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Abstract: This study characterises the mortar materials used in the construction of walls and floors
at the Arroyo de la Dehesa de Velasco site, located near the Roman city of Uxama Argaela (the
modern Burgo de Osma—Ciudad de Osma, Soria, Spain). Multilayer mortars have been characterised
by petrographic, mineralogical (X-ray diffraction and scanning electron microscopy with energy
dispersive analyses and geochemical analysis (X-ray fluorescence). Additionally, radiocarbon dating
of the mortar binder fraction was performed in order to establish the chronology of the building in
the absence of other archaeological chronological records. The results showed that similar siliceous
aggregates and lime binders were used in the fabrication of multilayer system mortars. Some
multilayer wall mortars show ceramic fragments or brick powder to produce hydraulic mortars and
improve the resistance to moisture. The raw materials used for the construction of the site were of local
origin and the construction was built during the first century BC, according to radiocarbon dating.
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1. Introduction

Mortars are an essential artificial material used since ancient times to support walls and substrates
of buildings, and their durability is related to the nature of the components and manufacturing
methods. Mortars consist of a mixture of aggregates and binder related both to the geographic location
of the building and to the historical context in which the mortars were manufactured [1-8]. The study
of mortars offers clues about raw materials and their provenance as well as on the manufacturing
technology [9-17]. The characteristics of the mortars can be used to determine the chronological
sequences of the construction [18-21] and they can be used for building dating [22-28]. Mortars also
provide keys to restoration and conservation issues [29-33] and for the formulation of new composite
materials [34-39]. Although the ancient Romans detailed the recipes and technological guidelines for
building construction, putting them into practice by the craftsmen was no small feat [40,41]. According
to the primary function or the finishing, different technical solutions were applied in historical buildings
and constructions and these techniques were extensively used all around the Roman Empire.

The Roman archaeological site of Arroyo de la Dehesa de Velasco was accidentally discovered
during the construction of the Duero motorway (A-11) between the towns of Burgo de Osma and
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Santiuste (Soria, Spain). It provides an excellent opportunity for the study of wall and floor structure
mortars. The site is located in the eastern surroundings of the Roman city of Uxama Argaela. This
city is in the plain of the medium-high course of the River Douro, close to the River Abién, where
Quaternary materials are abundant as well as Paleogene and Neogene deposits [42]. The ancient city
of Uxama Argaela was an important Celtiberian city occupied by Romans during the war against
Numantia in northern Spain. The Romanisation of the region began slightly before the first century BC
and intensified in the first century AD, leading to the construction of a Roman city with such public
buildings as forum, temple, basilica, baths, aqueduct and cisterns [43—45]. The economic potential of
Uxama Argaela was attributable to its strategic location on one of the most important roads in the
interior of the Iberian Peninsula, connecting Asturica Augusta (Astorga) to Caesar Augusta (Zaragoza)
and connecting the city with other regions in Hispania and Gaul. During the second century AD, the
city experienced great economic development evidenced by the construction of numerous public and
private buildings, and several settlements corresponding mainly to villae outside the city. The urban
function of the city prevailed until the end of Late Antiquity [46,47]. According to archaeological data,
the studied site corresponds to a bath complex divided into different rooms, possibly of public use.
The chronological sequence of the site is not clear because no archaeological materials susceptible to
dating were found. Coatings of stucco, the pictorial elements and stylistic features could point to a
relative chronology of about the second century AD.

The excavation at the surrounding settlement of Uxama Argaela allows to study the building
technology used outside the urban core. The multi-analytical approach of mortar including macroscopic
and microscopic observations, mineralogical and chemical analysis from the different rooms of the
studied building will provide information about the manufacturing procedure. To this end, polarised
light microscopy, scanning electron microscope, X-ray diffraction and X-ray fluorescence techniques
were performed. Since the chronological sequences of rooms are not clear, radiocarbon dating by
means of accelerator mass spectrometry on the binder fraction of the mortars were used to establish
the chronology of the structure.

The aim of this work is to observe the application of classical construction techniques, to determine
the provenance of materials and to estimate the date of building construction. The study will also
allow to observe variations on the theoretical Roman technical guidelines.

2. Materials and Methods

2.1. Materials

The mortars were collected from different rooms in the Roman bath complex. Two mortar samples
were collected from floor structures: Sample AD-192 corresponds to a three-layer mortar whereas
Sample AD-114 corresponds to a single layer. Six multi-layered plasters from walls of different rooms
of the building (Samples AD-132, AD-134, AD-243, AD-058, AD-124 and AD-242) were sampled
(Figure 1). Since most samples show multilayer features, the layers were labelled from the outermost
layer, LO, corresponding to Layer 0, and successively towards the inside until the innermost layer, L5,
corresponding to Layer 5. In this study, each layer has been considered as a separate sample.

In the absence of an archaeological record to establish the chronology of the building, two wall
plasters were analysed in order to determine the age of construction. The three-layer plaster Sample
AD-132 could correspond to the original construction phase, whereas the four-layer plaster Sample
AD-242 could correspond to a potential modification or improvement of the building. For radiocarbon
dating, cocciopesto-free layers were selected, in order to avoid the problems related to hydraulic phases
contamination [28,48-50].
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Figure 1. Excavation plan of Arroyo de la Dehesa de Velasco site (Burgo de Osma-Ciudad de Osma,
Soria, Spain) and location of the samples in the labelled rooms (A, B, C, D, E, F, G and H). Purple shapes
correspond to bridge footings traces of motorway A-11, green circles correspond to wall samples and
blue stars to floor samples.

2.2. Methods

The entire mortars were extracted parallel to the wall or floor substrate using a water-cooled
circular saw. After cleaning, mortar samples were cut perpendicularly to the bedding to observe
macroscopic features and the layer profile of the structural mortars, such as colour, thickness, grain
shape and size of aggregates.

The mortar component composition, the mineralogy of the binder and the aggregates, grain size
and morphological relationships were characterised by petrographic analysis. As thin sections as
necessary to complete the total thickness of mortars were obtained. Seventeen thin sections of mortar
samples were analysed by Nikon Eclipse LV100pol polarised light microscopy (Nikon, Tokyo, Japan),
equipped with a DSF-11 digital camera and a DSL-2 control unit.

A JEOL JSM-6400 Scanning Electron Microscope (SEM) (JEOL, Tokyo, Japan) was used for detailed
textural features. Mortar samples were Au-coated to eliminate charging effects. SEM observations
were performed in secondary electron (SE) mode.

The mineralogical composition of the coarse binder fraction (<20 pum) and the potential neoformed
minerals were analysed by X-ray diffraction (XRD). The coarse fraction of the binder was separated
by a settling extraction procedure described in Reference [51]. The mortar sample was crumbled
up manually and disaggregated in ultrapure water raised up to pH = 8 by adding NH,OH using
an ultrasonic bath, and the suspended fraction was extracted from the topmost supernatant to
obtain the <20 microns fraction. Mineralogy was determined on a powder sample using a Philips
X'Pert diffractometer (Malvern PANalytical, Almelo, The Netherlands) equipped with a graphite
monochromator adjusted to Cu-kal X-radiation operating at 40 kV and 20 mA. The data collection
was performed in a continuous scan ranging from 5° to 70° 26 at an acquisition rate of 0.02° 26 per
second. The mineral phase identification and semi-quantitative determinations were performed using
X'Pert HighScore Plus 3.0 software (Malvern PANalytical).

Major element concentrations of the whole layer samples were determined by wavelength
dispersive X-ray fluorescence (WDXRF) using a PANalytical Axios Advanced PW4400 XRF spectrometer
(4 kW Rh anode SST-mAX X-ray tube) at the SGlker Facilities. Fused beads were obtained after heating
(at ~1200 °C for 3 min in Pt/Au crucibles) a mix of 0.2 g of sample with 3.8 g of a lithium borate flux
(Spectromelt A12, Merck, Kenilworth, NJ, USA) and 2 drops of a lithium bromide solution using a
PANalytical Per]’X3 fusion machine. Lower limit of detection for major elements are in the range of
0.01 wt%. The loss on ignition (LOI) was calculated after heating the powder sample at 900 °C.
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The radiocarbon dating of mortar samples was performed on the finer binder fraction
corresponding to 0.5-<2 um fraction of a carefully selected layer of multilayer plaster by the *C
accelerator mass spectrometry (AMS) at Beta Analytic Inc. (Miami, FL, USA) and '*C conventional
ages were calibrated by OxCal v4.2.3 software [52] and the Intcall3 atmospheric calibration curve [53].
The finest binder fraction was obtained by a settling extraction following the procedure described in
References [49,51].

3. Results and Discussion

The macroscopic characteristics are summarised in Table 1. The macroscopic characteristics of the
floor mortars are different since Sample AD-192 shows a multilayer system whereas AD-114 is a single
layer mortar. Mortars from the walls all consist of a multilayer system or multi-layered plasters formed
by three to six layers. Samples AD-132, AD-134, AD-243 and AD-058 are formed by three layers and
AD-124 and AD-242 by more than five layers (Figure 2).

Table 1. Macroscopic and petrographic characteristics of the mortars.

Aggregates
Sample Layers Th:::l:lr:)ess Grain Size Wentworth Nature
Mean Max Class Sorting Minerals Rock Fragments
AD-132 LO 0.1 0.25 1 Fine sand PS Cal Limestones
L1 1.5 0.6 3 Coarse sand VPS Qz Qzt >> Limestones > Lumps
L2 2 0.8-1 5 Coarse sand MS Qz >> Fsp Qzt >> Limestones > Lumps
AD-134 L0 0.2 0.3 2 Fine sand VPS Cal Limestones
L1 2 0.6 3 Medium sand MS Qz >> Cal Qzt> Sandstones >>
Limestones
L2 2 0.6 4 Small pebbles MS Qz >> Cal QZbLTQ‘a“dStones i
imestones
AD-242 LO 0.1 0.3 1.5 Fine sand VPS Cal Limestones
Lla 2-4 1 2 Fine sand MS Qz > Cal Qzt >> Sandstone > limestone
Lib 0-2 06 15 Medium sand PS Qz Qzt >> Sandstones >>
Limestones
Wall L2 2 12 5 Coarse sand PS Qz Ceramic >> Qzt
L3 25 0.2 3 Fine-medium sand VP Qz > Cal Qzt >> Ceramic powder
L4 2 0.11 2 Very fine sand MS Qz Sﬂts“’“eg Limestone >>
eramic
AD-243 Lo 0.2 0.3 1.5 Medium sand VPS Cal > Qzt Limestones
L1 2 0.4 2 Fine sand WS Qz >> Fsp Qzt >> Lumps
L2 25 1 4 Medium-coarse PS Qz >> Fsp Qzt > Limestones > Lumps
AD-124 LO 0.1 0.2 1 Silt PS Cal Limestones
Lla 2 0.3 2 Medium sand PS Qz > Cal Qzt >> ceramic
L1b 25 0.6 2 Coarse sand MS Qz Qzt >> Limestone
L2 1.5 0.6 3 Coarse sand PS Q> Cal >> Fsp Ceramic >>> Qzt
L3 1.5 0.7 3 Coarse sand MS Qz >> Fsp Qzt >> Limestones >> Lumps
L4 1 1 5 Very coarse VPS Qz > Cal Qzt >> Limestones > Lumps
L5 1 04 5 Medium sand PS Qz > Cal Qzt > clays >> Limestones
AD-058 Lo 0.1 0.3 1 Medium sand PS Cal > Qzt Limestones
L1 1.5 0.4 25 Medium sand PS Qz >> Fsp Qzt >> Lumps
L2 25 0.7 25 Coarse sand MS Qz >> Fsp Qzt >> Lumps
AD-114 L1 15 0.24 0.6 Medium sand WS Cal > Qz, Fsp Clay
AD-192 L0 0.1 0.2 2 Silt Ps Cal Limestones
Floor 14 55 9 12 Small pebble MS Qz Limestones
L2 4-6 7 16 Medium pebble PS Qz Qzt

Qz: quartz; Cal: Calcite; Fsp: Feldspar; Qzt: Quartzites; WS: well sorted; MS: medium sorted; PS: poorly sorted;
VPS: very poorly sorted.

Wall mortars are composed of a fine light-coloured matrix with coarse-grained rock fragments
visible to the naked eye as aggregates. Rock fragments are mainly sub-rounded in shape, of variable
colour, from milky to yellow-orange-brown, and composed mainly of siliceous detrital sands (quartz
and quartzites) and a minor amount of subangular limestones and sandstones. Voids are common
both parallel to the layers and randomly oriented, probably formed by the dissolution of grass stalks.
The binder is light in colour from creamy to orangish, and white lumps or scarcely mixed lime
inclusions [54-56] are abundant, ranging from macroscopic to microscopic scale. Vegetable fibre
remains, probably straw, are observed in most mortars, particularly in the inner layers. In most cases,
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cohesion and adhesion of layers in the mortars is excellent. Only two wall mortars show reddish-pinkish
layers due to the occurrence of ceramic fragments and/or powder, known as cocciopesto.

AD242 AD132 AD192..

Figure 2. Representative samples of mortars from the Arroyo de la Dehesa de Velasco site. Sample
AD-242: Multilayer wall plaster with cocciopesto layer. Sample AD-132: Two layers of wall siliceous
plaster with an outermost marmorino layer. Sample AD-192: Multilayer floor mortar with three layers,
L0 marmorino layer, L1 crushed limestone and L3 siliceous pebbles with calcite binder.

All wall plasters display an outermost, very-thin whitish pictorial layer (1-2 mm) known as
the marmorino layer (LO) [40,57-59]. Towards the inside, two layers (L1, L2) can be distinguished
composed of sandy siliceous aggregates of whitish-greyish colour in a calcitic binder. Each layer 2
cm in thickness contains homogeneous grain-size aggregates, and both layers have similar aggregate
compositions differing in aggregate sorting. The outermost layer (L1) displays a fine grain size, whereas
the innermost layer (L2) shows a coarse grain size. Samples AD-124 and AD-242 consist of six and
five layers respectively, and are characterised by reddish-pinkish layers enriched in crushed ceramic
materials intentionally added. Besides, these mortars show a clayey brownish scratch coat layer in
contact with the wall substrate or a joining coat composed of subangular quartz and feldspars with
scarce lime lumps.

The two floor mortar samples are quite different: Sample AD-192 corresponds to a multilayer
system consisting of three layers with a light-coloured matrix. The outermost layer (LO) is a
marmorino-like layer. The upper layer (L1) consist of aggregates of crushed limestone, homogeneous
in grain size, whereas the inner layer (L2) shows rounded siliceous pebbles of more heterometric
grain size (Figure 2). Layer L2 additionally contains moulds of the large pebbles probably used in the
statumen or a preparatory bottom layer formed of pebbles in order to stabilize the ground [40,57-59].
Sample AD-114 is characterised by only one sandy-clayey brownish layer with rounded aggregates of
siliceous nature and sand-grain size.

The petrographic analysis is able to characterise the aggregate mineral composition and the binder
features (Table 1) [60]. Wall plaster aggregates possess a grain size ranging from fine to coarse sand,
according the classification in Reference [61], and subangular to subrounded shape [62]. Their nature
corresponds to quartz, with a minor amount of potassium feldspar, and the rock fragments are mainly
quartzite, limestones and arenites. Quartz and quartzites generally possess a high sphericity index and
subrounded shapes, whereas limestone and sandstone fragments are subangular with low sphericity.
Three-layer wall plasters show grain size grading of aggregates from coarse grain size in the inner
layer, L2, to fine grain size in the outer layer, L1. Besides, each layer shows a distinctive sorting leading
to layering. Vegetable fibre remains are usually observed in some layers, mainly in the inner layers.
Multilayer wall mortars show mainly similar features related to grain size distribution (Figure 3). In
contrast, distinctive aggregate sorting patterns are observed in each layer, varying between poorly to
moderately sorted [63,64]. The ceramic fragments in the cocciopesto layer are poorly sorted showing
angular shapes and low sphericity and sometimes showing reaction rims. The outermost marmorino
layer shows angular carbonate aggregates embedded in a micritic matrix with an aggregate/binder ratio
of <1 or nearly 1 (Figure 3). The innermost clayey mortars corresponding to the scratch coats or joining
coats differ from the other wall mortar layers in the aggregate nature and grain size distribution. This
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layer is characterised by a high density of low-roundness quartz and potassium feldspar aggregates of
homogeneous grain size showing an aggregate/binder ratio of >1.

N
1000 um &

Figure 3. Photomicrographs of the different layers (LO-L6) in the AD-124 wall mortar.

Floor mortars are different since Sample AD-114 has a single layer and Sample AD-192 has
a multilayer system of three layers. The floor AD-114 shows a homogeneous medium-grain size
of subangular quartz aggregates in a matrix composed of a mixture of lime and clay with an
aggregate/binder ratio of >1. Sample AD-192 shows a clear grading upwards from medium-pebble
grain size in the innermost layer to silt in the marmorino layer. The layers contain aggregates of different
nature. The innermost layer, L2, is composed of centimetric very rounded quartz and quartzite rock
fragments, whereas layer L1 is formed by centimetric angular limestone fragments of heterogeneous
origin, such as nodulous limestones, miliolid limestones, bioclastic mudstones and recrystallised
limestones [60] The outermost marmorino layer shows angular carbonate aggregates embedded in a
micritic matrix.

The multilayer system in the walls and in the floors was created according to the building methods
documented by Vitruvius [40] and used in numerous Roman sites. The mortar technology usually
consisted of two or three layers under the pictorial layer promoting a suitable support for wall paintings.
The wall mortars were composed of a mixture of lime and sands, with an aggregate/binder ratio of 2:1 or
3:1, with a slight increase in binder content towards the outside. The cocciopesto layers were probably
manufactured to confer hydraulicity to mortars, improving the strength and moisture resistance [65-67].
Similar technology was used for floor substrates, which were manufactured according to recipes
described by ancient authors [40,41]. Floor mortars consist of an inner layer formed by a mixture of
natural aggregates and binder with an aggregate/binder ratio of >1 and an upper layer consisting
of a mixture of crushed coarse limestone aggregates and binder, with an aggregate/binder ratio of
<1. No crushed bricks were used in the floor layering. Both wall and floor structures were finished
with a thin lime, with a euhedral calcite or limestone fragments layer or a marmorino layer (Figure 3).
The microtextural feature of the marmorino layer can be observed in detail by SEM, revealing a
microcrystalline calcite (Figure 4A). SEM analyses also allow the observation of some vegetal ghosts
since druse habit calcium carbonate is formed, covering the pre-existing vegetal remains (Figure 4B).
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Figure 4. Scanning electron microscope (SEM) images of: (A) bulk calcite of the marmorino layer, (B)

calcite growing on a vegetable fibre, and (C) laminar kaolinite mineral among the calcite binder.

Multilayer systems are common in important buildings and were a common practice in ancient
Roman territories [59,68-70], applied under pictorial-bearing walls and on floor substrates to promote
their durability and conservation [71,72]. Although very little remains of the building have been found,
the use of these constructive techniques indicates the social and/or economic significance of the Arroyo
de la Dehesa de Velasco site.

Table 2 summarises the XRD mineralogical composition of the coarse fraction (<20 pm) of the
mortar binder. The binder fraction is composed mainly of calcite and, in minor amounts, phyllosilicates
and quartz. Clay minerals are represented by kaolinite and illite. SEM images show a planar-habit
slightly-folded kaolinite-like mineral (Figures 4C and 5). The lack of clay minerals in some samples
does not mean that they are totally absent but that they may be under the detection limit.

Table 2. X-ray diffraction (XRD) mineralogical composition of the coarse fraction of mortar binder.

Sample Calcite Phyllosilicates Quartz Kln/Ilt
AD-132 99 0 1 -
AD-134 98 0 2 -
AD-242-L1 99 0 1 -
AD-242-12 Wall 59 36 5 13/23
AD-242-1L3 68 31 1 28/3
AD-243 99 0 1 -
AD-124-1.0 76 18 6 9/9
AD-124-11 81 18 1 9/9
AD-124-12 80 16 4 0/16
AD-124-13 82 15 3 4/11
AD-124-1.4 98 0 2 -
AD-124-L5 85 13 2 6/7
AD-058 77 23 1 17/6
AD-114 Floor 76 20 4 11/9
AD-192-L1 99 0 1 -
AD-192-12 99 0 1 -

In bold lettering: cocciopesto layer. Kin: kaolinite, Ilt: illite, — not detected. Values in relative percentages.

The mineralogy of floor mortar binder agrees with the petrological study. Single layer sample
AD-114 shows a large amount of phyllosilicates composed of a mixture of illite and kaolinite minerals
according to the sandy-clayey nature of the mortar (Table 2). In contrast, the binder of Sample AD-192
is formed by calcite. For the three-layer wall mortars, only one whole sample has been analysed by
XRD because layering is attributable to grain size distribution, as the petrographic study has revealed.
Among the three-layer samples, the binder of AD-058 stands out because of its high phyllosilicate
content, mainly kaolinite, whereas the binders of the other samples are only formed by calcite. The
multilayer wall mortars AD-124 and AD-242 also show a large amount of phyllosilicates. In most layers,
kaolinite is more abundant than illite, and illite is more abundant than kaolinite only in cocciopesto



Minerals 2020, 10, 393 8of 17

layers. The large amount of illite in cocciopesto layers is because of the intentionally added ceramic
fragments. The occurrence of kaolinite in multilayer mortars with cocciopesto layers can suggest
intentionality in mortar manufacture.

counts
1000 l
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Figure 5. Representative XRD patterns of the AD-124 mortar binder: (a) XRD pattern of binder from
layer L2 with ceramic fragments, (b) XRD pattern of binder from layer L3 without ceramic fragments.
(Cal: calcite, Qz: quartz, Kln: kaolinite, I1l: illite, Ame: amesite).

Crushed ceramics were added to confer hydraulic properties to non-hydraulic mortars. The
reaction rim surrounding the crushed ceramics suggests the occurrence of aluminosilicate hydrated
products formed by the reaction aluminosilicate phases in the presence of water with the calcium
hydroxide. Although, hydraulic newformed phases were not easy to identify by XRD due to their
low crystallinity and low concentration in the binder [73-75]. However, in the binder of cocciopesto
layers, reflections at 7.03 A and 3.51 A can be attributed to amesite (Mg Al SiO5 (OH)4), which is a
magnesium aluminosilicate hydrate phase (M-A-S-H) (Figure 5a). On the contrary, these reflections
are not observed in the binder of layers without ceramic fragments, where only calcite and quartz were
identified (Figure 5b).

Cocciopesto mortars have often been used for waterproofing cisterns and waterways [6,66,75,76].
The composite mortar made by packing cocciopesto-bearing and cocciopesto-free layers not only confer
resistance to the moisture but also improve the mechanical properties and stability of mortars [67,77].

The chemical composition of all the mortar samples is detailed in Table 3. The chemical composition
is related to the composition of aggregates and binder. Mortars show a high content of silica, ranging
from 43 wt% to 64 wt%, and of lime, ranging from 16 wt% to 27 wt%, according to the siliceous
aggregate and binder nature, respectively. Al;O3 ranges between 0.8 wt% and 8.8 wt%, Fe; O3t between
0.2 wt% and 2.8 wt% and K,O between 0.3 wt% and 1.6 wt%.

Cocciopesto layers in the multilayer AD-124 and AD-242 mortars display the highest values
of aluminum, iron, potassium and titanium, owing to the occurrence of ceramic and tile fragments.
However, other layers in these samples also display relatively high contents of these elements,
suggesting the presence of ceramic powder in the mortar. Kaolinite-rich sample AD-058 does not show
high aluminum values, suggesting that the mineralogical contents determined by XRD are significantly
over-quantified. The two multilayer mortars are quite different in their chemical composition, and the
higher calcium content of the AD-124-1 layer is because of the lump abundance.
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Table 3. Major element chemical composition of mortars by X-ray fluorescence (XRF) analysis (in wt%).

Sample Si02 A1203 F8203t MnO MgO CaO NaZO Kzo TiOz P205 SO3 LOI
AD-132 5297  0.87 0.31 0.01 013 2212  0.00 0.32 0.07 0.04 0.04 2290
AD-134 5854 097 0.38 0.02 0.24 1917 0.01 0.32 0.07 0.07 002 19.11
AD-242-1 52.58 0.82 0.20 0.01 0.16 22.47 0.00 0.36 0.06 0.06 0.13 22.40
AD-242-2 45.06  8.79 2.75 0.03 0.56 19.55  0.04 1.58 0.40 0.16 0.21 20.09
AD-242-3 4335  3.09 0.86 0.01 049 2481 0.03 0.50 0.13 0.08 014  25.09
AD-242-4 4464  4.63 1.38 0.03 032 2313 0.04 1.09 0.26 0.18 0.07  22.66
AD-243-1 61.31 0.88 0.24 0.01 0.26 1749  0.00 0.39 0.06 0.05 0.02 1892
AD-243-2 6429 092 0.25 0.01 0.21 16.21 0.00 0.43 0.08 0.04 002 17.26
AD-124-1 4237 1.65 0.58 0.01 0.25 26.77 0.01 0.42 0.09 0.04 0.07 26.59
AD-124-2 3958  7.39 2.28 0.02 046 2344 0.04 1.30 0.33 0.10 020  24.06
AD-124-3 5517 098 0.28 0.01 024 2035 0.01 0.32 0.06 0.03 0.04 21.68
AD-124-4  50.41 0.87 0.28 0.01 0.21 23.06  0.00 0.30 0.07 0.03 0.03 2361
AD-124-5 4994  3.02 0.94 0.02 0.31 2042  0.05 0.79 0.20 0.07 0.03 2278
AD-058  59.07 0.81 0.43 0.01 0.13 19.62  0.00 0.32 0.05 0.07 002 1925
AD-114  62.00 1.81 0.40 0.01 0.22 16.87  0.00 0.87 0.13 0.07 0.06  15.93

Fe,Ost: Total iron reported as Fe, O3, LOI: Loss on ignition.

The compositional variation of mortars is plotted in binary diagrams (Figure 6). Diagrams of
CaO/Al, O3 ratio versus oxides allow to distinguish two groups of samples. The group with low
CaO/AlyO; ratio shows high contents of iron and potassium and low silica content corresponding to
clay-rich mortars and cocciopesto mortars, and the group with high CaO/Al,Os ratio displays low
iron and potassium contents, and a high content in silica corresponding to siliceous sandy mortars.
The CaO content can be related with the variable amount of lumps in some layers. Nevertheless, the
lime content is similar in both groups and is not a distinctive chemical feature. Thus, geochemical
differences accord with the mineralogical features of the mortars.
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Figure 6. Binary diagrams of CaO/Al,O3 versus SiO,, CaO, Fe,O3 and K,O oxides plotting the chemical

composition of Arroyo de la Dehesa de Velasco site mortar layers. Green symbols correspond to layers

with ceramic fragments. Blue symbols correspond to clay-rich scratch coat layers from plasters and to

sandy-clayey floor mortar.
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Hierarchical clustering analysis on the basis of chemical data discriminates two main clusters of
mortars (Figure 7). The first cluster groups AD-124-2, AD-242-2, AD-242-4, AD-242-3 and AD-124-5
samples enriched in Al,O3, TiOy, Fe;O3 MgO and K,O corresponding to layers with ceramic fragments
and to clay-rich scratch layers. Two sub-clusters can be distinguished, one including layers AD-124-2
and AD-242-2 related to ceramic-rich aggregate layers, and the other including AD-242-4, AD-124-5
clay-rich layers and the AD-242-3 layer with a ceramic powder-rich layer. The second cluster includes
Samples AD-058, AD-134, AD-114, AD-243-1, AD-243-2, AD-132, AD-124-1, AD-124-3, AD-124-4
and AD-242-1 corresponding to three-layer siliceous mortars, to the innermost siliceous layer of
the floor mortar and clay-free layers of multilayer mortars. Additionally, two sub-clusters can be
distinguished, one group displays high SiO; and low CaO contents (AD-058, AD-134, AD-114, AD-243-1
and AD-243-2 layers), and the second group shows higher CaO and lower silica content related to the
large amount of carbonate-nature aggregates and lime lumps (AD-124-1, AD-124-3, AD-124-4, AD-132
and AD-242-1 layers).
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Figure 7. Dendrogram of the mortars according to their layers. Green symbols correspond to layers
with ceramic fragments. Blue symbols correspond to clay-rich layers and sandy-clayey layer.

According to the mineralogical and petrographic results, raw material typology and provenance
issues can be resolved. Siliceous sands, limestones and ceramic fragments were mainly used for the
mortar. Various Cretaceous limestones outcropping near Uxama Argaela (Burgo de Osma-Ciudad
de Osma) were probably the source for the production of lime. Moreover, limestone aggregates used
for the floor mortars, corresponding to bioclastic limestone with miliolid fragments, indicates that
Hortezuelos and Hontoria del Pinar limestones located to the south of Burgo de Osma could be
the provenance area (Figure 8). Siliceous nature aggregates are the other important materials in the
mixture. These correspond to sands composed mainly of rounded quartz and quartzites. The source of
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such sands can be ascribed to Cenozoic detrital materials, which are very abundant around the site.
However, the exact raw material provenance is difficult to establish because of the monotony of facies,
scarcity of fossil record and the lack of outcrop continuity. Besides, Quaternary fluvial materials from
the Abion River, which are mostly composed of quartz and quartzites, could also be used as aggregates
in the mortar manufacture. The lack of particular markers makes it difficult to fix the provenance
area because lithologies of different ages are mainly composed of similar detrital mineral phases.
Nevertheless, the occurrence of kaolinite allows the provenance of these aggregates to be determined.
Kaolinite-bearing detrital materials of Oligocene age were described near the site [78], pointing to
these materials as the probable provenance for the aggregates. Thus, of the materials used to elaborate
the wall plasters and floor mortars, both lime and aggregates came from the surrounding geological
materials. The use of local materials and the multi-layered manufacture follow the guidelines described
by Vitruvius.

P
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Figure 8. Geological map and location of the Arroyo de La Dehesa de Velasco site (star).

The lack of written sources and archaeological evidence at Arroyo de La Dehesa de Velasco mean
that the date of the building complex is unknown. According to archaeological criteria, two samples
were selected for radiocarbon dating, Sample AD-132 from Room A, corresponding to the original
constructive mortar, and Sample AD-242 from Room C, corresponding to an improvement of the
building. Sample AD-242 presents layers with cocciopesto, but these layers have been avoided since
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dating mortars with cocciopesto can be problematic, especially due to some neoformation minerals
that can interfere [48,49].

Binder fraction between 0.5 and <2 pm of two mortar samples was extracted for radiocarbon
dating following the procedures described in References [49,51]. The siliceous L2 layer of Sample
AD-132 and the L1 layer of Sample AD-242 were selected to obtain the suitable binder fraction. Prior
to dating, the binder fraction XRD was performed to assure the suitability of the selected fraction
(Figure 9). Traces of phyllosilicates leading to contamination are concentrated in the >2 um and <0.5 pm
grain-size fractions (Figure 9a,c). The 0.5-2 um fraction does not show these potential contaminants;
therefore, this binder fraction was selected for dating (Figure 9b).
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Figure 9. XRD patterns of extracted binder fractions of Layer L2 of Sample AD-132: (a) XRD pattern of
>2 um fraction, (b) XRD pattern of 0.5-2 um corresponding to the datable fraction and (c) XRD pattern
of <0.5 um fraction.

The result of 1*C dating of the AD-242 sample is 2120 + 30 BP corresponding to the calendar age
of 206-50 BC (Table 4, Figure 10A) and for the AD-132 sample is 2130 + 30 BP corresponding to the
calendar age of 210-52 BC (Figure 10B). Archaeological remains indicating occupation date of the site
are very scarce, but several historical milestones allow to limit the range of building age. According
to the historical sources, the Romanisation of the region could not begin until after the conquest of
Numantia in 133 BC. Besides, Uxama Argaela was burned down in 72 BC by Pompey for supporting
Sertorius during the first republican civil war. Both historical milestones limit the oldest age of building
age to ca 70 BC. Among the scarce archaeological remains, some fragments of terra sigillata dated
between 40-80 AD corresponding to abandonment of the building indicate that the construction of the
building must indubitably be earlier. In summary, according to historical data, the age of the building
must be before 40 AD (age of abandonment) and later to 133 BC, corresponding to the beginning of the
Romanisation on the region. Considering a bayesian approach, the most probable age of construction
would be before 50 BC. Both the original construction (sample AD-132) and improvement (sample
AD-242) dates of the building are close, suggesting that the bath complex of Arroyo de La Dehesa de
Velasco was built during the first century BC.
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Table 4. Radiocarbon age determinations of the mortars from Arroyo de La Dehesa de Velasco.

Lab Code Sample Conventional Age s18C Calibrated Age
Ranges (20)
Beta-511088 AD-242 2120 +/- 30 BP —14.3 %o 206-50 BC (91.2%)
345-322 BC (4.2%)
Beta-511089 AD-132 2130 +/— 30 BP —14.4%o 210-52 BC (84.9%)
350-308 BC (10.5%)
OxCal v4.3.2 Bronk Ramsey (2017); r:5; IntCal13 atmospheric curve (Reimer etal 2013) —~ OxCal v4.3.2 Bronk Ramsey (2017); :5; IntCal13 atmospheric curve (Reimer et al 2013)
2400 AD-242 R_Date(2120,30) o 2400 AD-132 R_Date(2130,30)
68.2% probability 68.2% probability
196(68.2%) 106calBC 202(68.2%) 108calBC
95.4% probability 95.4% probability

345 (4.2%) 322calBC
206 (91.2%) 50calBC

350 (10.5%) 308calBC
210 (84.9%) 52calBC

N
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o
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Figure 10. Calibrated 14C dates of the binder from the: (A) AD-242 mortar sample and (B) AD-132
mortar sample obtained with OxCal v 4.1.7 [52] and IntCal09 atmospheric data [53].

4. Conclusions

The results of this study have provided information about the technological and chronological
aspects of the mortars at the Arroyo de la Dehesa de Velasco site.

The mortars were manufactured in a multilayer system formed by several layers with different
thicknesses. Ceramic fragments or powder were added to improve resistance to moisture and the
durability of the walls. This multilayer approach agrees with Roman technology recipes written by
classical authors and applied by skilled artisans.

Petrographic and mineralogical studies allow to determine the raw materials” provenance area.
The only outcrop of Mesozoic limestones in the surroundings of the site, close to Ciudad de Osma-Burgo
de Osma, were used to elaborate both lime and aggregates in the floor substrates. Both aggregates
Cenozoic and Quaternary siliceous sands from areas close to the site were used. Moreover, the
occurrence of kaolinite allows to set the sand provenance to the Oligocene materials.

The petrographic study reveals that the craftsmen followed the theoretical Roman technical
guidelines with minor or no variations.

The binder 0.5-2 um fraction of layers without ceramic fragments were selected to perform
radiocarbon dating, indicating that the building construction occurred during the first century BC.
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