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Abstract: Columbite-(Fe) is a post-magmatic accessory mineral occurring within syenogranites and
greisens from the Desemborque Pluton. The petrographic (SEM) and geochemical (EPMA and
LA-ICPMS) examination of this mineral shows two distinct textural types within both the rocks,
named columbite-1 and columbite-2. The columbite-1 type is characterized by zoned crystals with
two stages of crystallization: i) An early Nb-rich cores with low Ta/(Ta + Nb) and Mn/(Mn + Fe)
ratios (0.02–0.08 and 0.17 to 0.21 apfu, respectively), and ii) a later Ta-rich rims with higher Ta/(Ta
+ Nb) ratios (0.11–0.26) and similar Mn/(Mn + Fe) ratios (from 0.14 to 0.22) relative to the former
cores. On the other hand, the columbite-2 type is defined by irregular crystals with patchy textures
and very low Ta/(Ta + Nb) ratios (0.008–0.038) and moderate Mn/(Mn + Fe) ratios between 0.20 and
0.38. Trace element compositions of all columbite-(Fe) crystals are relatively enriched in HREEs
and HFSEs; however, the columbite-2 presents higher abundances of REEs, Y, Th, U, Pb, Sc, and Sn
relative to the columbite-1. This study highlights a unique hydrothermal origin for both the columbite
types, but the textural relations of the columbite-2 crystals indicated that its formation is related to
fluid-induced alterations of post-magmatic fluorite and/or cassiterite crystals at the final stage of the
post-magmatic evolution.
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1. Introduction

Columbite is the main Nb-oxide in the orthorhombic columbite-tantalite group minerals (CGM)
with the general formula AB2O6, where Fe2+ or Mn2+ occupies the A-site, and Nb5+ or Ta5+ the
B-site [1,2]. End-members of this group are designated as columbite-(Fe), columbite-(Mn), tantalite-(Fe),
and tantalite-(Mn) [3]. These minerals usually present a wide range of composition and structural
variations including minor substitutions of Ti, Sn, W, Zr, Hf, Sc, and REEs (among others), which are
related to cationic order-disorder phenomena between the A- and B-sites [4–8].

CGM are usually found in rare-metal granites and pegmatites [9–15] but these minerals are
also common in F- and Li-rich peraluminous granitic systems and associated greisens [16–20].
The occurrence of CGM has attracted significant attention because they are minerals of economic
interest hosted in several metallogenetic provinces worldwide [11]. In Brazil, CGM are reported in
pegmatites from the Borborema Province [21–23], the Lourenço-Amapá Province, and the São Joao do
Rei and Araçuaí districts [11], and also in the peralkaline Madeira granite from the Pitinga Mine [24].

This is the first report of columbite in reduced metaluminous to slightly-peraluminous granites
and related greisens of the Desemborque Pluton from the A-type Graciosa Province in S-SE Brazil.
In order to understand the genesis of the columbite occurrences in the studied rocks, we combined
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detailed petrographic optical microscopy and scanning electron microscopy (SEM) textural examination
together with chemical characterization using EPMA and LA-ICPMS techniques. This work also
provides new data on major and trace element compositions of columbite in typical greisen rocks,
which are very scarce in the literature.

2. The Desemborque Pluton

The Desemborque Pluton in the Guaraú Granite Massif [25] is one of the most interesting plutons
from the Graciosa Province in S-SE Brazil (Figure 1). This province of A-type granites and syenites [26]
is made up of several plutons and related volcanic and subvolcanic rocks emplaced at shallow crustal
levels during a post-collisional extensional regime associated with the geodynamic evolution of
the South-Southeastern part of the Gondwana area at 580 Ma [27,28]. The intrusions are grouped
in two main petrographic associations: one is alkaline, including metaluminous and peralkaline
alkali-feldspar granites and syenites, while the other aluminous, which is constituted by metaluminous
to slightly-peraluminous syeno- and monzogranites [26,29].
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Figure 1. The location of the study area. The geological setting is of the Neoproterozoic A-type Graciosa
province in S-SE Brazil (adapted from [26]). The A-type granites and syenites of the Graciosa Province
are: (1) Guaraú Massif; (2) Serra do Paratiú/Cordeiro; (3) Mandira Massif; (4) Ilha do Cardoso; (5) Alto
Turvo; (6) Capivari; (7) Órgãos; (8) Farinha Seca; (9) Anhangava; (10) Marumbi; (11) Serra da Igreja;
(12) Morro Redondo Complex; (13) Palermo; (14) Agudos do Sul; (15) Rio Negro; (16) Dona Francisca;
(17) Piraí; (18) Serra Alta; (19) Corupá; inset. A detailed geological map of the Guaraú Massif Granite,
including the Desemborque and the Azeite plutons, is shown. The blue stars indicate the locations of
columbite-bearing samples.

The Desemborque Pluton (Figure 1-inset) is a small subcircular intrusion (ca. 50 km2) in the
Northeastern area of the province and intrudes the orthogneiss and metasedimentary sequences of the
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Atuba Complex and Turvo-Cajati Formation, respectively [30]. The pluton is relatively homogeneous
and composed mainly of massive and/or porphyritic biotite syenogranites (Figure 2a,b), and by
alkali feldspar granites, granite porphyries, and microgranites, which are scarce [31]. Pegmatites and
hydrothermal rocks resulting from the alteration of the main biotite syenogranites, such as greisenized
granites and greisens [25,31], are also of local occurrence. Sampling of hydrothermally-altered rocks
are difficult to see given the extensive weathering, thus greisenized granite and greisen rocks were
sampled in a unique outcrop. This local well shows the contact relationships and the transition
from the biotite syenogranite to the related greisen (Figure 2c,d). In the following, we focus our
petrographic and geochemical descriptions of these rock varieties, and in Table 1 are listed their main
geochemical compositions.
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2.1. The Biotite Syenogranite 

The biotite syenogranite displays variably inequigranular medium- to coarse-grained and 
porphyritic textures (Figure 3a,b). It is composed of early-crystallized perthite orthoclase-(Or58–71), 
oligoclase-albite (Ab78–95), and quartz. Biotite, the only magmatic mafic phase among these rocks, 
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Figure 2. Macroscopic aspects of the Desemborque rocks. (a) Massive, fine-grained, leucocratic,
grey-colored of the main syenogranite, showing equi- to inequigranular texture defined by quartz (Qz),
plagioclase (Pl), and alkali feldspar crystals (Afs), as well as biotite (Bt) as the main mafic mineral;
(b) porphyritic syenogranite showing rounded and/or tabular alkali feldspar in a fine-grained matrix
of quartz, plagioclase, and interstitial biotite; (c) contacts between the main syenogranite with the
greisenized granite and greisen rocks; (d) the detail of contact between greisenized syenogranite and
greisen. Note the darker-colored aspect and the finer-grained texture of these rocks relative to the main
biotite syenogranite.
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Table 1. Chemical analyses for the studied Desemborque Rocks. Major (X-ray fluorescence spectrometry)
and trace element (ICP-MS Inductively coupled plasma mass spectrometry).

Method X-Ray Fluorescence ICP-MS

Samples GUA−50C GUA−08a GUA−08b Samples GUA−50C GUA−08a GUA−08b

Unit Syeno-granite Greisenized
syenogranite Greisen Unit Syeno-granite Greisenized

syenogranite Greisen

SiO2 (wt%) 76.35 76.80 78.22 Li (ppm) 165 195 385
TiO2 0.01 0.06 0.05 Be 6.2 5.6 6.6

Al2O3 12.26 12.64 10.13 Sn 6.0 46.1 116
Fe2O3 1.25 2.12 5.27 Sc 0.6 1.0 1.9
MnO 0.04 0.06 0.13 Rb 481 464 897
MgO b.d.l b.d.l b.d.l Sr 6.9 9.5 4.5
CaO 0.45 0.53 0.47 Y 212 164 159

Na2O 3.91 3.78 0.26 Zr 82.3 116 156
K2O 4.44 2.96 3.92 Nb 46.4 66.2 84.9
P2O5 0.01 0.00 0.00 Cs 4.2 10.0 31.6
LOI 0.62 0.98 1.48 Ba 51.7 4.1 4.3
Total 99.40 99.93 99.94 La 53.9 30.0 28.8

A/CNK 1.017 1.217 1.833 Ce 117 69.3 68.2
A.I 0.917 0.745 0.461 Pr 14.4 8.6 8.5
Fe* 0.996 0.997 0.999 Nd 55.7 32.2 32.2

Tsat(Zr) 746 - - Sm 16.9 10.2 10.4

CIPW norm Eu 0.2 0.1 0.1
Q 35.21 - - Gd 20.3 11.9 12.2
C 0.22 - - Tb 4.2 2.7 2.7
Or 26.12 - - Dy 26.6 18.5 18.9
Ab 33.09 - - Ho 6.2 4.7 4.7
An 2.19 - - Er 17.9 14.7 14.4
Mt 1.81 - - Tm 2.9 2.6 2.5
Ilm 0.15 - - Yb 18.9 17.7 17.3
Ap 0.01 - - Lu 2.7 2.6 2.5

Ga (ppm) 25 31.6 35.7 Hf 4.9 8.3 11.0
Zn 58.1 62.3 62.3 Pb 36.9 20.5 13.5
Zr 92.9 142.8 153.3 Th 22.2 27.1 35.5
F 4624 6423 8999 U 4.6 7.3 13.6

LOI: lost on ignition; Fe* numbers; A/CNK: Alumina Saturation index; A.I: Agpaitic Index; Tsat(zr): temperature of
zircon saturation; b.d.l: below detection limit.

2.1. The Biotite Syenogranite

The biotite syenogranite displays variably inequigranular medium- to coarse-grained and
porphyritic textures (Figure 3a,b). It is composed of early-crystallized perthite orthoclase-(Or58–71),
oligoclase-albite (Ab78–95), and quartz. Biotite, the only magmatic mafic phase among these rocks, varies
in composition from annite to siderophyllite [31]. Zircon is the most abundant magmatic accessory
mineral, followed by late-magmatic ilmenite and fluorite. Cassiterite, columbite, hematite, magnetite,
monazite, and xenotime are common post-magmatic accessories, which are commonly included in
aggregates of biotite. Other secondary and minor minerals are phengite, sericite, fluorides-HREE,
and thorite are secondary minerals.

Geochemically, samples of this unit present average contents of 76.78 wt.% SiO2, 12.18 wt.% Al2O3,
4.39 wt.% K2O, 4.06 wt.% Na2O and 1.07 wt.% Fe2O3, and a predominant metaluminous signature
with A/CNK [molar ratio = Al2O3/(CaO + Na2O + K2O)] varying 0.96–0.99. They also show high Fe
numbers [Fe* = FeOT/(FeOT + MgO), wt.% oxide] ~0.99, that contrast to other Graciosa granites within
the aluminous association. Trace element compositions show a relatively high abundance of mainly F, Rb,
Li and F (Table 1). Zircon U-Pb geochronological data point to crystallization ages of 580 ± 8 Ma [28].
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Figure 3. Microscopic aspects of the Desemborque studied rocks. (a) Syenogranite with equi- to
inequigranular texture, including tabular perthitic alkali feldspar crystals (Afs), sometimes with albitic
rims (Ab), as well as rounded and/or elongated quartz (Qz) with undulose extinction and interstitial
annite (Ann) crystals. Note the partial alteration of some feldspars by sericite (Ser) and of the annite
crystal by siderophyllite (Sid); (b) syenogranite with a porphyritic texture involving mesoperthitic
alkali feldspars phenocryst in a medium-grained quartz-feldspar matrix; (c) greisenized syenogranite
displaying inequigranular and altered texture and partial to complete replacement of feldspars by
sericite and annite by zinnwaldite (Znw); (d) greisen characterized by heterogranoblastic texture
with pervasive sericite-silica alteration, high recrystallization of quartz, and extensive replacement of
zinnwaldite by sericite. Photomicrographs with crossed polarizers are shown.

2.2. Greisenized Syenogranite

The greisenized syenogranite is characterized by intermediate textural and chemical properties
between the dominant syenogranite and the greisen. This rock presents an inequigranular fine-grained
texture with post-magmatic transformations such as partial to complete replacement of feldspars
by sericite and annite by zinnwaldite (Figure 3c). Other minerals found here are fluorite, ilmenite,
hematite, phengite, and sphalerite. Geochemically, the greisenized syenogranite has intermediate
compositions between the greisen and the hosted biotite syenogranite with relatively higher Fe2O3

and Al2O3 contents, and significant contents of F, Rb, Li, Y and Zr (Table 1).

2.3. Greisen

The studied sample is characterized by a fine-grained heterogranoblastic texture (Figure 3d),
and its mineral assemblage is characterized by mainly quartz, accompanied by zinnwaldite-(Li) and
sericite. Zircon, cassiterite, columbite, fluorite, monazite, thorite, and xenotime are the accessory
minerals. Galena, sphalerite, and topaz are distinct accessories only found in this rock. Chemical
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compositions display a significant enrichment in Fe2O3, Li, Rb, Sn, Zr, and F and a discrete increase in
Nb, Hf, Th, and U relative to the granite (Table 1).

Figure 4 shows the mineral assemblages at magmatic from late- to post-magmatic stages of
evolution observed in the studied Desemborque rocks.
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showing the mineral occurrence at early-, late-, and post-magmatic stages.

3. Materials and Methods

Four samples bearing columbite crystals of the syenogranite (GUA−36, GUA−50, and GUA−53)
and greisen (GUA−8b) varieties from the Desemborque Pluton were selected for petrographic, mineral
chemistry, and whole-rock chemical data at the Laboratory of the NAP GeoAnalitica-Institute of
Geosciences/University of São Paulo, Brazil.

Columbite crystals were identified in petrographic polished thin sections by combining optical
and scanning electron microscopy (SEM) and semiquantitative energy dispersive spectrometry (EDS).
Back-scattered electron images (BSE) were obtained to study internal textures and compositional
variations. After textural descriptions, the chemical compositions of columbite crystals were determined
using a JXA−8530 (JEOL, Tokyo, Japan) electron probe micro-analyzer (EPMA). A total of 42 analyses
were conducted with an accelerating voltage of 20 kV, a beam current of 15 nA, a beam diameter of
3 µm, and maximum total peak-counting times, equally distributed between peak and background
measures, varying between 5 s and 40 s. Standards used for analysis included diopside for Si, Ca,
and Mg; ilmenite for Fe, Ti and Mn; anorthite for Al; albite for Na; zircon for Zr; fluorapatite for F;
strontianite for Sr; yttrium-phosphate for Y; synthetic glasses for Gd and Th (all of them furnished by
the Smithsonian Institute); and pure Pb, Sb, V, Ta, Nb and W metals (from the internal lab collection).
Raw WDS data were corrected and converted to wt.% with the PRZ-Armstrong provided by JEOL.
The detection limits for the conventional major oxides were in between 0.01 wt.% and 0.02 wt.%, and for
the minor elements in between 0.02 wt.% and 0.26 wt.%. The structural formulae were calculated
based on 6 oxygens and 3 atoms per formula unit (apfu).

Trace elements of columbite crystals were analyzed using a laser ablation system (LA-ICP.MS)
with a 213 A/F equipment (New Wave, Portland, ME, USA). Analytical conditions were a laser spot
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of 25 µm, 20 Hz of frequency with an energy fluence of ~1.97 J/cm2. Signal measurements and gas
background on sample integration times were 60 and 40 s, respectively. The instrument was calibrated
with the NIST standard SRM 610 glass to correct signal drift during the analytical process and the basalt
glass standard BCR−2G was used as an external standard to calibrate major and trace elements [32].
In Supplementary Table S2, the 2 sigma is reported.

Whole-rock chemical analyses were determined in three fresh samples (GUA−50c, GUA−08a, and
GUA−08b) using an X-ray fluorescence instrument (XRF) with the Axios MAX Advanced equipment
(PANalytical, Almelo, The Netherlands) and by Inductively coupled plasma mass spectrometry
(ICP-MS) instrument with the iCAP Q ICP-MS equipment (Thermo Fisher Scientific, Bremen, Germany).
Major and some minor elements were quantified by XRF, while trace elements and rare earth elements
were measured by ICP-MS, following the analytical procedures developed by Reference [33] and
Reference [34], respectively.

4. Results

4.1. Columbite Occurrence and Its Textural Relations

The examination of the petrographic thin sections of the biotite syenogranites and the greisen
reveal that columbite occurs as individual or grouped opaque crystals. BSE images allowed the
observation of two distinct textural types of columbite between both rocks types named columbite-1
and columbite-2, which present contrast modes of occurrence, internal textures, and compositional
variations (Figure 5).
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Figure 5. BSE images of columbite from the Desemborque Pluton showing the textural and
compositional variations within crystals; (a) Euhedral columbite-1 crystal displaying convolute
zoning with BSE-dark cores and BSE-bright and partially-spotted rims in syenogranite (Sample
GUA−50C); (b) euhedral and subhedral columbite-1 grouped crystals showing zoning patterns with
inward/irregular contact between the core and rim zones in the greisen (Sample GUA−08b). Of note,
mostly crystals show partially corroded margins; (c) irregular intergrowths of columbite-2 replacing
fluorite which occur in reaction texture with zircon in syenogranite (Sample GUA−53); (d) anhedral
columbite-2 crystal with a patchy texture that occurs along cavities of cassiterite showing partial
replacement of its crystals rims in syenogranite (Sample GUA−36).



Minerals 2020, 10, 411 8 of 16

The columbite-1 type is common in the greisen and rarely in the syenogranites. It occurs as
subhedral to euhedral small (30–60 µm) prismatic crystals, displaying convolute zoning with BSE-dark
cores and BSE-bright rims (Figure 5a,b). In syenogranites, columbite-1 crystals are partially fractured
and display homogeneous cores and patchy domains within the rims (Figure 5a), whereas in the greisen
the zoned patterns are irregularly distributed from the outer to the inner crystal parts (Figure 5b).
The columbite-2 type is most common in the syenogranites and rarely found in the greisen; crystals are
usually associated with fluorite, zircon and/or cassiterite and appear mostly as inclusions in biotite
clusters within the syenogranites (Figure 5c,d). This type forms anhedral to subhedral crystals with
variable shapes and sizes (up to 100 µm). They usually display resorption textures as partially dissolved
domains, or domains with patchy areas and corroded margins, involving the partial replacement of
fluorite (Figure 5c) and/or cassiterite (Figure 5d).

4.2. Mineral Chemistry

4.2.1. Main Features

Representative WDS chemical compositions and structural formulae for the identified columbite
types are listed in Table 2; our complete EPMA data set is presented in Supplementary Table S1.
In general, columbite-1 and -2 types in the Desemborque Pluton have equivalent compositions between
syenogranites and the greisen. Comparing the data, all columbite crystals are Fe-rich and classified as
columbite-(Fe) with Mn/(Mn + Fe) atomic ratios ranging from 0.14 to 0.22 for the columbite-1 type,
and from 0.20 to 0.38 for the columbite-2 type; however, the Ta/(Ta + Nb) ratios show significant
variability between both columbite types, especially within the columbite-1 zoned crystals (Figure 6).
Thus, the cores of the columbite-1 crystals have Ta/(Ta + Nb) ratios from 0.02 to 0.08, while in the
rims these ratios are always higher from 0.11 to 0.26. The EPMA results also reveal that columbite-1
crystals have relative higher apfu contents of W up to 0.092 (cores) and up to 0.080 (rims) as well as of
Ti 0.093 (cores) and 0.110 (rims) when compared to the columbite-2 crystals up to 0.065 W and 0.089 Ti
(Table S1). Moreover, the columbite-1 crystal rims present the highest contents of Zr (up to 0.010) and F
(up to 0.014) between all columbite types (Table S1).

Table 2. Representative EPMA analysis of columbite crystals from the Desemborque Pluton.

Sample GUA−50C1 GUA−08 GUA−53

Type Columbite−1 Columbite−1 Columbite−2

Point_ID 1-core 1a-rim 1b-rim 7-core 7a-rim 7b-rim 3-rim 4b-rim 4b-core

Rock type Syenogranite Greisen Syenogranite

SiO2 (wt.%) 0.06 0.06 0.09 0.12 0.07 0.06 0.08 0.09 0.06
TiO2 2.15 2.19 2.30 0.98 0.82 0.84 1.49 1.42 1.48

Al2O3 0.17 0.02 0.04 0.03 0.03 0.03 0.02 0.01 0.01
FeO 17.33 16.97 16.88 16.69 16.59 17.11 17.02 16.82 16.66
MnO 3.56 3.48 3.50 4.17 2.99 3.52 4.37 4.40 4.90
MgO - - 0.04 0.03 - 0.01 0.02 0.01 0.01
CaO - - - 0.06 0.01 - 0.19 0.04 0.16
SrO - 0.01 0.00 0.02 - - - - 0.04

Sb2O5 0.04 - - - - 0.01 - - -
V2O3 0.03 - - 0.07 0.03 - - - -
WO3 4.11 3.90 4.18 1.76 1.41 1.80 1.72 1.51 0.92
ThO2 - 0.02 0.04 0.01 0.02 0.03 - - 0.02
UO2 - 0.06 0.06 0.05 - - - - 0.04
PbO 0.05 0.06 0.07 0.04 0.08 0.09 0.02 0.04 0.05

Na2O 0.02 - 0.04 0.03 0.02 - - 0.01 -
Gd2O3 0.03 - 0.04 - 0.01 0.02 0.09 0.00 0.00

Yb2O3 0.06 0.02 0.05 0.03 0.04 0.03 0.21 0.31 0.14
Y2O3 0.01 - 0.01 - - - 0.15 0.10 0.08
ZrO2 0.27 0.21 0.30 0.16 0.11 0.05 0.21 0.16 0.09

Nb2O5 66.96 54.16 53.01 65.98 52.54 62.85 71.58 72.10 74.10
Ta2O5 4.96 18.76 19.15 9.05 24.61 14.41 1.93 2.21 0.98

F 0.06 0.05 - - - - 0.35 0.00 0.02
Total 99.85 99.97 99.81 99.28 99.38 100.9 99.45 99.25 99.75
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Table 2. Cont.

Sample GUA−50C1 GUA−08 GUA−53

Type Columbite−1 Columbite−1 Columbite−2

Point_ID 1-core 1a-rim 1b-rim 7-core 7a-rim 7b-rim 3-rim 4b-rim 4b-core

Rock type Syenogranite Greisen Syenogranite

Structural formulae based on 3 cations and 6 oxygens

W6+ 0.062 0.062 0.066 0.027 0.023 0.028 0.026 0.030 0.022
Nb 1.749 1.501 1.480 1.758 1.496 1.686 1.856 1.786 1.867
Ta 0.078 0.313 0.319 0.145 0.421 0.233 0.030 0.070 0.034
Ti 0.093 0.101 0.106 0.043 0.039 0.038 0.064 0.089 0.061
Zr 0.008 0.006 0.009 0.004 0.003 0.002 0.006 0.005 0.005

Sb5+ 0.001 - - - - - - 0.001 -
V3+ 0.001 - - 0.003 0.001 - - - -

Y - - - - - - 0.005 0.001 0.003
Gd 0.001 0.000 0.001 - - - 0.002 - -
Yb 0.001 - 0.001 0.001 0.001 0.001 0.004 0.001 0.005
Th - - 0.001 - - - - 0.001 -
U - 0.001 0.001 0.001 - - - 0.001 -
Pb 0.001 0.001 0.001 0.001 0.001 0.001 - - 0.001
Si 0.003 0.004 0.005 0.007 0.004 0.004 0.004 0.008 0.005
Al 0.011 0.001 0.003 0.002 0.002 0.002 0.001 0.013 0.001
ΣB 2.009 1.991 1.993 1.992 1.993 1.995 1.999 2.006 2.014

Fe2+ 0.837 0.870 0.864 0.822 0.874 0.849 0.816 0.638 0.806
Mn 0.174 0.181 0.181 0.208 0.159 0.177 0.212 0.398 0.213
Mg 0.001 0.001 0.001 0.001 0.001 0.001 - - 0.001
ΣA 1.012 1.052 1.047 1.031 1.035 1.027 1.029 1.036 1.020

#Mn 0.172 0.172 0.174 0.202 0.154 0.172 0.206 0.384 0.209
#Ta 0.043 0.172 0.177 0.076 0.220 0.121 0.016 0.037 0.018

#Mn: Mn/(Mn + Fe); #Ta: Ta/(Ta + Nb).
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variations for the columbite-crystals from the Desemborque Pluton. 
Figure 6. Columbite-group classification diagram with the Fe–Mn and Nb–Ta compositional variations
for the columbite-crystals from the Desemborque Pluton.

The main chemical characteristics of the Desemborque columbite crystals are shown in Figure 7
and may be described by the compositional variations involving either single-site substitutions such
Nb↔ Ta and Mn↔ Fe, or the coupled substitution represented by the following reaction:

2(V,Nb,Ta,Sb)5+
↔ (Si,Ti,Zr,Th,U)4+ + (W)6+ (1)
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vs. Nb plot; (b) Mn vs. Fe plot; (c) R4+ + R6+ vs. 2R5+ plot.

All cationic substitutions yield good correlations (determination coefficient r2 in between 0.94 and
0.98). Compositional variations between the columbite types are, in general, limited to the columbite-1
zoned crystals which present a significant increase of Ta and somewhat of Fe from the core to the
rims of compositions (Figure 7a,b). Nevertheless, the correlation between Mn and Fe shows that
the columbite-2 crystals have rather larger variations (Figure 7b). Our data set also shows that both
columbite-1 and -2 types indicate good balancing according to the coupled substitution scheme in
Figure 7c, which gives the best correlation (r2 = 0.98).

4.2.2. Trace and REE Element Compositions

Representative trace element analyses for the investigated columbite crystals are given in Table 3
and the complete dataset in Supplementary Table S2. Multielement and rare earth patterns are shown
in Figure 8. Trace element patterns for columbite crystals exhibit some differences relative to those
from the syenogranite and the greisen, especially the negative anomalies of Y and Th and the strong
positive anomaly of U (Figure 8a). In general, columbite crystals are relatively enriched in most of the
HREE and HFSE relative to corresponding whole-rock compositions.
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Figure 8. Chondrite normalized (a) trace element and (b) REE patterns for columbite crystals from
the Desemborque Pluton. In the (a) diagram, the corresponding whole-rock patterns are also plotted.
The data were normalized to the chondrite values of Reference [35].

The REE patterns for all columbite crystals show a rather steeply-rising slope due to the relative
enrichment of HREE over the LREE (28 < YbN/CeN < 3505), with negative Eu anomalies [Eu/Eu* �
EuN/(SmN*GdN)1/2] varying from 0.04 to 0.28 (Table S2). Comparing the columbite-1 and -2 crystals,
the later present higher REE abundances

∑
REE up to 3718 ppm, while the former register

∑
REE up to

1362 ppm. The most contrasted REE pattern is observed in one columbite-2 crystal for the syenogranite,
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which has the highest REE abundances, especially the LREEs (1- to 2- fold higher than the others),
with a contrasted LREE flatter pattern (SmN/LaN � 1.38).

Table 3. Representative LA-ICP-MS trace element analyses of the Desemborque columbite crystals.

Sample GUA−08 GUA−53

Rock Greisen Syenogranite
Mineral Columbite 1 Columbite 2

Point 1-r 2σ 1-c 2σ 5-c 2σ 7-c 2σ 8-c 2σ

Li (ppm) 86.29 18 66.28 15 b.d.l 1.5 3.38 2.3 16.2 5.6
Sc 360 33 287.1 27 274 29 286 90 694 232
Ti 3860 333 3438 302 3279 353 3959 855 6443 1475
Rb 254 46 258 48 b.d.l 0.8 2.78 1.6 13.2 6.4
Sr 5.15 1.4 0.82 0.54 0.49 0.4 110 41 1.96 1.2
Y 203 16 174 14 160 14 2421 1184 397 207
Zr 1921 304 903 147 752 158 788 275 388 146
Sn 700 62 707 63 507 54 295 59 3340 694
La 0.72 0.6 1.68 0.8 0.62 0.4 90.6 38 8.17 4.1
Ce 3.87 1.2 4.01 1.3 1.95 0.7 196 68 20.2 8.2
Pr 0.83 0.6 1.00 0.6 b.d.l 0.4 32.7 14 4.03 2.2
Nd 11.01 8.1 14.55 9.6 9.11 7.9 147 27 27.2 13
Sm 7.86 4.6 12.06 5.8 7.04 3.8 78.1 13 17.9 7.9
Eu b.d.l 0.6 b.d.l 0.7 0.93 0.9 1.35 1.2 0.77 1.2
Gd 26.08 8.0 20.02 7.1 14.44 5.1 144 67 51.4 28
Tb 9.46 2.2 8.17 2.0 6.81 1.9 48.6 20 19.3 9.0
Dy 117 23 106 22 82.25 21 443 244 238 142
Ho 42.23 5.4 37.9 5.0 26.65 3.8 128 57 55.3 26.4
Tb 9.46 2.2 8.17 2.0 6.81 1.9 48.6 20 19.3 9.0
Dy 117 23 106 22 82.25 21 443 244 238 142
Ho 42.23 5.4 37.9 5.0 26.65 3.8 128 57 55.3 26.4
Er 184 27 179 27 140 25 581 331 251 153
Dy 117 23 106 22 82.25 21 443 244 238 142
Ho 42.23 5.4 37.9 5.0 26.65 3.8 128 57 55.3 26.4
Er 184 27 179 27 140 25 581 331 251 153
Tm 51.51 8.7 58.1 9.8 40.6 8.5 134 33 46.4 13.1
Yb 796 172 690 152 522 145 1471 406 472 142
Lu 113 12 114 12.3 85.1 11 225 63 65.0 20
Hf 614 71 208 31 161 25 117 48 22.2 13
Pb 20.03 4.9 36.42 7.0 15.73 3.9 82.1 34 307 137
Th 30.25 4.6 16.71 3.1 6.07 1.5 90.5 35 149 62.1
U 409 60 167.3 26 89.22 18 175 89 492 266

b.d.l.: below detection limit; 2σ: 2 sigma error.

5. Discussion

5.1. Genesis of Columbite in the Desemborque Pluton

The explanation of the origin of columbite-group minerals (CGM) is always a challenge given
the variable textures, alterations, and compositions recorded by these minerals during multiple
stages of their crystallization. In granites, the formation of CGM have been extensively associated
with magmatic and hydrothermal processes or a combination of both [16–20,36–41]. In this study,
we suppose that the rare and local occurrence of columbite in the Desemborque pluton is indicative of a
unique hydrothermal origin, as supported by the majority of columbite-1 crystals in the greisen and the
replacement textures of columbite-2 crystals with other late- to post-magmatic accessory minerals in
the syenogranites. However, the contrast of textural and geochemical features between the columbite-1
and -2 crystals suggest distinct mechanisms of formation.
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In the case of columbite-1 group, zoning patterns within crystals indicate two hydrothermal
substages of crystallization during the post-magmatic evolution: the first stage is represented by
the formation of Nb-rich cores crystals, while the second stage is characterized by the subsequent
crystallization of the Ta-rich rims around the former cores. These patterns are typical in CGM and
have been broadly explained either by disequilibrium crystallization processes or differences in
solubility, given the general tendency of Nb to crystallize prior to Ta during evolutionary stages [41–49].
Additionally, the somewhat higher abundances of the HFSEs (such Ti, Zr and Hf) of the Ta-rich rims
crystals relative to the Nb-rich cores also suggest differentiated hydrothermal substages.

On the other hand, the formation of the columbite-2 crystals is interpreted as a result of
dissolution-reprecipitation processes due to hydrothermal fluid-induced alterations at the final stage
of the post-magmatic evolution. This can be explained by the disequilibrium textures, such as the
resorption of the marginal and inner parts of fluorite and cassiterite shown in Figure 5c,d, which indicate
that columbite-2 crystals formed as late replacements of these minerals. Moreover, the secondary
patchy textures among the columbite-2 crystals reinforced the influence of post-magmatic hydrothermal
fluids altering these crystals, which also could be responsible for the significant enrichment of REEs, Y,
U, Th, Pb and Ti relative to the columbite-1 crystals.

5.2. Comparision with Other Columbite Occurrences from Rare-Granites And/Or Granitic Pegmatites Worldwide

In Figure 9, we compiled current compositional data of columbite-group minerals (colored lines)
in granites and related greisens and used the previous schematic compilation of the #Ta and #Mn
compositional evolution trends of columbite-group minerals from rare-metal granites worldwide
(black lines) given by Reference [40] in order to compare with our results. The evolution trend of the
columbite-1 crystals in the Desemborque Pluton is characterized by moderate variation of the Ta/(Ta
+ Nb) ratios (from 0.02 to 0.26), with a vertical trajectory that could be compared to those columbite
trends from the Podlesí and Geyersberg Granites (Figure 9). The evolution trend of the Desemborque
columbite-2 crystals shows a contrary horizontal and short trajectory, with limited variations of the
Mn/(Mn + Fe) ratios (from 0.20 to 0.38), and differs from the others columbite trends compiled here.
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Detailed data on trace elements of CGM in granites and/or greisens are rarely found or absent in
the literature. Nevertheless, a robust compilation of main and trace element compositions of CGM in
typical pegmatites from relevant Ta–Nb–Sn provinces worldwide is provided by References [10,11].
We used the median trace element values of only columbite-(Fe) minerals from the mentioned dataset
and plot with our average trace elements compositions, as shown in Figure 10. Trace element patterns
of all the samples exhibit a clear LREE depleted and HREE enriched shape; U, Zr, Hf, and W are
systematically enriched with respect to chondrite values, while Eu, Pb, Sn, Ti, Li, and Al are usually
depleted. The behavior of elements such as Y, Th, and Sc are broadly variable among all columbite-(Fe)
compositions, which can be attributed either to melt compositions and/or co-precipitation with other
phases. For example, in the Desemborque Pluton, the negative anomalies of Y and Th for both
columbite-1 and -2 crystals can be explained by the competition with xenotime within the hosting rocks.
For the other examples presented here, we require further information on the mineral crystallization
sequence from the hosting pegmatites which is far beyond the scope of this work. We also observed
that our columbite-(Fe) compositions have much higher trace element abundances, especially for the
LRREs, than the majority of the columbite occurrences worldwide (Figure 10).
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6. Conclusions

Petrographic examination and geochemical data for columbite-(Fe) in syenogranites and related
greisen from the reduced A-type Desemborque Pluton in the Graciosa Province (S-SE Brazil) indicate
that the occurrence of columbite in the studied rocks is mainly associated with hydrothermal origin
during the post-magmatic stage of crystallization. Textural and compositional variations of this mineral
reveal two main textural types, named columbite-1 and columbite-2, which are interpreted as being
formed by distinct mechanisms of crystallization. The columbite-1 is characterized by zoned crystals,
which record two hydrothermal stages of crystallization: an early Nb-rich core, and then later Ta-rich
rims. In contrast, columbite-2 is defined by irregular crystals with patchy textures, and its formation is
related to disequilibrium processes driven by fluid-induced hydrothermal alterations involving the
partial replacement of fluorite and/or cassiterite at the final post-magmatic stage.

The main chemical features of columbite types show that the columbite-1 crystals form an
evolution trend with a significant increase of Ta/Nb ratios, while the columbite-2 crystals show a
distinct trend with a limited increase of Mn/Fe ratios. Additionally, trace element compositions show
that all columbite crystals are relatively enriched in HREEs and HFSEs; however, the columbite-2
type presents higher abundances of REEs, Y, Th, U, Pb, Sc, and Sn relative to the columbite-1 crystals.
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The chemical contrasts among the columbite types are related to disequilibrium crystallization processes
(columbite-1) and to hydrothermal alterations during the post-magmatic evolution (columbite-2).
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