redox transitions from anoxic to oxic to anoxic conditions. It is noted that
the data from unit 2 of the Shuram Formation suggest oxic or dysoxic ocean environment, which would
reveal that the onset of the Neoproterozoic deepwater oxidation event is at the bottom of the Shuram
Formation, and that the decline of that is at the top of the Shuram Formation. Similar to our results,
Zhang et al. [23] examined U isotope variations in the sections from South China, Siberia and USA,
and concluded that the ocean evolved from an anoxic state to a near-modern oxygen level during
SE. Tahata et al. [24] considered that the O2 content in the atmosphere increased after the Marinoan
glaciation (635 Ma) and peaked in the SE to then decreased to its lowest point in the Buah period.

The C isotopes of the samples from unit 3 of the Shuram Formation show strongly negative
excursion (Figures 6 and 7). For the SE, the typical negative values occur at the bottom (unit 1 in
our study) of the Shuram Formation [6,7,18,83,84] (Figure 7). With the Shuram isotope anomaly in
both units 1 and 3, the hydrothermal supply and volcanic input show strong relationship with the
C isotope transformation (Figure 6). Coinciding with the C isotope excursion, also sulfur isotopes
show an anomaly [8,14,26,91], with 34S-depletion of sulfate interpreted to be caused by the weathering
debris and oxidant event or massive volcanic/hydrothermal input [92].
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The negative carbon isotope excursion has been interpreted as a primary signal by some
researchers, linking it to oxidation of dissolved organic carbon (DOC), water column stratification [9,10],
and terrestrial organic carbon through weathering [15,16]. In contrast to the interpretation
of preservation of the primary signal, another hypothesis interprets the signature as being
caused by diagenetic alteration [11] or incorporation of methane-derived 13C-depleted authigenic
carbonate [4,5,12–14]. Disregarding whether the SE reflects a primary or diagenetic signature,
the hydrothermal supply and volcaniclastic input, which is clear from our study of the geological
setting, seem to have been overlooked so far. The volcaniclastic or hydrothermal components could
have influenced the ocean water chemistry, the composition of sediments, oxidation of organic matter,
and recrystallization of carbonate rocks. Furthermore, the hydrothermal and redox conditions are also
responsible for the enrichment of organic matter (Figure 2) [93].

The Shuram negative C isotope excursion in the Ediacaran period occurred in at least another four
parts of the globe (the Wonoka Formation in Australia, Johnnie Formation in the USA, Doushantuo
Formation in China and Bol’shoy Patom section in Siberia). The study of the Shuram excursion was
strengthened in recent decades [2], and we aimed to provide a consideration factor (hydrothermal
activity) for modelling the SE or carbon cycle.

6. Conclusions

Based on the petrography and geochemical record of the Nafun Group in Jabal Akhdar (northern
Oman), we propose that northern Oman was an active continental margin or continental island arc
environment during the late Neoproterozoic, and the provenance for the sediments that were deposited
in that region was primarily mafic and intermediate igneous rocks. Within the unsteady tectonic
setting, the Nafun Group shows a remarkable hydrothermal supply and volcaniclastic input, and the
sedimentary succession shows evidence of a change from anoxic to dysoxic-oxic to anoxic conditions
in ocean water.

Compared with the δ13C and δ18O profiles, the hydrothermal flux and ocean redox conditions
are strongly related to the Shuram carbon isotope transformation. Disregarding whether the largest
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isotope anomalies in Neoproterozoic strata resulted from a primary or diagenetic process, the regional
(active) tectonic setting and ocean geochemical system probably played important roles.
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