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Abstract: As part of a study investigating the influence of mineralogical variability in a sediment 
hosted copper–cobalt deposit in the Democratic Republic of Congo on flotation performance, the 
flotation of nine sulphide ore samples was investigated through laboratory batch kinetics tests and 
quantitative mineral analyses. Using a range of ore samples from the same deposit the influence of 
mineralogy on flotation performance was studied. Characterisation of the samples through 
QEMSCAN showed that bornite, chalcopyrite, chalcocite and carrollite are the main copper-bearing 
sulphide minerals while carrollite is the only cobalt-bearing mineral. Mineralogical characteristics 
were averaged per sample to allow for a quantitative correlation with flotation performance 
parameters. Equilibrium recoveries, rate constants and final grades of the samples were correlated 
to the feed mineralogy through Multiple Linear Regression (MLR). Target sulphide minerals content 
and particle size, magnesiochlorite content, carrollite liberation and association of the copper and 
cobalt minerals with magnesiochlorite and dolomite were used to predict flotation performance. 
Leave One Out Cross Validation (LOOCV) revealed that the final copper and cobalt grades are 
predicted with an R2 of 0.80 and 0.93 and Root Mean Square Error of Cross Validation (RMSECV) 
of 4.41% and 1.34%. The recovery of cobalt and copper with time can be predicted with an R2 of 0.94 
for both and an overall test error of 4.70% and 5.14%. Overall, it was shown that quantitative 
understanding of changes in mineralogy allows for prediction of changes in flotation performance. 

Keywords: flotation modelling; mineralogy; geometallurgy; copper; cobalt; QEMSCAN. 
 

1. Introduction 

Geometallurgy is a discipline that seeks to systematically integrate planning practices to 
maximize resource efficiency of future and existing mining operations, by combining geological, 
mineralogical, geotechnical and mineral processing information to create a spatial model for 
production planning and management [1,2]. From a strategic perspective, geometallurgy informs 
mine planning by combining insight into the natural distribution of relevant orebody characteristics 
with the spatial clustering of properties according to their metallurgical response [3,4]. Mineralogical 
understanding of the deposit allows for the development of mineralogical tools and methods for 
geometallurgy [5].The majority of the world cobalt output is produced as a by-product of copper 
sulphide ores from sediment-hosted deposits of the Democratic Republic of Congo (DRC). As there 
are few sites processing such ore types, limited studies into the processing of copper and cobalt 
sulphide minerals exist [6]. Within these deposits, carrollite (Cu2CoS4) is the main cobalt-bearing 
mineral in the sulphide ore and common copper sulphide minerals are bornite (Cu5FeS4), chalcopyrite 
(CuFeS2) and chalcocite (Cu2S). Flotation is one of the first steps in the concentration of the valuable 
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sulphide minerals [6–8]. Xanthates are the most common collectors used to concentrate DRC ores 
with typical recoveries averaging around 85% for copper and 60% for cobalt, and concentrate grades 
consisting of up to 45% Cu and 4% Co [8]. A review of literature shows that no kinetics data has been 
published on the flotation behavior of carrollite [9–11]. For example, for a Zambian concentrator a 
xanthate collector had superior performance in terms of kinetics, recovery and grade compared to 
other thiol collectors, but no quantitative assessment of the rate constant and equilibrium recovery 
was done [9]. Sodium IsoPropyl Xanthate (SIPX), Potassium Amyl Xanthate (PAX) and a blend of 
those collectors were evaluated for copper and cobalt recovery. In that study the highest cobalt 
recovery was 83%, with a grade of 1.88% Co, was obtained using a blend of SIPX and PAX, at a ratio 
of 3:1 [10]. More recently, it was reported that when using a dithiophosphate collector, 90% of the 
copper sulphide minerals and 93% of carrollite could be recovered from mixed oxide sulphide ore at 
ambient pH in a laboratory batch flotation experiment. Final concentrate grades after the sulphide 
flotation stage were 12.2% Cu and 0.38% Co [11]. 

Flotation processes are typically optimized through changes of reagent dosage and flotation 
times, without a proper assessment as to whether the mineralogy of the feed has changed [12]. 
Understanding the influence of mineralogy on process performance is an inherent part of mine value 
chain optimization through geometallurgy. Regarding flotation, geometallurgical understanding is 
obtained by analyzing the differences in mineralogy prior to and after the flotation process, followed 
by linking that information to the kinetics rate constant and measured recovery [13]. By combining 
mineralogical data with flotation performance data, it is possible to derive a predictive model for 
process recovery based on the mineralogy of the feed material. There are a number of mathematical 
models that can be used to model the flotation kinetics, which are commonly based on a rate constant, 
equilibrium recovery and the changes in recovery over time [14]. There are several recent 
investigations that have used mineralogy as a tool for understanding the flotation response of copper 
bearing minerals [15–17]. For sulphide ore from the Kamoa copper project, sample mineralogy was 
considered for flowsheet development, which showed that a re-grind circuit would be beneficial for 
recovering the remaining sulphide minerals [15]. Principal Component Analysis was used to predict 
the recovery of copper sulphosalts based on differences in target mineralogy of the feed samples [16]. 
On an industrial scale, it has been shown that quantitative mineralogical data has been key in 
understanding historical recoveries and for predicting copper recovery at the Kansanshi flotation 
circuit [17]. This paper explores the complexity of modelling the flotation of copper–cobalt sulphide 
ore as a function of the feed mineralogy, which will be the only changing variable in the experiments. 
The relationship between quantitative mineralogy obtained using QEMSCAN and the rate constant, 
equilibrium recovery and final grade of the flotation process will be investigated. 

2. Materials and Methods  

2.1. Materials and Preparation 

A range of quarter drill core samples were supplied by a copper–cobalt producer operating in 
the DRC. The drill core samples are known to originate from different locations within the sulphide 
zone of the ore body, with a varying mass from 0.8 to 4 kg. Nine samples were selected based on their 
spatial location, providing samples that represent the mineralogical variability present in the deposit. 
All samples were crushed down to −2 mm in order to homogenize the samples and were split into 
500 g representative subsamples using a riffle splitter. These were then ground for 20 min at 60% 
solids in a 300 by 160 mm rod mill operating at 65 rpm. The grinding media consisted of six stainless 
steel rods of 290 by 23 mm, weighing 1 kg each. The grinding process occurred up to a maximum of 
fifteen minutes before the flotation experiment, in order to avoid sample oxidation. 

2.2. Flotation Tests 

2.2.1. Reagents 
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Methyl Isobutyl Carbinol (MIBC), provided by Acros Organics (Geel, Belgium), was used as 
frother in all the experiments. The bulk copper–cobalt collector Danafloat 245, supplied by 
Cheminova A/S (Harboøre, Denmark), was used as a sulphide collector. This collector mainly consists 
of sodium O,O-diisobutyl dithiophosphate and was the best performing collector for copper and 
cobalt sulphide minerals in a previous study [11]. 

2.2.2. Flotation Procedure 

The mining operation from which the samples originate does not currently process sulphide ore 
and thus a basic flotation procedure was designed to evaluate the flotation performance. An overview 
of the timings used in the flotation procedure can be found in Table 1. For the collector a dosage of 
30 g/t at a concentration of 1% was used and a dosage of 50 g/t for the frother. In each experiment, 
eight different concentrates were collected. For each collected concentrate the copper and cobalt 
content were measured, after which the concentrates were combined into one cumulative 
concentrate. The mineralogy of the samples was obtained by submitting the cumulative concentrate 
and final tailings for QEMSCAN analysis. Due to the low mass of the supplied core samples, it was 
not possible to perform replicate flotation tests. To obtain an indication of the experimental error, a 
duplicate test was done with a second 500 g subsample of the 4 kg sample (sample S3). This showed 
that for Cu, the experimental error was 3.56% for recovery and 0.70% for grade. For Co, the 
experimental error associated with recovery was 1.91% and 0.12% for grade. The system was floated 
at ambient pH, which was measured prior to the experiment taking place. This measured pH for the 
nine different samples can be found in Appendix A. Both rougher and scavenger flotation stages 
were operated under similar operational conditions, in a one-liter Denver D12 flotation cell with an 
agitation rate of 1200 rpm and an aeration rate of 7 L/min. The flotation experiment took place at 30% 
solids, complementing the water used during the grinding process with tap water. Additional tap 
water was added prior to the scavenger flotation taking place, ensuring a pulp density of under 30% 
solids. 

Table 1. Flotation procedure for the experiments described in this study, including cumulative timing 
of separation, duration of conditioning and flotation stages and reagent dosages. 

Phase Stage Cumulative Timing Conditioning Flotation MIBC DF245 
  min min min g/t g/t 

Rougher 1. Conditioning collector 0 3 - - 30 
2. Conditioning frother 3 1 - 50 - 

3. Concentrate 1 4 - 0.5 - - 
4. Concentrate 2 4.5 - 0.5 - - 
5. Concentrate 3 5 - 1 - - 
6. Concentrate 4 6 - 1 - - 
7. Concentrate 5 7 - 2 - - 
8. Concentrate 6 9 - 2 - - 

Scavenger 9. Conditioning collector 11 3 - - 30 
10. Concentrate 7 14 - 1 - - 
11. Concentrate 8 15 - 2 - - 

2.2.3. Chemical Analysis 

Portable X-Ray Fluorescence (pXRF) was used to analyze the copper and cobalt content of the 
individual flotation products using a Delta Premium Handheld XRF Analyser (Olympus, Southend-
on-Sea, UK). A measurement on a SiO2 standard was performed between each measurement to 
determine the presence of any impurities during the analysis. The pXRF was set to analyze each 
sample for 1.5 min in total, with 45 s for beam 1 to detect the presence of heavier elements and 45 s 
for beam 2, to detect lighter elements. To improve the overall accuracy of copper and cobalt content 
estimation, an external calibration was done with an S4 Pioneer lab-XRF (Bruker, Coventry, UK) 
using 25 standards, yielding an R  of 0.98 with a Root Mean Square Error (RMSE) of 1.47% for copper 
and a R  of 0.99 with a RMSE of 0.32% for cobalt. In addition the copper and cobalt content derived 
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from the QEMSCAN analyses was used for reconciliation of the pXRF data [18], with an R2 of 0.93 
and RMSE of 5.10% for Cu and an R2 of 0.94 and RMSE of 1.44% for Co. 

2.2.4. Mineralogical Analysis 

The quantitative mineralogical analysis was carried out using a QEMSCAN 4300 at Camborne 
School of Mines, University of Exeter, UK. This consists of a Zeiss EVO 50 Scanning Electron 
Microscope (SEM) platform and four light element Bruker silicon drift droplet (SDD) X-ray detectors 
[19,20]. Selected samples were mixed with pure graphite powder to minimize particle density settling 
effects and prepared into 30 mm diameter polished epoxy resin blocks and analyzed using the field 
scan or PMA mode to determine the mineral abundance and liberation of these samples. Standard 
settings were used following details outlined in literature [21], with the fields scan mode using a 10 
micrometers scan resolution and the PMA mode using a 2 to 4 micrometers scan resolution matched 
to the particle size range. Data acquisition used iMeasure v4.2 software (Thermo Fisher Scientific, 
Eindhoven, The Netherlands) and data processing used iDiscover 4.2SR1 and 4.3 (Thermo Fisher 
Scientific, Eindhoven, The Netherlands). For data processing, the developed database from a 
previous study was used [11], after which the other mineral phases were checked and refined. 

2.3. Flotation Kinetics Modelling 

The mineralogy-based modelling of the flotation performance presented in this paper focuses 
on the rougher stage. For batch flotation processes, the change in mineral recovery and rate constant 
follow the n-order kinetics model, as obtained from flotation kinetics modelling review studies 
[14,22]: 𝑑𝑅𝑑𝑡 = 𝑘 ∙ 𝑅 − 𝑅  (1) 

Where k is the rate constant value of the element or mineral, R the recovery at a point in time and 𝑅  
the recovery reached at equilibrium. Four common solutions to this differential equation were 
evaluated in this study. All solutions define the recovery at time t and have two characteristic 
parameters: a rate constant, denoted 𝑘  to 𝑘  hereafter, and an equilibrium recovery 𝑅 . The first 
investigated model (model 1) is the first-order dynamic model for flotation [23]: 𝑅(𝑡) = 𝑅𝑒𝑞(1 − 𝑒−𝑘1𝑡) (2) 

The second considered model (model 2) is the first-order solution with a rectangular distribution 
model for the rate constant, also known as the Klimpel model [24]: 𝑅(𝑡) = 𝑅𝑒𝑞 1 − 1𝑘2𝑡 (1 − 𝑒−𝑘2𝑡)  (3) 

The third evaluated model (model 3), is the second-order dynamic model for flotation, defined 
as [25]: 𝑅(𝑡) = 𝑅 𝑘 𝑡1 + 𝑅 𝑘 𝑡  (4) 

Finally, the fourth model (model 4) considered is the second-order model with a rectangular 
distribution for the rate constant [24]: 𝑅(𝑡) = 𝑅𝑒𝑞 1 − 1𝑘4𝑡 𝑙𝑛(1 − 𝑒−𝑘4𝑡)  (5) 

2.4. Regression Analysis 

2.4.1. Variable Selection 
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Input variables considered for performance prediction are the modal mineralogy, minerals 
particle size, liberation, association and pulp pH. The independent variables were normalized with 
respect to the variable range prior to regression analysis. The Pearson’s product moment correlation 
coefficient (𝜌 , ) was calculated between all the variables using the following equation: 𝜌 , = 𝑐𝑜𝑣(𝑋, 𝑌)𝜎 𝜎  (6) 

Where X and Y represent two random variables, cov(X,Y) the covariance between the two random 
variables, and σ the standard deviation of the two identified variables. To initialize the regression 
workflow, the influence of variables with the highest correlation coefficient was evaluated. 

2.4.2. Multiple Linear Regression 

Multiple Linear Regression (MLR) is a technique that allows, for a given dataset composed of m 
samples, to fit a response to n independent variables (n ≤ m) using the following equation [26]: 𝑦 = 𝛽 + 𝛽 𝑥 + 𝛽 𝑥 … + 𝛽 𝑥 + 𝑒 (7) 

Where 𝛽  are the regression coefficients and e, a residual. It assumes that there is a linear relationship 
between the independent variables (xi) and the response variable (y). MLR was performed using the 
software Origin Pro 2019b (OriginLab, Northampton, MA, USA) which, for each regression model, 
specifies the precision, significance and significance per independent variable using the Student t-
test. Using the correlation matrix and backward selection, combinations of different variables were 
rejected or accepted based on the increase in model precision and parameter significance. 

2.4.3. Cross Validation 

To validate the MLR models, Leave One Out Cross Validation (LOOCV) was used. LOOCV is a 
method that can be used with any form of predictive modelling, with the advantages that the overall 
test error does not tend to be overestimated and that the results will be the same. LOOCV uses a 
single observation out of the dataset for validation and the n-1 remaining observations are used as 
training set. The Root Mean Square Error of Cross Validation (RMSECV) for the n observations is 
estimated using [26]: RMSECV( ) = ∑ (𝑦 − 𝑦 )  , i = 1, … , n (8) 

Here 𝑦  is the observed value and 𝑦  the value predicted by the model. 

2.5. Methodology 

Using quantitative mineralogical data, regression analysis and cross validation, a model is 
developed that can be used to predict changes in copper and cobalt flotation performance based on 
in-deposit mineralogical variability. An overview of the methodology is shown in Figure 1. The work 
in this study can be classified in three categories. The experimental testing with standard operating 
conditions using nine core samples from different locations in the deposit (1), chemical analysis using 
pXRF and mineralogical analysis through QEMSCAN for each sample (2) and the modelling phase 
consisting of kinetics models fitting, using a correlation matrix for variable selection and MLR to 
quantify the impact of mineralogical parameters on flotation performance parameters (3). 
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Figure 1. Overview of the methodology used in this study. 

3. Results and Discussion 

3.1. Feed Characteristics 

3.1.1. Feed Grade and Modal Mineralogy 

The Cu and Co feed grade and the modal mineralogy of samples S1 to S9 are shown in Table 2. 
Overall, the samples are sulphide-rich, with a maximum of 76.3% (sample S6) and a minimum of 
12.8% (sample S8) sulphide minerals in the feed. Carrollite is the only cobalt-bearing mineral. There 
are four different copper sulphide minerals, i.e., bornite, chalcopyrite, chalcocite and again carrollite. 
The content of these four sulphide minerals varies across the samples. Carrollite can be found in all 
the samples, whereas bornite, chalcocite and chalcopyrite in some cases are only present in trace 
amounts. The main gangue minerals present in all samples are quartz and dolomite. In some 
instances, K-feldspar and muscovite/illite are present in large quantities, for example in sample S1 
and sample S8. Both the target sulphide minerals and the gangue minerals show considerable 
variation in these nine samples, indicating that the ore is heterogeneous throughout the deposit. In 
total, twenty-four minerals were detected, of which those present in trace quantities, notably 
heterogenite, barite, gypsum, kaolinite, zircon and monazite, were grouped as “others” in Table 2. A 
description of the minerals can be found in the supplementary material.  
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Table 2. Feed grade (pXRF) and modal mineralogy (QEMSCAN) of the nine different core sample 
sets (wt. %). Heterogenite, barite, gypsum, kaolinite, zircon and monazite were grouped as “others”. 

Mineral/Element Formula S1 S2 S3 S4 S5 S6 S7 S8 S9 
Carrollite CuCo2S4 11.1 13.1 8.5 15.6 18.9 28.8 15.1 5.5 29.1 

Chalcopyrite CuFeS2 3.7 0.6 0.7 0.7 0.2 1.3 1.6 7.2 1.7 
Bornite Cu5FeS4 <0.1 14.7 32.6 27.3 11.1 41.6 31.1 0.1 6.4 

Chalcocite Cu2S <0.1 0.8 0.5 0.8 5.7 4.4 1.5 <0.1 0.1 
Pyrite FeS2 1.0 0.1 0.1 0.3 0.1 0.2 0.3 <0.1 0.1 

Chrysocolla (Cu,Al)2H2Si2O5(OH)4·nH2O 0.3 0.2 0.1 0.2 0.1 0.3 0.6 0.3 0.2 
Goethite FeO(OH) 0.1 0.3 0.8 0.6 1.0 0.3 1.1 0.2 0.6 

Rutile TiO2 1.0 0.1 0.2 0.1 0.2 0.1 0.3 1.1 0.1 
Dolomite/Ankerite CaMg(CO3)2 2.5 44.6 16.7 18.1 44.9 10.7 12.9 12.1 27.3 

Apatite Ca5(PO4)3(F,Cl,OH) 0.4 0.3 0.6 0.2 0.3 0.2 0.7 0.6 0.4 
Magnesite MgCO3 <0.1 <0.1 2.0 0.1 0.2 0.1 0.6 <0.1 2.0 

Quartz SiO2 31.4 12.5 28.0 34.1 12.2 10.2 19.6 23.4 25.9 
Plagioclase (Ca,Na)(Al,Si)4O8 0.8 <0.1 <0.1 <0.1 0.1 <0.1 0.1 0.9 <0.1 
K-feldspar KAlSi3O8 31.1 <0.1 <0.1 <0.1 2.5 0.3 0.2 21.0 0.1 

Muscovite/Illite (Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] 10.0 <0.1 <0.1 <0.1 1.0 0.1 0.1 4.1 <0.1 
Biotite KFe3(AlSi3O10)(F,OH)2 2.4 <0.1 <0.1 <0.1 0.2 <0.1 <0.1 0.8 <0.1 

Phlogopite KMg3(AlSi3O10)(F,OH)2 2.0 <0.1 <0.1 <0.1 0.1 0.1 0.4 13.2 <0.1 
Magnesiochlorite (Fe,Mg,Al)6(Si,Al)4O10(OH)8 1.9 11.4 7.7 1.5 1.0 1.2 11.5 9.2 4.2 

Mg silicates Mg3Si4O10(OH)2 <0.1 1.1 1.3 0.3 0.2 0.1 2.0 0.1 1.6 
Others   0.3 0.1 0.1 0.1 0.1 <0.1 0.1 0.1 0.1 

Mineral Total   100 100 100 100 100 100 100 100 100 
Cobalt Co 1.5 3.1 1.6 3.7 6.5 8.6 4.2 1.4 6.3 
Copper Cu 2.1 7.8 14.3 13.1 11.5 18.2 15.7 2.5 6.4 

As carrollite is the only cobalt-containing mineral, cobalt recovery is directly related to the 
recovery of carrollite. For copper recovery, this type of relationship cannot be drawn. When 
considering Table 2, the quantity and ratio at which the four copper-bearing minerals are found in 
the samples varies. Using the mineralogical data from Table 2, the copper deportment in the different 
feed samples can be determined, as presented in Figure 2. For six out of the nine feed samples bornite 
is the main mineral contributing to the copper content. For sample S1 and S9, carrollite is the 
dominant mineral contributing to the copper content and for sample S8 that is chalcopyrite. 
Chalcocite is not the main copper carrying mineral in any of the samples. In sample S5 chalcocite 
contributes to around a quarter of the total copper content. 

 
Figure 2. Copper deportment between the four target sulphide minerals for all samples. 

3.1.2. Feed Mineral Particle Size 

The Particle Size Distribution (PSD) of the target minerals for samples S1 to S9 are shown in 
Figure 3. It is important to note that in some cases rectangular steps are observed in the data. These 
are caused by the method through which the particle size data is classified in QEMSCAN data 
processing software. The PSD will not be smooth if no particles are recorded within that size class. 
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Additionally, the modal mineralogy data from Table 2 needs to be considered when interpreting 
Figure 3, as negligible mineral content in the feed will mean that the PSD will not provide much 
information (e.g., bornite and chalcocite in sample S1 and chalcopyrite in samples S4 and S5). The 
mineral particle sizes vary per mineral and per sample. Sample S1 contains particles of carrollite and 
chalcopyrite that may not respond to flotation effectively as these will be too coarse [27]. For 
chalcopyrite, that is also the case for sample S8. There are no samples in which coarse particles of 
bornite and chalcocite are present. Of the target minerals, chalcocite has the finest particles. When 
considering the presence of non-valuable minerals (Table 2), it can be seen that the samples with a 
higher content of silicate minerals (Sample S1 and S8) contain coarser target particles, indicating that 
the grinding process has been less efficient for these samples. 

 
Figure 3. Particle size distribution of the four target sulphide minerals, i.e., carrollite (A), bornite (B), 
chalcocite (C), and chalcopyrite (D) for all samples. 

3.1.3. Feed Liberation and Mineral Association 

Figure 4 shows the mineral association of the target minerals for samples S1 to S9. When 
interpreting this data, it is important to consider the mineral abundance in the sample (Table 2). For 
example, the data for bornite in samples S1 and S8 does not provide much information due to a 
negligible amount of the mineral being present in the feed. Association of a mineral with the 
background material can be considered a proxy for liberation as this indicates the average surface 
area of the mineral that allows for collector adsorption. Additionally, association with other copper 
sulphide minerals needs to be considered as these also can be available for collector adsorption. 
Chalcocite is highlighted as well, as the flotation domain of chalcocite does not overlap with the other 
copper sulphides [28]. Carrollite is mainly associated with the background material and copper 
sulphides (ranging from 50% in sample S8 and to 96% in sample S3). This association is lower for 
some of the copper sulphide minerals: for chalcopyrite its association ranges from 36% (sample S1) 
to 88% (sample S7), for bornite from 74% (sample S3) to 90% (sample S7) and for chalcocite from 65% 
(sample S8) to 99% (sample S6). For most samples, an association with both quartz and dolomite can 
be observed. Other minor associations with gangue minerals, include apatite (in sample S3), K-
feldspar and muscovite (in sample S1 and sample S8 for carrollite and chalcopyrite). This is explained 
by a higher presence of those gangue minerals in the identified samples (Table 2). 
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Figure 4. Mineral association of the four target sulphide minerals, i.e., carrollite (A), chalcopyrite (B), 
bornite (C), and chalcocite (D) for all samples. 

3.2. Flotation Performance 

3.2.1. Copper and Cobalt Grade-Recovery Curves 

The grade-recovery curves of copper and cobalt for the nine samples are shown in Figure 5. 
There are differences in the trends of the grade-recovery curves observed for the two metals. For 
cobalt, in most cases, the initial increase in recovery also leads to an increase in grade. The explanation 
for this may be that the collector preferentially adsorbs on the surface of copper sulphides, prior to 
adsorbing onto the surface of the copper–cobalt sulphide mineral carrollite. That means that the 
copper-bearing particles are initially recovered, followed by carrollite in later stages of the flotation 
process. For cobalt, the maximum final grade was observed for sample S9 with 13.0% Co and a cobalt 
recovery of 66.5% while the highest final recovery was observed for sample S8 with 74.4% cobalt 
recovery and a final grade of 5.9% Co. 

For copper however, an increase in recovery comes with a decrease in grade, in line with the 
usual trend for grade-recovery curves [27]. When analyzing the grade-recovery curves of sample S3, 
S5 and S7 a common trend can be observed: for the first data points, samples with a higher initial 
grade, have a lower recovery and samples with a higher initial recovery, have a lower grade. For 
copper, the maximum final grade was observed for sample S5 with 34.8% Cu and a recovery of 71.2%. 
The maximum copper recovery was observed for sample S8, with 89.8% copper recovery and a grade 
of 12.6% Cu. For both copper and cobalt, it can be expected that mineralogical properties have 
influenced the differences in grade recovery curves. Additionally, for copper, the copper content of 
the different copper sulphide minerals (Figure 2) may influence the position of the curve.  

Figure 6 illustrates the differences in composition of the concentrate and tailings from sample 
S6, which yielded a high Cu-Co grade and lower recoveries (Figure 6A,B), and from sample S8, with 
a high recovery and lower grade (Figure 6C,D). The flotation concentrate from sample S6 mainly 
consists of the valuable sulphide minerals bornite, carrollite and minor chalcocite with a relatively 
small number of gangue particles (quartz, K-feldspar and dolomite). The flotation tailings from 
sample S6 mainly consist of dolomite and quartz, well-liberated carrollite grains and to a lesser extent 
bornite and chalcocite grains. This is in line with the lower recovery observed for both copper and 
cobalt for sample S6. When considering the concentrate and tailings of sample S8, the opposite can 
be observed. Indeed, in the final tailings of sample S8, one free carrollite grain can be observed and a 
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minor amount of chalcopyrite, as fine grains disseminated in larger particles mainly consisting of 
gangue minerals. The concentrate obtained with sample S8 contains a larger amount of gangue 
particles. Approximately half of the particles shown in Figure 6C are made up of gangue minerals, 
mainly fine-grained silicates (K-feldspar and quartz) with minor amounts of dolomite. Chalcopyrite 
and carrollite can also be clearly detected, but in a smaller abundance than in the concentrate obtained 
with sample S6. 

 
Figure 5. Grade-recovery curves of cobalt (A) and copper (B) for all samples. 

 
Figure 6. False color QEMSCAN particle mineral maps illustrating flotation concentrates and tailings 
composition. Typical high grade-low recovery concentrate (A) and associate tailings (B) obtained with 
sample S6. Typical low grade-high recovery concentrate (C) and associate tailings (D) obtained with 
sample S8. 

3.2.2. Copper and Cobalt Flotation Kinetics 

The kinetics curves for cobalt are shown in Figure 7A. A large variability in rougher cobalt 
recovery is observed, ranging from 27% to 74% Co recovery at equilibrium. The kinetics curves for 
copper are shown in Figure 7B. Again, a large range of copper recovery is observed, varying from 
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40% to 90% Cu recovery. The differences in copper recovery between samples are smaller than the 
differences observed for cobalt recovery. When comparing the trends of cumulative recoveries of the 
two metals, copper displays faster kinetics than cobalt. Copper recovery after 30 s varies from 13% to 
59%, whereas for cobalt the recovery after 30 s ranges between 5% and 38%. In both cases, sample S8 
has the highest equilibrium recovery and highest recovery after 30 s, whereas sample S6 displays the 
lowest equilibrium recovery for both metals. The difference in kinetics between cobalt and copper is 
in line with what was observed for the grade-recovery curves in Figure 5. Copper tends to be 
preferentially recovered and the cobalt bearing mineral is recovered later in the flotation process, 
which leads to a higher equilibrium recovery and faster kinetics for copper. 

 
Figure 7. Kinetics curves of cobalt (A) and copper (B) in the rougher stage for all samples. 

3.2.3. Fitting of Flotation Models to Metal Recovery Data 

Rougher flotation kinetics data, consisting of the six data points of the cumulative metal recovery 
in Figure 7, have been fitted to the models described in Section 2.3. Curve-fitting statistics of each 
model and for all the samples can be found in Appendix B, including model precision (R2) and Root 
Mean Square Error (RMSE). When considering the results for both cobalt and copper, model 2 is the 
best performing model, as it has the best fitting statistics for six out of the eighteen results. An 
advantage of selecting the same model for Cu and Co recovery is that it allows for direct comparison 
of the differences in model parameters between the two metals, being the reason for selecting model 
2. The fitted values for kinetics model 2 for copper and cobalt, i.e., kinetic constant value and 
equilibrium recovery, and the final grade used as response variables in the MLR analysis are shown 
in Table 3. 

Table 3. Fitted parameters for kinetics model 2 and measured final grades that were used as 
dependent variables in the Multiple Linear Regression (MLR) analysis. 

Flotation Performance Parameters S1 S2 S3 S4 S5 S6 S7 S8 S9 
Co rate constant (𝑘 ) 1.76 2.20 1.13 1.95 0.95 0.59 1.31 2.96 1.85 

Co equilibrium recovery (𝑅 ) 41.32 56.19 55.33 65.30 31.08 34.63 58.34 77.44 72.84 
Co final grade (𝐺 ) 3.76 6.88 2.07 5.53 2.59 9.69 6.00 5.92 12.95 
Cu rate constant (𝑘 )  2.69 4.93 2.91 4.15 2.39 1.38 2.71 4.99 3.61 

Cu equilibrium recovery (𝑅 )  81.21 88.84 84.22 91.79 76.35 44.26 79.31 91.72 88.44 
Cu final grade (𝐺 ) 10.37 28.61 30.64 28.50 34.78 31.22 32.68 12.63 16.83 

3.3. Regression Analysis 

To allow for a quantitative investigation into the relationship between the flotation performance 
of copper and mineralogical data from the four copper containing minerals, a copper deportment 
weighted average was calculated of the mineralogical parameters. The table with the weighted 
averages parameters for the Cu minerals can be found in Appendix A. The correlation matrix used 
to initialize the regression analysis can be found in the supplementary material (Table S1). 
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3.3.1. Selection of Regression Variables 

The correlation coefficients as calculated for the variables used in the models for copper and 
cobalt flotation performance can be found in Appendix C. For the Co model variables, a strong 
negative correlation was found between the liberation of carrollite and carrollite association with 
magnesiochlorite. Substitution was investigated, but this caused a decrease in model performance. 
For the variables used in the copper models, there is a strong positive correlation between bornite 
and the total percentage of sulphide minerals in the feed. It was investigated whether bornite could 
replace the sulphide content in the models and whether the sulphide content could replace bornite 
feed content. Again, this led to a decrease in the R2 of the models and the significance of the 
independent variables. 

3.3.2. Multiple Linear Regression Results for Selected Variables 

Multiple Linear Regression (MLR) has been applied to the set of selected mineralogical 
parameters and for each of the dependent variables (i.e., kinetic model parameters and final grade). 
The summary statistics describing the accuracy of the models for each flotation performance 
parameter are shown in Table 4. The significance of each model is very high for each parameter, as 
in all cases Prob > F is smaller than 0.01. The Root Mean Square Errors are quite low for most models. 
For the models dealing with higher values, such as the equilibrium recovery and final grades of both 
copper and cobalt, also higher errors are observed. The results for cobalt are overall better than for 
copper, when considering the rate constant and equilibrium recovery models. Of the final grade 
models, the cobalt model has the lowest R2. The experimental error is not included in these statistics. 
It can be expected that including such an error, assuming that the error is systematic, will lead to an 
offset in the statistics for all six models. 

Table 4. R2, RMSE, F-value and model significance (Prob > F) for the final grade, rate constant and 
equilibrium recovery of copper and cobalt. 

 𝑮𝒇𝒊𝒏𝒂𝒍𝑪𝒖  𝑹𝒆𝒒𝑪𝒖 𝒌𝟐𝑪𝒖 𝑮𝒇𝒊𝒏𝒂𝒍𝑪𝒐  𝑹𝒆𝒒𝑪𝒐 𝒌𝟐𝑪𝒐 
R2 0.98 0.95 0.99 0.93 0.97 >0.99 

RMSE 3.74 4.29 0.17 2.48 3.99 0.04 
F-value 47.77 29.69 105.69 23.95 32.17 633.98 
Prob > F <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Results for each dependent variable in terms of regression coefficients, standard error, t-value 
and significance (Prob > |t|) of the independent variables are shown in Table 5. As discussed in 
Section 2.4.1, the independent variables were normalized allowing for an equal comparison between 
the regression coefficients of the independent variables. The final grade of copper is shown to be 
influenced by the presence of chalcocite (+10.30), carrollite (−9.67) and bornite (+6.68) in the feed and 
by the fraction of copper sulphide minerals larger than 100 µm (−17.06), defined as Cu F100. The 
intercept is set at 28.64%. This means that when there is no bornite or chalcocite present in the feed, 
a final grade of 28.64% is expected, for the experimental domain covered in this study. The 
equilibrium copper recovery has been linked to three parameters: chalcocite content (−20.24), total 
sulphides in the feed (−49.22) and the fraction of copper sulphide minerals larger than 100 µm 
(−29.36). The intercept is 114.14%, which explains why all the parameters have a negative coefficient. 
Four mineralogical parameters have been identified to influence the copper rate constant: chalcocite 
content (−1.13), carrollite content (−1.23), the association of copper bearing minerals with dolomite 
(+2.34) and association of copper bearing minerals with magnesiochlorite (+1.20). 

For cobalt, three parameters were identified to influence the final grade: carrollite content 
(+12.20), chalcocite content (-5.08) and the liberation of carrollite (−4.82). The equilibrium recovery of 
cobalt has been linked to two negative parameters and two positive parameters. The negative 
parameters are the chalcocite content (−42.17) and the fraction of carrollite particles that are larger 
than 100 μm (−28.18), defined as defined as Car F100. Two positive parameters are the association of 
carrollite with magnesiochlorite (+31.39) and association of carrollite with dolomite (+13.81). For the 
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rate constant of cobalt, one positive factor was identified and three variables with a negative 
coefficient. The positive factor is the association of carrollite with dolomite (+1.16). The three negative 
factors are chalcocite content (−1.42), magnesiochlorite content (−0.51) and the average liberation of 
carrollite (−1.35). 

Chalcocite feed content is found as a factor of influence, both positive and negative, for all 
models. Both chalcocite and pyrite are known to depress the flotation of copper-bearing sulphide 
minerals due to galvanic passivation [29–31]. In this case, it is possible that the pyrite content in the 
feed is not high enough for galvanic passivation to take place. In another study, a minimum of 20% 
of pyrite was added in order to investigate the influence of pyrite content on chalcopyrite flotation 
behavior [32]. The highest percentage of pyrite found in the feed samples of this study is 1% (Table 
2). The equilibrium recovery of copper is negatively influenced by the percentage of sulphide 
minerals in the feed. It has been shown that base metal sulphides have an effect on the mineral surface 
hydrophobicity through the formation of hydrophilic oxidation products [29,30,33]. A higher grade 
of sulphide minerals will cause more surface oxidation and thus reduces the eventual equilibrium 
recovery. An increase in the grade of the copper minerals leads to an increase in the final copper 
grade, whilst an increase in the later recovered carrollite and coarse particles leads to a decrease in 
copper grade. The strong influence of carrollite content on the final cobalt grade is logical as well, as 
carrollite was identified as the single cobalt carrying mineral in the feed samples. The negative 
influence of an increase in particles of Cu and Co minerals larger than 100 µm in the feed is in line 
with expectations. The proportion of particles that cannot be effectively separated increases as the 
mineral particle size of the valuable minerals increases beyond a threshold value [27]. This causes a 
decrease in equilibrium recovery and final Cu grade. The positive influence of magnesiochlorite on 
the cobalt rate constant is more difficult to understand. It is probable that magnesiochlorite content 
represents a combination of other variables that positively influence the rate constant. The negative 
impact of an increase in carrollite liberation on the final cobalt grade and cobalt rate constant indicates 
that a decrease in association with other particles (e.g., Cu sulphides) leads to a later recovery of the 
Co particles in the flotation process. It is more difficult to understand the positive correlation between 
association of carrollite and copper sulphide minerals with dolomite and magnesiochlorite on the 
copper rate constant, cobalt equilibrium recovery and cobalt rate constant. To evaluate whether the 
association of the target minerals with dolomite and magnesiochlorite indeed has a positive 
influence, the target minerals particles in the concentrate and tailings of the samples with the highest 
association with magnesiochlorite (sample S8) and dolomite (sample S2) were compared. The 
concentrates and tailings of these samples are shown in Figure 8. The sulphide particles in the 
concentrate of samples S2 have a lower association with dolomite than the particles in the tailings 
(6.6% vs. 21.5%). For sample S8, the sulphide particles in the concentrate on average also have a lower 
association with magnesiochlorite than the sulphide particles in the tailings (3.7% vs. 8.6%). These 
results show that the positive effect of dolomite and magnesiochlorite association with the target 
minerals is likely to be a consequence of more complex combinations of other particulate parameters 
that do have a positive effect on the flotation performance. Note that the intercept of the copper 
equilibrium recovery is 114.13%, meaning that if there are no copper sulphides present in the feed 
(all parameters equal to zero), this model would give a recovery of over a 100%. While this may 
appear unrealistic, one should remind that regression models are only valid for the experimental 
domain defined by the dataset provided for the regression, i.e., the multivariate space represented 
by all the variables and their extreme boundaries. In this case study, the situation where all input 
parameters are equal to zero is never met. Hence, the predicted recovery never goes over 100%. This 
observation just shows, as in any regression model, the limitation of the MLR method. 
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Table 5. Intercept and mineralogical parameters that influence the final grade, rate constant and 
equilibrium recovery of copper and cobalt. 

Model 
Parameter 

Variable Value Standard Error t-Value Prob > |t| 

𝐺   

Intercept 28.64 2.23 12.82 <0.01 
Chalcocite content (%Cc) 10.30 2.17 4.71 0.01 
Carrollite content (%Car) −9.67 2.28 −4.24 0.01 

Bornite content (%Bn) 6.68 2.45 2.72 0.05 
Cu sulphide F100 (Cu F100) −17.06 2.72 6.26 <0.01 

𝑅  

Intercept 114.13 4.44 25.69 <0.01 
Chalcocite content (%Cc) −20.24 5.04 −4.01 0.01 

Total sulphide content (%Sul) −49.22 7.55 −6.52 <0.01 
Cu sulphide F100 (Cu F100) −29.36 5.83 −5.04 <0.01 

𝑘  

Intercept 2.98 0.14 21.39 <0.01 
Chalcocite content (%Cc) −1.13 0.19 −6.03 <0.01 
Carrollite content (%Car) −1.23 0.22 −5.54 0.01 

Cu MA dolomite (Cu MA Dol) 2.34 0.17 13.97 <0.01 
Cu MA magnesiochlorite (Cu MA Mgc) 1.20 0.22 5.35 0.01 

 𝐺  

Intercept 5.82 1.06 5.48 <0.01 
Chalcocite content (%Cc) −5.08 1.23 −5.12 0.01 
Carrollite content (%Car) 12.20 1.46 8.33 <0.01 

Carrollite liberation (Car lib) −4.82 1.54 −3.13 0.03 

 𝑅  
 

Intercept 66.77 2.82 23.68 <0.01 
Chalcocite content (%Cc) −42.17 4.61 −9.16 <0.01 
Carrollite F100 (Car F100) −28.18 4.88 −5.78 <0.01 

Carrollite MA magnesiochlorite (Car MA Mgc) 31.39 5.30 5.92 <0.01 
Carrollite MA dolomite (Car MA Dol) 13.81 4.59 3.01 0.04 

 𝑘  
 

Intercept 2.91 0.05 56.83 <0.01 
Chalcocite content (%Cc) −1.42 0.05 −29.61 <0.01 

Magnesiochlorite content (%Mgc) −0.51 0.04 −11.72 <0.01 
Carrollite liberation (Car lib) −1.35 0.05 −26.52 <0.01 

Carrollite MA dolomite (Car MA Dol) 1.16 0.05 23.07 <0.01 

 
Figure 8. False color QEMSCAN particle mineral maps illustrating target minerals associations with 
dolomite from sample S2 flotation concentrate (A) and tailings (B), and magnesiochlorite from sample 
S8 flotation concentrate (C) and tailings(D). 
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3.3.3. Regression Models Cross Validation 

The correlation between predicted and observed values for the copper and cobalt rate constant, 
equilibrium recovery, final grade and metal recovery with time are shown in Figure 9. The RMSECV 
is calculated using Equation (8). The models for predicting the Cu and Co grade come with an R2 of 
0.93 and 0.80 and RMSECV of 1.34% and 4.41% respectively. The RMSECV is higher for the copper 
grade model as that model needs to deal with higher values. For both copper and cobalt, there is a 
strong correlation between the predicted and measured values of the rate constant. For cobalt, the 
model has an RMSECV smaller than 0.07 and an R2 of 0.99. The relationship between the observed 
and predicted values is linear. For the copper rate constant, the RMSECV is 0.30 and has an R2 of 0.94. 
For both the copper and cobalt rate constant, the predicted and observed values are well spread out. 
The observed and predicted values for the equilibrium recovery of cobalt and copper are in good 
agreement, with an R2 of 0.87 and test error of 6.15% for cobalt and 0.86 and 6.22% for copper, 
respectively. The values of the copper equilibrium recovery are grouped together above a recovery 
of 80%, with only one sample having a lower recovery. This is a weakness of the model, as it may 
lead to larger errors when predicting the equilibrium recovery of samples between 45% and 75%. The 
metal recovery with time can be predicted when inserting the predicted rate constant values and 
equilibrium recovery in Equation (3). For cobalt, the recovery model has an R2 of 0.94 and RMSECV 
of 4.70% whilst, for copper, the model has an R2 of 0.94 and RMSECV of 5.14%. 

3.4. Model Limitations and Further Development 

While this study has yielded interesting results with good prediction performance, the obtained 
models cannot be used for direct prediction of flotation performance industrially as some limitations 
exist. First, it should be noted that these models are deposit-specific and that the copper and cobalt 
flotation models can be used for predictive purposes for the investigated deposit specifically and for 
samples displaying mineral grades and mineralogical properties within the range of those covered 
in this study. If additional zones are discovered within the deposit with varying mineralogy, outside 
the investigated experimental domain, these models may change. In this case, additional data points 
would be required to strengthen the statistical reliability of the models for industrial-scale 
application. Replicate experiments, which could not be performed for most samples in this study due 
to lack of quantity, will also be required to provide insight into the overall model’s stability. However, 
as a proof of concept, it has been shown that it is possible to predict flotation performance from basic 
mineralogical data. Such models are of great value from a geometallurgical perspective, as it has the 
potential to include flotation performance in the geometallurgical model from mineralogical core 
data. The possibilities of this approach can be expanded further by performing additional 
experiments where operating conditions are varied, such as the addition of a depressant or modifier, 
variation in collector dosage, account for changes in water quality and adjustment of the aeration rate 
for optimum separation of valuable and gangue material. In order to understand the applicability of 
these models on an industrial scale, it is also important to consider the operational differences 
between laboratory bench scale and industrial steady state operations [34]. Addressing all these 
factors will lead to more robust models which could assist process operators in deciding what to 
change in the flotation circuit to minimize the impact of varying mineralogy on copper and cobalt 
flotation performance. 
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Figure 9. Predicted versus measured values for the Co and Cu final grade (A,B), kinetics model 
parameters, i.e., rate constant (C,D), equilibrium recovery (E,F) and recovery with time (G,H). 
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4. Conclusions 

In this paper, flotation performance of copper and cobalt was linked to fundamental 
mineralogical data obtained from a standardized flotation batch experiment. The flotation kinetics of 
copper and cobalt was well fitted by a first-order rectangular distribution model, delivering flotation 
performance indexes obtained from experimental data. The rate constant, equilibrium recovery and 
final grade of copper and cobalt were correlated with quantitative mineralogical data from 
QEMSCAN through Multiple Linear Regression. It was shown that the flotation performance could 
be correlated to the total sulphide, carrollite, bornite, chalcocite and magnesiochlorite content in the 
feed. Other mineralogical factors that were found to be significant were the liberation of carrollite, 
the percentage of copper and cobalt mineral particles above 100 μm and association of the copper and 
cobalt minerals with magnesiochlorite and dolomite. LOOCV was used to determine the 
predictability of the models. For both copper and cobalt, the predictability of the final grade showed 
a RMSECV and R2 of 1.34% and 0.93 for cobalt and 4.41% and 0.80 for copper. By combining the 
predicted rate constant and equilibrium recovery, the recovery with time could be predicted for both 
metals. This model had an overall test error and R2 of 4.70%, respectively 0.94 for cobalt and 5.14% 
and 0.94 for copper. While the predictive flotation performance models are deposit-specific and 
require calibration for each deposit, the workflow described in this study represents a proof-of-
concept suitable for geometallurgical application, where combining laboratory experiments with 
quantitative mineralogy will allow to refine the prediction of flotation performance on an industrial 
scale. 

Supplementary Materials: The following are available online at www.mdpi.com/2075-163X/10/5/474/s1, Table 
S1: correlation matrix of copper and cobalt flotation performance data and mineralogical feed parameters. 
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Appendix A 

Table A1. Fitting statistics of the flotation kinetic models for all samples. The best performing model 
for each sample in terms of R2 and RMSE (wt. %) are highlighted in bold. 

Sample Index 
Model 1 Model 2 Model 3 Model 4 

Cobalt Copper Cobalt Copper Cobalt Copper Cobalt Copper 

S1 R2 0.98 1.00 0.99 1.00 0.99 1.00 1.00 1.00 
RMSE 2.30 1.77 1.60 0.17 1.11 1.24 0.88 1.91 

S2 
R2 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

RMSE 2.48 2.93 1.37 0.84 0.61 0.35 0.28 0.86 

S3 
R2 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 

RMSE 0.73 1.77 0.93 0.17 1.46 1.24 1.76 1.91 

S4 
R2 0.99 1.00 1.00 1.00 1.00 2.77 0.99 1.00 

RMSE 1.96 0.45 1.17 0.72 1.42 1.66 1.76 2.33 

S5 
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

RMSE 0.65 1.12 0.41 0.82 0.29 1.85 0.34 2.46 

S6 
R2 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

RMSE 0.44 1.31 0.33 0.72 0.18 0.21 0.14 0.22 

S7 
R2 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99 

RMSE 1.66 1.83 1.51 1.35 1.77 2.17 2.01 2.74 

S8 
R2 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

RMSE 2.72 2.78 1.00 0.52 0.37 0.42 0.85 1.02 

S9 
R2 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 

RMSE 0.66 1.63 0.76 1.22 1.76 1.63 2.31 1.02 
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Appendix B 

Table A2. Measured pulp pH and the Cu mineral parameters used in the MLR analysis based on the 
Cu deportment. 

Parameter S1 S2 S3 S4 S5 S6 S7 S8 S9 
Measured pulp pH 8.1 9.5 9.1 9.3 9.4 9.2 9.2 8.8 9.3 

Cu minerals P80 295.2 114.7 73.5 84.5 43.9 91.6 58.5 160.8 91.6 
Cu minerals F100 65.2 14.6 8.6 7.3 2.1 10.8 1.6 55.2 10.9 

Cu minerals liberation 68.0 80.8 72.1 75.2 77.8 84.0 61.8 53.8 80.8 
MA CuD Apatite 0.0 0.0 4.3 0.0 0.1 0.0 0.1 0.0 0.0 

MA CuD Background 56.2 69.0 65.7 63.8 75.2 69.8 61.0 32.6 73.6 
MA CuD Barite 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 
MA CuD Biotite 2.2 0.0 8.9 0.0 0.1 0.0 0.0 7.4 0.0 
MA CuD Bornite 0.1 1.3 1.9 1.8 4.5 4.8 2.1 0.6 2.6 

MA CuD Carrollite 2.3 5.4 1.8 3.8 5.6 5.3 3.2 0.9 4.5 
MA CuD Chalcocite 0.1 3.7 2.2 4.7 6.1 8.7 4.7 0.1 1.0 

MA CuD Chalcopyrite 4.3 12.0 4.8 15.4 4.5 9.3 21.6 1.3 8.4 
MA CuD Chrysocolla 4.4 2.2 0.2 1.9 1.6 1.0 3.0 19.8 2.1 

MA CuD Dolomite 0.1 2.2 0.0 1.6 1.3 0.3 0.3 0.8 1.8 
MA CuD Fe Dolomite/Ankerite 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 

MA CuD Fe-Ox/CO3 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 
MA CuD Gypsum 0.0 0.2 0.5 0.0 0.2 0.0 0.1 0.0 0.1 

MA CuD Heterogenite 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MA CuD Ilmenite 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 
MA CuD Kaolinite 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 

MA CuD K-feldspar 10.5 0.0 0.0 0.0 0.1 0.0 0.0 8.5 0.0 
MA CuD Magnesiochlorite 0.4 0.6 0.6 0.2 0.0 0.1 1.1 5.8 0.4 

MA CuD Magnesite 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.1 
MA CuD Mg silicates 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.3 

MA CuD Monazite 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MA CuD Muscovite/Illite 2.8 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 

MA CuD Others 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 
MA CuD Phlogopite 0.1 0.0 5.1 0.0 0.0 0.0 0.0 5.0 0.0 
MA CuD Plagioclase 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 

MA CuD Pyrite 1.8 0.8 0.0 0.1 0.2 0.0 0.1 0.4 0.1 
MA CuD Quartz 13.2 2.5 0.0 6.5 0.4 0.5 2.4 11.9 4.7 
MA CuD Rutile 0.4 0.0 1.1 0.0 0.0 0.0 0.1 1.1 0.1 
MA CuD Zircon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Appendix C 

Table A3. Correlation matrix of feed variables used to predict the value of the Co flotation 
performance parameters. Bold numbers indicate high correlation coefficient. 

Feed Parameter %Car %Cc %Mgc Car F100 Car lib Car MA Mgc Car MA Dol 

%Car 1.00 0.46 -0.49 -0.57 0.58 -0.48 0.03 
%Cc 0.46 1.00 -0.45 -0.50 0.35 -0.31 0.14 

%Mgc -0.49 -0.45 1.00 0.16 -0.40 0.35 0.32 
Car F100 -0.57 -0.50 0.16 1.00 -0.55 0.57 0.11 
Car lib 0.58 0.35 -0.40 -0.55 1.00 -0.95 -0.06 

Car MA Mgc -0.48 -0.31 0.35 0.57 -0.95 1.00 0.06 
Car Ma Dol 0.03 0.14 0.32 0.11 -0.06 0.06 1.00 

Feed Parameter %Car %Cc %Bn %Sul Cu F100 Cu MA Mgc Cu Ma Dol 

%Car 1.00 0.46 0.29 0.66 −0.49 −0.55 0.27 
%Cc 0.46 1.00 0.35 0.54 −0.48 −0.36 −0.03 
%Bn 0.29 0.35 1.00 0.90 −0.67 −0.42 −0.30 
%Sul 0.66 0.54 0.90 1.00 −0.70 −0.52 −0.16 

Cu F100 −0.49 −0.48 −0.67 −0.70 1.00 0.56 −0.29 
Cu MA Mgc −0.55 −0.36 −0.42 −0.52 0.56 1.00 −0.11 
Cu Ma Dol 0.27 −0.03 −0.30 −0.16 −0.29 −0.11 1.00 
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