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Abstract: A less harmful approach for the environment regarding chalcopyrite concentrate leaching,
using seawater/brine and caliche’s salts as a source of chloride and nitrate ions, was investigated.
Different variables were evaluated: sulfuric acid concentration, sodium nitrate concentration, chloride
concentration, source of water (distilled water, seawater, and brine), temperature, concentrate sample
type, nitrate source (analytical grade and industrial salt), and pre-treatment methods in order to
obtain maximum copper extraction. All tests were performed at moderate temperatures (≤45 ◦C)
and atmospheric pressure. The leaching system using distilled water, seawater, and brine base
media resulted in copper extraction of 70.9%, 90.6%, and 86.6% respectively. The leaching media,
with a concentration of 20 g/L Cl−, obtained a maximum Cu extraction of 93.5%. An increase in the
concentration of H2SO4 and NaNO3 from 0.5 to 0.7 M, led to an increase in the copper extraction.
The use of an industrial salt compared to the analytical salt did not show great variations in the
percentage of extraction achieved, which would be a good and cost effective alternative. The increase
in temperature from 25 to 45 ◦C showed a great effect on the copper leaching (of 60% until 90.6%,
respectively). The pre-treatment is suggested to increase copper extraction from 60.0% to 71.4%.

Keywords: chalcopyrite leaching; seawater; industrial brine; caliche’s salts; chloride; nitrate

1. Introduction

The grades of copper minerals in mining deposits in Chile are decreasing [1] due to the exploitation
of them over time. Moreover, currently in Chile, copper oxide mineral deposits are being depleted due
to excessive mining. In the near future, solvent extraction (SX) and electrowinning (EW) plants will
become obsolete. In this context, there is a great opportunity to continue investigating new processes
in order to continue the operation of SX and EW plants. Furthermore, due to the depth of the deposits,
copper sulfides species, especially chalcopyrite, is abundant in almost all copper mining deposits in
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Chile. This mineral is processed by the concentration path by flotation and subsequent pyrometallurgy.
Flotation consumes a large amount of water (8.15 m3/s, equivalent to 61% of the total consumption of
the copper process) and today, the use of seawater is increasing in copper mining companies (23%
of water consumption in the copper mining process, corresponds to seawater) [1,2]. Pyrometallurgy
must meet increasingly demanding environmental requirements due to the generation of SO2 and
arsenic; therefore, the development of sustainable foundry technologies is an issue that involves new
innovations and high implementation costs [3].

On the other hand, chalcopyrite leaching presents challenges because this mineralogical species is
refractory in sulfate medium, producing a passivation layer around the particle that causes the slow
dissolution rate and low copper extraction, especially at room temperature. It needs high process
temperatures and oxidizing media such as the use of oxygen, ferric ion, chlorine gas, and nitrate ion,
among others [4,5]. Many researchers have shown that a chloride medium favors the dissolution of
chalcopyrite in an acidic medium [6–9]. The use of chloride ions helps the formation of the chloro
complex of copper (I) and (II) [10,11]. These chloro complexes have the ability to stabilize cuprous
ions and in turn, increase the solubility of copper sulfide [9,12]. Comparing a sulfate system with a
chloride system, the copper dissolution kinetics are much faster in the chlorinated medium. Increasing
the chloride concentration has also been shown to increase copper extraction [6,13–15]. Carneiro
and Leão [16] demonstrated that due to the presence of NaCl in the chalcopyrite leaching system,
the morphology of the product layer formed around the leached particle was altered, increasing the
porosity of the mineral and maximizing the copper dissolution. A chloride media can be provided by
the seawater or discard brine from reverse osmosis plants [13–15,17]. Due to the lower availability
of water in the country, what is exacerbated in the north of Chile, which concerns the majority of
the copper mining company, is that the use of seawater is an alternative to the availability of water
resources. In addition, in recent years, several desalination plants have been installed in the north,
providing an alternative to use the waste brine from this process [2].

Moreover, oxidant ions are necessary to extract the copper from the chalcopyrite. The use of
NaNO3 is an efficient alternative, as exposed by various researchers, by providing the ion (NO3

−)
for leaching chalcopyrite due to its high oxidation potential. This salt is very abundant in northern
Chile, produced by the caliche industry [18,19], where the exploitation of copper minerals occurs
mostly in this area. Sodium nitrate in an acidic medium provides the opportunity for a possible
leaching application of many sulfide minerals, including chalcopyrite [20–22]. Caliche contains nitrate,
and chloride ions [19,23] which can help chalcopyrite leaching. Several researchers have investigated
the positive effect of using nitrate ions on chalcopyrite leaching [24–27]. Habashi [28] determined that
in a nitrate medium, the oxidation of metal sulfide with HNO3 can be carried out in two ways. In the
first, NO3

− is the oxidizing agent and during the reaction, it is reduced to NO2 or NO, and in the second
case, the oxidant is oxygen, which results from the decomposition of HNO3. Sokić et al. [25] studied
the leaching behavior of chalcopyrite concentrate using sodium nitrate and sulfuric acid media. They
determined that the copper extraction increased with increasing nitrate and sulfuric acid concentration.
Shiers et al. [27] evaluated three types of oxidants for leaching of chalcopyrite: hypochlorous acid,
chlorate and nitrate. The results regarding the three systems tested determined that the use of nitrate
is the most cost-effective option. Narangarav et al. [26] obtained over 85% of copper extraction from
chalcopyrite leaching in an acid-nitrate media at 90 ◦C. They determined an activation energy of
15.96 kJ/mol, indicating that the kinetics are chemically controlled. Hernandez et al. [20] studied the
chalcopyrite leaching from a low-grade copper sulfide ore in a chloride-nitrate-acid media at 45 ◦C.
Copper extraction of 80% was obtained at 45 ◦C, in stirred leaching after seven days. The chloride ions
were beneficial to improve the copper dissolution in the media. Moreover, Hernandez et al. [29] studied
the effect of the pre-treatment stage in chalcopyrite leaching in an acid-nitrate-chloride media. Copper
extraction of 58.6 % was obtained after 30 days of pre-treatment at 45 ◦C. Only 22.8% of Cu was obtained
at 25 ◦C using the same experimental conditions of pre-treatment. Castellón et al. [21] proposed an
alternative process to chalcopyrite leaching in a nitrate-chloride-acid media and subsequent recovery
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of nitrate ions. A maximum of 90.8% Cu was obtained when 0.5 M of NaNO3 and 0.5 M H2SO4 at
45 ◦C and P80 of 60.7 µm were evaluated in the leaching system.

This study is part of a project aiming to introduce a greener and environmentally friendlier
approach for chalcopyrite concentrate leaching using seawater/brine (as a source of chloride) and
caliche’s salts (as a source of nitrate ions) in an acid media at moderate temperatures (≤45 ◦C) [20,29,30].
The overall aim was to provide an alternative method to tackle the problems that affects the Chilean
copper mining such as the exhaustion of oxidized copper minerals and the scarcity of water. In the spirit
of the circular economy and industrial waste valorization, the approach utilizes effective ions to form
waste from two other industrial processes, namely seawater desalination (brine) and caliche mineral
heap leaching. The behavior of chalcopyrite concentrate leaching was studied in a nitrate-chloride-acid
media in order to determine the effect of several variables: sulfuric acid concentration (0.5 and 0.7 M),
sodium nitrate concentration (0.5 and 0.7 M), chloride concentration (0 to 80 g/L), source of water
(distilled water, seawater and brine), temperature (25 and 45 ◦C), the sample of concentrate (A and B),
nitrate source (analytical grade and industrial salt) and pre-treatments (two different methods).

2. Materials and Methods

2.1. Concentrate Samples

Two chalcopyrite concentrate samples (namely samples A and B in this study) were obtained
from copper mines of the Antofagasta region, Chile. The P80 of samples A and B were 105 and 100 µm
respectively. The particle size distributions were determined using a Particle Size Analyzer (PSA,
Microtrac model S3500 laser diffraction, Verder Scientific, Newtown, PA, USA). The samples were
analyzed for chemical composition using atomic absorption spectrometry (AAS, Perkin-Elmer 2380,
Perkin Elmer, Wellesley, MA, USA). Copper and iron percentage of the selected samples were 23.8%
Cu and 27.5% Fe for sample A, and 25.8% Cu and 23.5% Fe for sample B. As presented in Table 1,
the mineralogical composition of the samples was determined using quantitative X-ray diffraction
(Siemens/Bruker, Semi-QXRD, model D8 Advance, Germany). Semi-quantitative results were provided
by TOPAS (total pattern analysis software) to quantify the sample.

Table 1. Mineralogical composition of concentrate samples.

Chemical Formula Mineral
Amount (%)

Sample A Sample B

CuFeS2 Chalcopyrite 37.2 74.0
CuS Covellite 12.5 -

Cu9S5 Digenite 2.9 -
CuFeO2 Delafossite 0.8 -

FeS2 Pyrite 34.0 2.0
SiO2 Quartz 12.6 2.5

Gangue - 21.5

Total 100.0 100.0

-: this mineral was not found in the sample.

2.2. Leaching Solutions

Sulfuric acid (H2SO4, 95% to 97%, analytical grade), sodium chloride (NaCl, 99.5%, analytical
grade), sodium nitrate (NaNO3, 99.5%, analytical grade) and salt of caliche industry, named industrial
salt (NO3

− = 65.7%, Cl− = 0.5%) were used to prepare leaching solutions. A distilled water, seawater
and discard brine (from reverse osmosis) were used as dissolvent. Seawater, from San Jorge Bay,
Antofagasta Chile, was pumped and filtered until 1 µm using a polyethylene membrane. Discarded
brine was obtained from Coloso’s desalination plant, Antofagasta, Chile. The composition of seawater
and brine is shown in Table 2.
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Table 2. Chemical composition of seawater and brine (mg/L).

Chemical
Method Atomic Absorption Spectrometry Volumetric

Analysis
Gravimetric

Analysis

Ionic Species Na+ K+ Mg2+ Ca2+ Cu2+ NO3
− Cl− HCO3

− SO4
2−

Seawater 11,250 401 1256 427 0.07 2.40 20.289 149 2758
Brine 19,768 746 2297 355 0.14 6.40 36,074 236 5063

2.3. Experimental Procedure

2.3.1. Leaching Tests

Jacketed glass reactors of 1 L were used to carry out the stirring leaching tests. Water at desired
temperature was circulated by the jacket of the reactor using a thermostatic bath (Julabo bath F25-ME
Refrigerated/Heating Circulator). A simplified schematic of the agitated leaching reactor is shown in
Figure 1. Mechanical stirring with a Teflon bar was provided to maintain the agitation of the pulp
(460 rpm). The solid/liquid ratio used was 50 g of concentrate in 500 mL of solution. The leaching
solution was introduced into the reactor. When the desired temperature was achieved, the concentrate
sample was put in the reactor and the agitation started. At different time intervals, solution samples
(10 mL) were removed from the system for copper analysis using AAS. Redox potential (ORP) and
pH values were measured during the test (Hanna portable pH/ORP meter, model HI991003, accuracy
± 0.02 pH y ± 2 mV, Ag/AgCl reference electrode). When the leaching time was achieved (15 days),
the agitation stopped, and the pulp was filtered. The solid residue was washed with distilled water
and dried at 60 ◦C until constant weight. Then, the residue was analyzed by AAS for Cu content.
The copper extraction rate was calculated using the grades of the head and residual ore, which was
corroborated with the results obtained by leaching solutions. A standard deviation of ± 2% was
obtained by calculating the copper extraction rates from solid residue and leaching solution for all the
tests performed.
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Figure 1. Schematic picture of experimental tests.

As shown in the Table 3, different variables were studied: sulfuric acid concentration (0.5 and
0.7 M), sodium nitrate concentration (0.5 and 0.7 M), chloride concentration (0, 20, 36, 40, 60 and 80 g/L),
source of water (distilled water, seawater, and brine), temperature (45 and 25 ◦C), concentrate sample
(A and B), nitrate source (analytical grade and industrial salt) and pre-treatment (in two different
methods, see Section 2.3.2).
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2.3.2. Pre-Treatment Tests

Two different pre-treatment methods were carried out in order to improve the kinetic of copper
extraction. In the first method of pre-treatment, a solid sample (50 g) was put on the Petri dish. Solid
NaNO3 (23 kg/ton of concentrate) and NaCl (12 kg/ton of concentrate) were added and mixed with
a spatula. Then, H2SO4 (17 kg/ton of concentrate) was added to the mix and seawater was sprayed
using a sprinkler for even distribution up to a moisture percentage of 15.36%. Petri dish was sealed
using a parafilm, and it was left in repose at 25 ◦C for 20 days. Then, the pretreated solid was leached
(test 17, see Table 3). In the second method of pre-treatment, a solution with 0.7 M NaNO3, 0.7 M
H2SO4, and seawater was prepared. A sample of 50 g of concentrate was added into the solution.
This pulp was maintained in repose for 20 days without stirring at 25 ◦C. Then, agitation began for
20 additional days at 25 ◦C (test 18, see Table 3).

3. Results and Discussion

Table 3 shows all leaching tests performed in the different experimental conditions. Maximum
copper extraction achieved are presented.

Table 3. Leaching tests carried out with concentrate samples.

N◦ H2SO4
(M)

NaNO3
(M)

T
(◦C) Disolvente Sample Special Characteristic Cu

(%)

1 0.7 0.7 45 Water A - 70.9
2 0.7 0.7 45 Seawater A - 90.6
3 0.7 0.7 45 Brine A - 86.6
4 0.7 0.7 45 Water A [Cl−] = 20 (g/L) 93.5
5 0.7 0.7 45 Water A [Cl−] = 40 (g/L) 76.1
6 0.7 0.7 45 Water A [Cl−] = 60 (g/L) 80.4
7 0.7 0.7 45 Water A [Cl−] = 80 (g/L) 88.2
8 0.7 0.7 45 Water A Industrial salt 67.2
9 0.7 0.7 45 Seawater A Industrial salt 83.5

10 0.7 0.7 45 Brine A Industrial salt 77.0
11 0.7 0 45 Seawater A - 79.2
12 0.7 0.7 25 Seawater A - 60.0
13 0.5 0.7 45 Seawater A - 81.9
14 0.7 0.5 45 Seawater A - 88.0
15 0.5 0.5 45 Seawater A - 76.1
16 0.7 0.7 45 Seawater B - 80.8

17 0.7 0.7 25 Seawater A Pre-treatment
(Method 1) 63.8

18 0.7 0.7 25 Seawater A Pre-treatment
(Method 2) 71.4

-: this means that no special characteristic present this test.

3.1. Effect of Nitrate Concentration

Figure 2a shows that the increase of nitrate concentrations from 0, 0.5, and 0.7 M increases
the copper extraction from 79.2%, 88.0%, and 90.6%, respectively, after 15 days. Increasing nitrate
concentration in the leaching medium improves copper extraction. This has been demonstrated by previous
studies [20,25,26]. Nitrate can be provided by caliche’s industry as discard salts or discard/intermediate
solutions. The nitrate-acid medium help the dissolution of copper from sulfides [20,29]. This system can
form elemental sulfur or natrojarosite as solid residue [31,32], high temperatures or pressures would not
be necessary, and the oxidation-reduction potential of the reaction is high. The pH values were maintained
at ≤1.21 for all tests performed. Figure 2b shows the redox potential values of the leaching tests. ORP
were in ranges between 890.8 to 920.8, 933.8 to 965.8, and 942.3 to 983.3 mV vs. SHE for 0, 0.5, and 0.7 M
NaNO3, respectively. These high potentials demonstrate that the system is highly oxidizing.
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Figure 2. (a) Copper extraction (%) vs. time (h) at different sodium nitrate concentration: 0, 0.5 and
0.7 M. (b) Redox potential (mV) vs. time (h) at different sodium nitrate concentration: 0, 0.5 and 0.7 M.
Experimental conditions: [H2SO4] = 0.7 M, seawater as a dissolvent, 45 ◦C and sample A.

3.2. Effect of Sulfuric Acid Concentration

Figure 3a shows that the increase of sulfuric acid concentrations from 0.5 to 0.7 M increases the
copper extraction from 81.9% to 90.6%, after 15 days. The effect of increasing sulfuric acid concentration
showed better copper extraction in comparison with the increase of sodium nitrate concentration
(Figure 2a), where copper extraction slightly improved. Castellón et al. [21] showed that the variable
sulfuric acid concentration is more preponderant in the system than the nitrate concentration using
the analysis of variance (ANOVA). The pH values were maintained at ≤1.46 for all tests conducted.
Figure 3b shows the redox potential values for the tests performed. ORP were in the ranges between
933.8 to 954.1 and 942.3 to 983.3 mV vs. SHE for 0.5 and 0.7 M H2SO4, respectively.
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Figure 3. (a) Copper extraction (%) vs. time (h) at different sulfuric acid concentration: 0.5 and
0.7 M. (b) Redox potential (mV) vs. time (h) at different sulfuric acid concentration: 0.5 and 0.7 M.
Experimental conditions: [NaNO3] = 0.7 M, seawater as dissolvent, 45 ◦C and sample A.

3.3. Different Equivalent Sodium Nitrate and Sulfuric Acid Concentration

Figure 4a shows that the increase of equivalent sodium nitrate and sulfuric acid concentration
from 0.5 to 0.7 M increases the copper extraction from 76.1% and 90.6 %, respectively, after 15 days.
The pH values were maintained at ≤1.58 for all tests performed. Figure 4b shows the redox potential
values of the leaching tests conducted. ORP were in the ranges between 907.8 to 940.8 and 942.8 to
983.3 mV vs. SHE for 0.5 and 0.7 M of both reagents, respectively. Castellón et al. [21] studied the
concentrate leaching in the nitrate-chloride-acid media. The test at 0.5 M NaNO3 + 0.5 M H2SO4 in
seawater was carried out where the maximum of 90.8% copper extraction was achieved after 94 h
using a concentrate with P80 of 60.7 µm. The differences could be attributed to the particle size of the
samples and the mineralogy of the concentrate. In the study of Castellón et al. [21], the concentrate
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sample had a higher chalcopyrite presence (61.5%), covellite (1.5%) and chalcanthite (1.2%) compared
to the current work (see Table 1).
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Figure 4. (a) Copper extraction (%) vs. time (h) at different equivalent sodium nitrate and sulfuric acid
concentration: [NaNO3] = [H2SO4] = 0.5 and 0.7 M. (b) Redox potential (mV) vs. time (h) at different
sulfuric acid concentration: 0.5 and 0.7 M. Experimental conditions: seawater as dissolvent, 45 ◦C and
sample A.

3.4. Effect of Dissolvent

Figure 5a shows that the seawater system obtained better copper extraction (90.6%) than brine
(86.6%) or distilled water (70.9%) based leaching media after 15 days. Clearly, when chloride ions are
present in the media, provided by seawater or brine; the copper extraction increase in comparison
when these ions are not present in the distilled water system. The pH values were maintained at ≤1.66
for all tests conducted. Figure 5b shows the redox potential values for the leaching tests performed.
ORP were in the ranges between 885.8 to 915.8, 942.3 to 983.3, and 945.8 to 967.8 mV vs. SHE for
distilled water, seawater, and brine systems, respectively. In a chloride media, the redox potential is
higher than when distilled water is used. As reported in the literature, the use of sodium chloride
forms complexes with Cu ions, avoiding passivation of the mineral surface, stabilizing cuprous ions
and in turn increasing the solubility of the metal. It would be expected that the dissolvent from a
reverse osmosis process (brine) would obtain better recovery rates due to high chloride concentration,
but an excess of other ions in the solution could be affecting the copper dissolution. It should be
explained by the high ionic strength present in the leaching media due to the presence of ions from
brine, nitrate and the acid added to the system. This effect has been observed in other systems (Figure 2
of [33], Figure 8 of [32]).
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Figure 5. (a) Copper extraction (%) vs, time (h) at different water sources: water, seawater and
brine. (b) Redox potential (mV) vs. time (h) at different water sources: water, seawater and brine.
Experimental conditions: [NaNO3] = [H2SO4] = 0.7 M, 45 ◦C and sample A.
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3.5. Effect of Chloride Concentration

Figure 6a shows that for high chloride concentrations of 60 and 80 g/L, the copper leaching kinetics
are fast in the first 120 h, which is in agreement with the literature [34–36], but over time, the leaching
kinetics decrease. The 20 g/L Cl− system obtained the maximum extraction of 93.5% Cu, followed by
80 g/L Cl− with 88.2% Cu; 60 g/L Cl− with 80.4% Cu; 40 g/L Cl− with 76.1% Cu and 0 g/L Cl− with
70.9% Cu. An increase in chloride concentration is not necessary to increase the copper extraction in
the studied system. This was observed by other studies [32,33]. This agrees with the result shown
in Figure 5a, where the seawater system is much more efficient in copper extraction than the system
using brine. The pH values were maintained at ≤1.72 for all tests conducted. Figure 6b shows the
redox potential values of the tests. ORP were in the ranges between 885.8 to 915.8, 933.8 to 969.6, 949.8
to 969.3, 957.8 to 976.3, and 969.8 to 988.3 mV vs. SHE for 0, 20, 40, 60, and 80 g/L Cl−, respectively.
An increase in the redox potential was observed when increasing the chloride concentration. This
behavior was observed by Torres et al. [9].
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Figure 6. (a) Copper extraction (%) vs. time (h) at different chloride concentration: 0, 20, 40, 60 and
80 g/L. (b) Redox potential (mV) vs. time (h) at different chloride concentration: 0, 20, 40, 60 and 80 g/L.
Experimental conditions: [NaNO3] = [H2SO4] = 0.7 M, water as dissolvent, 45 ◦C and sample A.

Figure 7a shows the comparison between the system using seawater as dissolvent and the system
using distilled water and 20 g/L Cl−. According to the figure, both curves are similar. This confirms
that the chloride ion is the ion that would be influencing the leaching system with seawater and not
the other ions present. This agrees with what Hernandez et al. observed (Figure 8 in [20]). Figure 7b
shows a similar behavior of redox potential values in both systems.
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Figure 7. (a) Comparison of copper extraction (%) curve when seawater and water with 20 g/L Cl−

were used as a source of water in the leach solution. (b) Redox potential (mV) versus time (h) when
seawater and water with 20 g/L Cl− were used as a source of water in the leach solution. Experimental
conditions: [NaNO3] = [H2SO4] = 0.7 M, 45 ◦C and sample A.
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Figure 8 shows the comparison between the system using seawater and brine as dissolvent and
the systems using distilled water with 20 and 40 g/L Cl−. According to the figure, the system at 40 g/L
Cl− shows a lower copper extraction, increasing when brine was used, followed by seawater or water
with 20 g/L Cl−.
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3.6. Effect of Temperature

As observed in Figure 9a, the temperature has a strong influence on copper leaching kinetics,
as reported in the literature [25,26,37]. Copper extraction increases with increasing temperature.
At 25 ◦C, 42.4% Cu was extracted after 360 h of leaching. Compared to 45 ◦C, where 90.6% Cu was
extracted in the same leaching time. As shown in the plot, by increasing the leaching time from 360
to 960 h, at 25 ◦C, the copper extraction only increased from 42.4% until 60.0%. In both systems,
the kinetic curves tend to decrease. This decrease in slopes is due to the formation of a passivating
layer, which could be sulfur or natrojarosite, according to what is reported in the literature [4,16,26,31].
Figure 9b shows the redox potential values, which were in the ranges between 885.8 to 924.8, and 942.3
to 983.3 mV vs. SHE at 25 and 45 ◦C, respectively.
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Figure 9. (a) Copper extraction (%) vs. time (h) at different temperature: 25 and 45 ◦C. (b) Redox
potential (mV) vs. time (h) at different temperature: 25 and 45 ◦C. Experimental conditions: [NaNO3]
= [H2SO4] = 0.7 M, seawater as dissolvent and sample A.

3.7. Effect of Using Industrial Salt as a Source of Nitrate

Figure 10a shows the difference when having the same amount of 0.7 M nitrate concentration
using industrial and analytical salt, reaching a maximum of 90.6% for analytical grade and 67.2%
for industrial salt. This decrease in extraction could be mainly due to the impurities present in the
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industrial salt that would affect the extraction of copper. Likewise, it provides an alternative to be
used, where the caliche industry can supply raw materials to the copper industry. Figure 10b shows
the redox potential values which were in the ranges between 942.3 to 983.3 and 922.8 to 980.8 mV vs.
SHE when analytical and industrial salt were used.
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Figure 10. (a) Copper extraction (%) vs. time (h) when different nitrate sources were used: analytical
grade and industrial salt. (b) Redox potential (mV) vs. time (h) when different nitrate sources were
used: analytical grade and industrial salt. Experimental conditions: [NaNO3] = [H2SO4] = 0.7 M, 45 ◦C,
seawater as dissolvent and sample A.

Figure 11a shows the curves of copper extraction with increasing chloride concentration using
three types of dissolvent, distilled water, seawater and brine including the addition of industrial salt as
a source of nitrate ions. The copper extraction percentages obtained were 67.2%, 83.5%, and 77.0%,
respectively. It can be observed that the system with seawater and industrial salt shows better copper
extraction than the other two systems. This behavior is similar to the trend observed when the
dissolvent effect was analyzed (without the addition of industrial salt as a source of nitrate ions), where
the system with seawater showed better efficiencies in the copper solution than the system with brine.
Figure 11b shows the redox potential values, which were in the ranges between 922.8 to 980.8, 945.8 to
965.8 and 943.8 to 983.8 mV vs. SHE when water, seawater and brine were used with industrial salt.
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Figure 11. (a) Copper extraction (%) vs. time (h) when different sources of water were used with
industrial salt. (b) Redox potential (mV) vs. time (h) when different sources of water were used with
industrial salt. Experimental conditions: [NaNO3] = [H2SO4] = 0.7 M, 45 ◦C and sample A.

3.8. Effect of Concentrate Grade

As can be seen in Figure 12a, concentrate A obtained higher copper extraction values during
the test, reaching a maximum of 90.6% Cu, compared to concentrate B with a maximum of 80.8%
Cu. According to the mineralogy of both samples, it can be seen that concentrate B has a high
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percentage of chalcopyrite compared to concentrate A. Furthermore, concentrate A shows the presence
of other copper sulfides that could be leached faster than chalcopyrite, providing more copper ions
to the system. Concentrate A has a high percentage of pyrite that could be leached according to the
following reactions:

FeS2 + NO3
− + 4H+ = Fe3+ + NO + 2H2O + 2S ∆G45 ◦C = −31.8 kcal (1)

3FeS2 + 2NO3
− + 8H+ + 6Cl− = 3FeCl2 + 2NO + 4H2O + 6S ∆G45 ◦C = −24.1 kcal (2)

Reaction (1) generates the ferric ion that oxidizes the mineral, allowing for a greater dissolution
of copper and iron. Another relevant factor is the high presence of gangue in sample B (Table 2),
which hinders the extraction of copper and iron. Figure 12b shows the redox potential values, which
were in the ranges between 942.3 to 983.3, and 927.3 to 968.3 mV vs. SHE when A or B samples were
used, respectively.
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3.9. Effect of Pre-Treatment

The results show that pre-treatment has a positive effect on copper extraction after 40 days,
as shown in Figure 13a. The copper extraction percentages obtained are 63.8%, 71.4% and 60.0%
Cu in the systems with pre-treatment method 1, pre-treatment method 2 and without pre-treatment,
respectively. The pre-treatment, known as curing, accelerates the dissolution of concentrate due
to contact with solid particles and oxidant-acid solution (sulfuric acid concentrate and sodium
nitrate-seawater) with low moisture of the sample (≤15%). During the repose time, dissolution reaction
occurs on the surface of the concentrate. This was studied by several researchers with positive effects
on copper dissolution [7,8,29]. Better copper extraction was obtained using pre-treatment method 2 in
comparison with pre-treatment method 1. This can be attributed to the fact that in pre-treatment method
2, the solution was in contact with the concentrate for 20 days, with high sulfuric acid concentration,
nitrate, and chloride ions. Whereas in the approach of pre-treatment method 1, the process was
semi-dry because the moisture of the sample was only 15 %, and the sample lost moisture in the time.

In any case, it is necessary to carry out an economic study of these processes to compare the
cost of leaching by agitation of a concentrate at room temperature for 40 days versus pretreating the
concentrate and leaving it in semi-dry rest or in a leaching solution for 20 days and then leach for
an additional 20 days. Both pre-treatment methods provide a possible alternative to extract copper
from concentrates. Figure 13b shows the redox potential values that were in the ranges between 820.8
to 875.8, 842.7 to 857.7, and 878.7 to 895.7 mV vs. SHE in tests without pre-treatment, pre-treatment
method 1, and pre-treatment method 2, respectively.
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4. Conclusions

This study aims to introduce an alternative method to confront the problems that distress Chilean
copper mining such as the depletion of oxidized copper minerals and the shortage of water. A green
and environmentally friendly hydrometallurgical approach for chalcopyrite concentrate leaching was
studied. In the core of the circular economy and industrial waste valorization, seawater/brine (as a
source of chloride) and caliche’s salts (as a source of nitrate ions) were used. Chalcopyrite leaching was
studied in a nitrate-chloride-acid medium where the use of seawater or brine provides the chloride ion
in leaching. The main conclusions are the following:

1. Increasing the nitrate concentration from 0 to 0.7 M showed positive effects on copper extraction,
although the most significant effect was observed by increasing the concentration of sulfuric acid
from 0.5 to 0.7 M.

2. The presence of chloride in the medium showed increasing on copper extraction. The presence
of chloride ions can be provided through the use of seawater, discard brines from desalination
plants or by adding sodium chloride, obtaining a maximum extraction of 93.5% Cu when 20 g/L
Cl− was used.

3. The effect of temperature significantly influences dissolution kinetics of copper, reaching 90.6%
Cu at 45 ◦C after 15 days of leaching in comparison to 42.4% Cu at 25 ◦C in the same conditions.

4. The use of industrial salt providing 0.7 M of nitrate in a leaching medium with 0.7 M of sulfuric
acid did not obtain better extraction percentages than using analytical salt, due to the presence
of other impurities that affect the dissolution system. In any case, it is a possible alternative to
evaluate, obtaining percentages of copper extraction of 67%.

5. The leaching of two samples of concentrates showed different copper extraction values, mainly
due to the mineralogical and chemical composition of each concentrate. Sample A has a greater
presence of pyrite, which could contribute ferric ion to the medium, which would help leach
chalcopyrite, as this is an oxidizing ion.

6. The use of pre-treatment for 20 days produces extractions close to 28.4% and 42.3% Cu, using
pre-treatment 1 and pre-treatment 2 at 25 ◦C, respectively. Copper extraction can increase to
values close to 63.8 and 71.4% by leaching these pretreated concentrates for an additional 20 days.
A leach at 25 ◦C for 40 days obtained a 60% copper extraction. It is necessary to evaluate the cost
of pretreating the concentrate and leaving it at rest, versus leaching it.

These results show that the nitrate-chloride-acid system presents good copper dissolution results
at moderate temperatures of ≤45 ◦C and atmospheric pressure. This alternative must be evaluated at
an industrial level using other sources of raw materials, such as process brines (e.g., from desalination
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plants), raw seawater, seawater from thermoelectric plants, process waters that currently consider as
waste, as well as salts and solutions of discards or intermediate processes of the caliche industry.
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