
minerals

Article

Forecast of AMD Quantity by a Series Tank
Model in Three Stages: Case Studies in Two
Closed Japanese Mines

Chiharu Tokoro 1,* , Kenichiro Fukaki 2, Masakazu Kadokura 2 and Shigeshi Fuchida 1

1 Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
sfuchida@aoni.waseda.jp

2 Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku,
Tokyo 169-8555, Japan; kf-2219-rikoh@ruri.waseda.jp (K.F.); masa-kado0413@akane.waseda.jp (M.K.)

* Correspondence: tokoro@waseda.jp; Tel.: +81-3-5286-3320

Received: 8 April 2020; Accepted: 9 May 2020; Published: 11 May 2020
����������
�������

Abstract: There are about 100 sites of acid mine drainage (AMD) from abandoned/closed mines in
Japan. For their sustainable treatment, future prediction of AMD quantity is crucial. In this study,
AMD quantity was predicted for two closed mines in Japan based on a series tank model in three
stages. The tank model parameters were determined from the relationship between the observed
AMD quantity and the inflow of rainfall and snowmelt by using the Kalman filter and particle swarm
optimization methods. The Automated Meteorological Data Acquisition System (AMeDAS) data of
rainfall were corrected for elevation and by the statistical daily fluctuation model. The snowmelt was
estimated from the AMeDAS data of rainfall, temperature, and sunshine duration by using mass and
heat balance of snow. Fitting with one year of daily data was sufficient to obtain the AMD quantity
model. Future AMD quantity was predicted by the constructed model using the forecast data of
rainfall and temperature proposed by the Max Planck Institute–Earth System Model (MPI–ESM),
based on the Intergovernmental Panel on Climate Change (IPCC) representative concentration
pathway (RCP) 2.6 and RCP8.5 scenarios. The results showed that global warming causes an increase
in the quantity and fluctuation of AMD, especially for large reservoirs and residence time of AMD.
There is a concern that for mines with large AMD quantities, AMD treatment will be unstable due to
future global warming.

Keywords: acid mine drainage; life cycle simulation; global warming; earth system model;
RCP2.6; RCP8.5

1. Introduction

Japan has more than 5000 abandoned/closed mines, and about 100 of their sites produce acid
mine drainage (AMD) due to the presence of sulfide mineralization [1]. The general treatment for
AMD is neutralization and sedimentation by addition of a neutralizer, such as lime, calcium carbonate,
and sodium hydroxide [2], and solid/liquid separation [3] of the produced sludge from the neutralized
effluents. In these treatments, all toxic elements are concentrated into the sludge by precipitation [4–6]
and adsorption [7–12], and the sludge is controlled in a tailing pond at a mine site or final disposal site.
For these last several decades, AMD has been treated properly in Japan and has not caused severe
pollution. However, since our results of the statistical calculation (details are shown below) suggested
that some mines have required AMD treatment for over 150 years [13,14] and other groups suggested
that more than 1000 years of treatment will be necessary [15] in the current situation, more sustainable
treatment to reduce both AMD generation [16,17] and treatment cost [18] is needed. To reduce the
treatment cost of the addition of chemicals and of sludge generation, for example, a passive treatment
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that utilizes the natural environment of mines, such as topography, plants, and microorganisms,
has attracted attention as a sustainable AMD treatment based on new concepts [19–21]. Several
researchers are trying to successfully reuse this sludge as an industrial material [22,23].

Unlike industrial wastewater, AMD quantity and quality differ significantly in mines due to
regional, geological, mineralogical, and biological factors. Therefore, it is necessary to customize an
appropriate treatment for each mine. To select an optimal treatment method from the various treatment
technologies, including those based on both active and passive concepts, an accurate understanding of
the current potential for AMD generation [24,25] and the future forecast of AMD quantity and quality
are essential.

The objective of this study was to determine a forecast for AMD quantity. To accomplish this,
we constructed a model that reproduces the current AMD quantity using previous monitoring data of
AMD, and then extrapolated it to the future. To reproduce AMD quantity, there are two ways: one is a
hydraulic simulation [26–31] and the other is a tank model. A hydraulic simulation provides detailed
information on the origin and distribution of AMD and can be a powerful tool for discussing AMD
generation countermeasures, but it requires, in addition to meteorological data, detailed geological,
mineralogical, and hydraulic data, which are generally difficult to obtain, especially for abandoned
and closed mines. On the other hand, a tank model is a blackbox to determine the relationship between
inflow and outflow, but just inflow data of rainfall and snowmelt and outflow of AMD quantity are
sufficient for the model [32,33]. In this study, the tank model was selected for AMD quantity modeling,
and rainfall and snowmelt were used as inflow. The rainfall data were corrected for elevation and
adjusted using the statistical daily fluctuation model to suit each AMD site. Snowmelt was also
estimated from rainfall by considering mass and heat balance by using temperature and sunshine
duration data. We did not select a hydraulic simulation but chose a statistical model because our target
mines are closed and it was difficult to obtain detailed monitoring, geological, and hydraulic data for
this study.

For the AMD quality model, we previously reported the geochemical calculation with first-order
elution kinetics of sulfide minerals [13,14]. In the model, sulfides that should be the source of AMD
were selected from the quality data, and their first-order elution rate and initial AMD generation
potential were estimated by fitting to the time change of their elution amount obtained from the AMD
quantity and quality data. The AMD quality could be estimated by the coupling of the kinetics for
sulfide elution and oxidation, and the geochemical code for the chemical equilibrium calculation of
precipitation and adsorption [34–37]. This means that accurate estimation of AMD quantity is crucial
for the AMD quality model.

In this study, the AMD quantity model was constructed using two case studies of underground
mines: a closed sulfur mine (Mine A) and a closed black-ore copper, lead, and zinc mine (Mine B).
Mine A has a large quantity of AMD, averaging 18 m3 min−1 with a small fluctuation, which is opposite
to that from Mine B (1.5 m3 min−1). From these case studies, the parameters of the model were
estimated and the future AMD quantity for the next few decades was predicted using forecast data
for rainfall and temperature based on the MPI–SEM (Max Planck Institute–Earth System Model) [37].
For this, we selected two kinds of global warming scenarios proposed by IPCC (Intergovernmental
Panel on Climate Change): a low-stabilization scenario of RCP (representative concentration pathway)
2.6 and a high-level greenhouse gas emission scenario of RCP 8.5 [37]. We further discuss the effects
of global warming on the forecast of AMD quantity stemming from the closed sulfide mines that
were examined.
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2. Materials and Methods

2.1. AMD Quantity Model

2.1.1. Tank Model

The AMD quantity model was constructed by using a series tank model in three stages, as shown
in Figure 1. The first and second stages correspond to the nonpolluted water reservoir on the surface
and inside the mine, respectively. The third stage corresponds to the polluted water reservoir in the ore
deposit that causes AMD. Inflow, r (mm), is the summation of rainfall, rw, and snowmelt, rs. In each
tank, a part of the inflow is distributed to the outflow (mm h−1), qoi (i = 1, 2, 3), and seepage flow to the
next tank, qsi (i = 1, 2), according to the water reservoir height (mm), xi (i = 1, 2, 3) and outflow height
(mm), bi (i = 1, 2). The water balance in each tank is as follows:

dxi/dt = qsi-1 − qsi − qoi, (i = 1, 2, 3) (1)

where t is time, qs0 = r = rw + rs, and qs3 = 0. The outflow is calculated from:

qoi = aoi (xi − bi), (i = 1, 2, 3) (2)

where aoi (i = 1, 2, 3) is the outflow coefficient and b3 = 0. The seepage flow is also calculated from:

qsi = asi xi, (i = 1, 2) (3)

where asi (i = 1, 2) is the seepage coefficient.
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Figure 1. Schematic of the tank model in three stages used for the acid mine drainage (AMD) quantity
model in this study.

In this study, qo3 corresponded to AMD quantity. The inflow, r, was set using the following
procedure. The Kalman filter and particle swarm optimization methods were used for fitting qo3 to the
observed data of AMD quantity to estimate the xi, bi, asi, and aoi parameters [38].

2.1.2. Correction of Rainfall Data and Judgment of Snowfall

Rainfall data near each mine were derived from AMeDAS (Automated Meteorological Data
Acquisition System) provided by the Japan Meteorological Agency [39]. To suit each mine situation,
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the daily data of rainfall and temperature obtained from AMeDAS were corrected for elevation and
adjusted by using the statistical daily fluctuation model, as shown in Figure 2. Also, snowfall was
estimated according to the corrected temperature, and if the temperature was under 2 ◦C, it was judged
to be snowfall and not rainfall.
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Figure 2. Procedural flow to obtain the inflow for the tank model (rainfall and snowmelt) from
the Automated Meteorological Data Acquisition System (AMeDAS) data of rainfall, temperature,
and sunshine duration.

Since the capture rate of rainfall particles by the rain gauge decreases as the wind speed increases,
known as the Jebons effect, Kondo et al. proposed the following statistical correction for daily rainfall
data obtained from AMeDAS [40]:

rw1 = (1.25 + 0.15 cos(w(d − 20)))rw0 (4)

w = 2π/365 (5)

where rw0 (mm) is the raw rainfall data, rw1 (mm) is the corrected rainfall data by the model, d (days)
refers to the days from 1 January. Furthermore, the amount of rainfall near mines depends greatly on
elevation due to rapid updraft and adiabatic expansion, and is corrected as follows [40]:

rw2 = (1 + c(h − h0))rw1 (6)

where rw2 (mm) is the corrected rainfall data by elevation, h (km) is the elevation of mine site, h0 (km)
is the elevation of the AMeDAS observation point, and c is the coefficient (0.001 km−1 for 5 ◦C or less
and 0.00064 km−1 for 5 ◦C or more). AMeDAS data of temperature, T, were also corrected according to
following equation:

T1 = −6(h − h0) + T (7)

where T1 (◦C) is the corrected temperature.
As shown in Figure 2, if the temperature at the mine site was above 2 ◦C, it was assumed that

there was no snowfall and the inflow of rainfall was set as rw2. On the other hand, if the temperature
was below 2 ◦C, the rainfall data, rw2, were judged to be equivalent to snowfall, rf = rw2, and rw2 = 0.
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2.1.3. Estimation of Snowmelt and Snow Cover

Daily snowmelt, rs, and snow cover, rc, were also estimated by following the mass and heat
balance of snow using the AMeDAS data of rainfall, temperature, and sunshine duration, as shown
in Figure 2. If the temperature was below 0 ◦C, no snowmelt was assumed and rs = 0; otherwise,
snowmelt was calculated according to the following procedure.

Snowmelt, rs (mm), was calculated from the ratio of fusion heat, Q (J), and latent heat, L (334 J kg−1),
the catchment area, S (mm2), and the density of water, ρ (9.97 × 10−7 kg mm−3):

rsSρ = Q/L (8)

The fusion heat was calculated from the heat balance of snow exposure as follows:

Q = Q1 + Q2 + Q3 + Q4 + Q5 (9)

where Q1 is the short-wavelength radiation, Q2 is the long-wavelength radiation, Q3 is the sensible heat
transfer, Q4 is the latent heat transfer, and Q5 is the transfer heat due to rainfall. Here, heat changes in
the snow layer and heat transfer from the ground were assumed to be negligible [41].

The short-wavelength radiation was calculated from albedo, r, which is the ratio of reflected
sunshine radiation to sunshine radiation on the earth’s surface and the daily average of solar irradiance,
I (W m−2):

Q1 = (1 − r)I (10)

The average of solar irradiance was the function of the ratio of sunshine duration, N, and
astronomical sunshine duration, N0 [42]:

I/I0 = 0.179 + 0.550N/N0, for 0 ≤ N ≤ N0 (11)

I/I0 = 0.114, for N = 0 (12)

where I0 is the solar irradiance at the top of atmosphere. The values of solar irradiance at the top of the
atmosphere, I0, astronomical sunshine duration, N0, and albedo, r, are available from references [39,43],
and sunshine duration data, N, are available from AMeDAS.

The long-wavelength radiation was the difference between the radiation from the atmosphere, Qa,
and the radiation from the snow surface, Qs:

Q2 = Qa − Qs (13)

Qa = σ(T1 + 273.15)4(0.605 + 0.048e0.5) (14)

Qs = 0.9σ(Ts + 273.15)4 (15)

e = 6.1078 × 107.5T/(T+273.3) (16)

where σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4) and e is amount of saturated water
vapor [44]. The temperature of the snow surface, Ts, was calculated from [45]:

Ts = 1.13T1 − 1.67 (17)

when T1 ≤ 1.47.
The sensible heat was calculated from [46]:

Q3 = K(1 − 0.0065h/(T1 + 273.15+0.0065h))5.257, for T1 ≥ 0, (18)

Q3 = 0, for T1 ≤ 0 (19)
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where K is the transfer coefficient of the sensible heat and the latent heat; 3.5 was proposed for the area
near the mines that were modeled in this case study [46]. The latent heat was calculated from:

Q4 = 1.53K(e − 6.11), for T1 ≥ 7 (20)

Q4 = 0, for T1 ≤ 7 (21)

The transfer heat due to rainfall was calculated from:

Q5 = ρcw(273.15 + T1)rwS (22)

where cw is the specific heat of the water (4.186 J kg−1 K−1).
The snowmelt, rs, calculated from Equations (8) to (22), should be less than the snow cover, rc.

Snow cover was calculated from following summation of daily mass balance:

rc =
∑

rf −
∑

rs (23)

if rs > rc, then snowmelt should be rs = rc.

2.2. Forecast Data of Temperature, Rainfall, and Sunshine Duration

In the above-mentioned AMD quantity and quality models, daily data of rainfall, average
temperature, and sunshine duration obtained from AMeDAS were used for model construction.
Therefore, future forecasts of daily data of rainfall, average temperature, and sunshine duration were
also necessary for the forecast of AMD quantity and quality in the future. For the AMD quality model,
the geochemical calculation with first-order elution kinetics of sulfide minerals was used as mentioned
above; the first-order elution rate and initial AMD generation potential were estimated by fitting to the
time change of their elution amount obtained from the AMD quantity and quality data. The daily
output data of MPI–ESM (Max Planck Institute–Earth System Model), which is an earth system model
proposed by Max Planck Institute, were used in this study. Two kinds of IPCC RCPs for the greenhouse
gas (GHG) concentration scenario were selected: RCP2.6 and RCP8.5. The former is the scenario with
the lowest GHG emission to keep future temperature rise below 2 ◦C, and the latter is the scenario
with the highest GHG emissions.

From the system, daily forecast data of rainfall, average temperature, and maximum and minimum
temperatures were available. The daily forecast of the average of solar irradiance, I, was estimated
from [47]:

I = 0.76I0(1− exp(−A∆T2.2)) (24)

A = 0.036exp(−0.154∆Tave) (25)

where ∆T is the difference between the maximum temperature and the minimum temperature,
and ∆Tave is the monthly average of ∆T.

2.3. Case Studies in Two Closed Mines

In this study, two closed underground mines in the northern part of Japan were selected as a case
study; Mine A has a large quantity of AMD, with small fluctuation of quantity and quality, and Mine
B has a small quantity of AMD, with large fluctuation of quantity and quality. Snow is observed in
winter at both of the closed mines. The locations of the mines are shown in Figure 3, and the AMD
characteristics are shown in Table 1.
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Figure 3. Location of the two closed mines for case study.

Table 1. The AMD characteristics of Mine A and B.

Items
Mine A Mine B Effluent

April 1982 March 2017 April 1972 March 2017 Standard

pH 2.0 2.3 3.2 4.7 5.8–8.6
Fe 547 mg L−1 178 mg L−1 N.D. N.D. 10 mg L−1

As 3.3 mg L−1 0.93 mg L−1 N.D. N.D. 0.01 mg L−1

Cd N.D. N.D. 0.360 mg L−1 0.024 mg L−1 0.03 mg L−1

Zn N.D. N.D. 90.4 mg L−1 14.9 mg L−1 2.0 mg L−1

Pb N.D. N.D. 0.700 mg L−1 0.117 mg L−1 0.1 mg L−1

Q 17.6 m3/min 14.8 m3 min−1 2.50 m3 min−1 0.77 m3 min−1

N.D.: Not detected; Q: Quantity.

In Mine A, native sulfur and pyrite were mined during its operation. The size of the ore deposit
was about 1500 m East–West, about 1500 m North–South, and 25–150 m of thickness, and ore reserves
were about 230 million tons per year. The mine produced about 1 million tons of ore and one-third of
Japan’s sulfur demand, but it closed in 1971 due to the market influence of sulfur recovered from oil
refining. The quantity of AMD is about 18 m3 min−1 on average annually, which is one of the largest
AMD values in Japan [48]. The AMeDAS point is located 11 km east and 825 m below the mine.

In Mine B, copper, lead, and zinc were mined during its operation. The ore deposit was a black ore
type, which has changed from lower to yellow ore, black ore, and quartz band. The mine produced a
maximum of about 25,000 tons per year, but closed in 1985 due to ore depletion. The annual average of
the AMD quantity was 1.72 m3 min−1 in 2017 and increased from 5 to 7 m3 min−1 during the snowmelt
season [49]. The AMeDAS point is located 18 km northwest and 465 m below the mine.

3. Results and Discussion

3.1. AMD Quantity Model Construction

The relation between the input data of AMeDAS rainfall (upper side) and the observed data and
the calculated value of AMD quantity (underside) are shown in Figure 4. In this calculation, the daily
observed data of AMD quantity in the prior one year were used for fitting, and later one-year data were
used for the model validation. The fitting period was also changed from half a year to two years and
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the correlation coefficients between the observed and calculated values were compared, as shown in
Table 2 and Supplementary Figure S1. Of course, the longer the fitting period, the higher the correlation
coefficient in the validation period, but a fitting period of one year seemed to be generally sufficient for
the reproduction of AMD quantity in the next one year. As shown in Supplementary Figure S2, when
the correction for elevation and the statistical daily fluctuation and the snowmelt estimation were not
conducted, the reproducibility of AMD quantity became worse, especially for Mine A. This is because
Mine A is located at a higher elevation and the effects of elevation correction and snowfall are larger
than for Mine B.
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Table 2. Relationship between the fitting period and the correlation coefficients.

Mine Fitting Period Correlation Coefficient
in the Fitting Period

Correlation Coefficient in the
Validation Period 7

A
Half-year 1 0.89 0.65
One year 2 0.81 0.69
Two years 3 0.80 0.67

B
Half-year 4 0.86 0.77
One year 5 0.86 0.83
Two years 6 0.87 0.85

1 2015/10/1–2016/3/31; 2 2015/4/1–2016/3/31; 3 2014/4/1–2016/3/31; 4 2016/10/1–2017/4/1; 5 2016/4/1–2017/3/31;
6 2015/4/1–2017/3/1; 7 2016/4/1–2017/3/31 for Mine A; 2017/4/1–2018/3/31 for Mine B.

The parameters obtained for the tank model are shown in Table 3. Mine A has a smaller outflow
height and a larger AMD reservoir than Mine B. Additionally, Mine A has the smaller value of
outflow coefficient in the third stage, which directly affects AMD generation, compared to Mine
B. This trend means that Mine A has the bigger reservoir and the longer residence time of AMD,
which resulted in the smaller fluctuation of AMD, compared to Mine B. As we mentioned in the
previous section, ore production was 230 million tons per year in Mine A and 25,000 tons per year in
Mine B. This difference in scale should directly affect the difference in reservoir and residence time
of AMD.
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Table 3. Parameters of the tank model obtained for Mines A and B.

Mine Tank Stage Outflow Coefficient ao
(day−1)

Seepage Coefficient as
(day−1)

Outflow Height b
(mm)

A
First stage 0.768 0.568 0.00484

Second stage 0.936 0.352 0.00140
Third stage 0.00282

B
First stage 0.738 0.863 0.0358

Second stage 0.292 0.607 0.0205
Third stage 0.0500

3.2. Forecast of AMD Quantity

The forecast of AMD quantity (underside) is shown in Figure 5, with the forecast of rainfall
(upperside) proposed by MPI–ESM. According to MPI–ESM in RCP2.6, the forecast for temperature
rise around the mines is about 2 ◦C by 2050, but remaining at about 1.0–2.5 ◦C after 2050. On the other
hand, in RCP8.5, the forecast for temperature continues to rise and reaches +5.9 ◦C in 2100.
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In Mine A, the MPI–ESM shows that both rainfall and heavy rain frequency, which is the number
of days per year with greater than 50 mm of rainfall, increase due to the temperature rise. In 2100,
the forecast of rainfall is +21% for both RCP2.6 and RCP8.5, and forecast of heavy rain frequency
increases 4 days/year for RCP2.6 and 8 days/year for RCP8.5, compared to the present. According to
these trends, the AMD quantity calculated from the constructed model increases, as shown in Figure 5.
The forecast for AMD quantity in 2100 is +27% for RCP2.6 and +31% for RCP8.5.

In Mine B, the MPI–ESM shows that the temperature rise of around 2 ◦C in the RCP2.6 scenario
does not have much effect on rainfall and heavy rain frequency. In 2100, the forecast for rainfall
decreases 1.5% and heavy rain frequency decreases 2 days/year, which results in a 0.55% increase for
the forecast of AMD quantity, compared to the present. However, the temperature rise of 5.9 ◦C in the
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RCP8.5 scenario affects the forecast of rainfall and heavy rain frequency as much as for Mine A. In 2100,
the rainfall forecast increases 22% and heavy rain frequency increases 5.5 days/year, which results in a
25% increase for the forecast of AMD quantity, compared to the present.

The forecast of the standard deviation of AMD quantity is shown in Figure 6. A comparison of
the coefficient of variation of AMD quantity between the present and the future is shown in Table 4.
Here, the coefficient of variation was calculated for 10 years from 2010 to 2020 for the present and from
2100 to 2110 for the future. The temperature rise due to global warming caused larger fluctuations in
the AMD quantity for Mine A. In the case of Mine B, since the AMD reservoir is small and the AMD
residence time is short, even if the rainfall fluctuation increases in the future due to global warming,
the AMD fluctuation will remain largely as it is now. On the other hand, in the case of Mine A, since the
AMD reservoir is larger and the AMD residence time is longer, AMD fluctuation tends to increase
gradually in the future, affected by increases in rainfall fluctuation due to global warming. This trend
suggests that AMD treatment might be unstable because of global warming in the future, especially for
mines with larger AMD quantities.Minerals 2020, 10, x FOR PEER REVIEW 10 of 13 
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Table 4. The coefficient of variation for AMD quantity at present and in the future.

Mine Name Present Future

Mine A 0.083 RCP2.6: 0.092
RCP8.5: 0.090

Mine B 0.56 RCP2.6: 0.49
RCP8.5: 0.54

In general, AMD quality tends to deteriorate as the AMD quantity increases. This is because when
the AMD quantity increases, AMD comes in contact with a new pollution source in the mine. Actually,
at present, the fluctuation of AMD quantity is larger in Mine B than in Mine A, and the fluctuation in
AMD quality tends to be larger in Mine B as well. This suggests that fluctuations in AMD quantity due
to global warming will cause large fluctuations in AMD quality.
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4. Conclusions

The AMD quantity model was constructed for two closed mines in Japan. The model was
constructed with a series tank model, and fitted by using daily data for one year, which were enough
to obtain adequate parameters. The results showed that Mine B has a smaller AMD reservoir and a
shorter AMD residence time than Mine A, resulting in a large fluctuation of AMD quantity in Mine B.
The forecast of AMD quantity was also estimated based on the forecast of rainfall and temperature
proposed by the MPI–ESM with IPCC RCP2.6 and RCP8.5 scenarios. The forecast results showed that
temperature rise due to global warming will cause an increase in rainfall, resulting in increased AMD
quantity. The fluctuation of rainfall will also increase due to global warming, increasing the fluctuation
of AMD quantity in Mine A. The effect of global warming in Mine A will be bigger than in Mine B due
to its larger reservoir and longer residence time of AMD.

In this study, it is expected that the quantity and fluctuation of AMD might increase due to
global warming. This suggests that fluctuations in AMD quality might also increase. Therefore,
when selecting future treatment methods, careful consideration should be given to whether or not the
AMD fluctuation can be sufficiently dealt with in the future, especially for passive treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/5/430/s1,
Figure S1: Observed and calculated AMD quantity by the tank model for (a) Mine A with half-year fitting, (b) Mine
A with two-year fitting, (c) Mine B with half-year fitting, and (d) Mine B with two-year fitting; Figure S2: Observed
and calculated AMD quantity by the tank model without correction of rainfall and temperature or considering
snowmelt for (a) Mine A and (b) Mine B.
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