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Abstract: Paste and thickened tailings (PTT) technology can improve the utilization and management
of tailings from processing plants. The pore size distribution (PSD) and microstructure evolution
affected by the rake shear in thickening tailings beds are essential to produce a high-density
tailings underflow. Continuous thickening and computed tomography (CT) scanning tests were
conducted to study the PSD with and without shear. The pore morphology was studied to reveal
the shearing-dewatering performance of the tailings bed. The results show that at a flocculant
solution concentration of 0.01 wt % and a feed slurry concentration of 10 wt%, the underflow
concentration with and without shear can reach 58.5 wt %and 55.8 wt %, respectively. The CT image
reconstruction models demonstrated that the porosity of the sheared tailings bed increased with the
bed height. When the bed height increased from 2.5 to 10 cm, the porosity increased from 35.1% to
41.9%, the pore fractal dimension increased from the range 1.8–1.95 to the range 2.1–2.15, and the
pore quantity decreased by 21.39%. The average pore volume increased with increasing height by
13.93%, 16.57% and 12.07%. The pore structure became more complex with the bed height, and the
connectivity between pores increased to form water-flow channels, which were beneficial to the
drainage of sealed water.

Keywords: paste and thickened tailings; waste management; deep-cone thickener; pore structure;
water flow channel; 3D reconstruction

1. Introduction

In recent years, tailings surface disposal and underground cemented paste backfill (CPB) goafs have
become extensive risk sources for mine safety and environmental protection [1,2]. The conventional
low-concentration tailings treatment approach has a higher potential for causing land pollution and
dam failure [3]. Paste and thickened tailing (PTT) technology is a pollution-free environmental
protection technology with high emission concentrations. Before discharge, most processing water
is recovered from tailings slurry recycling to plants, which can improve the utilization rate of water
resources, reduce heavy metal ion pollution [4] and improve dam safety.

The surface subsidence risk after mining can be reduced by pumping the PTT underground as
CPB materials [5–7]. Tailings are generally used as fine aggregates in CPB materials to support the goaf
surrounding rock. The tailings slurry from plants contains a large number of fine particles and mineral
processing wastewater. Mature fine particles hardly settle in suspensions to form a high-concentration
underflow in the gravity thickening process [8,9].
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The gravity solid–liquid separation process can increase the solid concentration of the slurry
and reduce the liquid content [10]. Tailings dewatering research has received increasing attention;
various polymer assisted flocculation dewatering methods have been widely used in tailings
settlement [11,12]. Peng [13] and Lu et al. [14] found that the combination of high-molecular
weight anionic and low molecular weight cationic polymers can improve the settling rate of tailings;
Arjmand et al. [15] improved the flocculation and dewatering performance of tailings based on the
solution pH and flocculant dosage; Liu et al. [16] studied a custom high-solidification water additive
in terms of the dewatering rate to improve the early compressive strength of CPB materials; Yang [17]
and Dwari et al. [18] studied the effect of flocculants on the settlement behaviour and flocculation
consolidation characteristics of tailings.

The shearing induced by rotating rakes plays an important role in improving the underflow
concentration. The flocculant is a common way to capture fine particles to form large-scale aggregates
that seal a large amount of water inside the aggregates [19–21]. The popular device for PTT production
is the deep-cone thickener or deep-bed thickener from different manufacturers. Melbourne University
and the CSIRO Center in Australia have published outstanding results on the theoretical model of
thickeners in the continuous state [22–24]. Erichöfgen et al. [25] developed a high-pressure dehydration
roller (HPDR) to improve the degree of dehydration of materials by applying high pressure and
induced shear; Sharna et al. [26] studied the dewatering efficiency of the double-polymer flocculation
system for materials; Qi et al. [27] proposed a novel hybrid machine learning method to predict
the flocculation dewatering performance considering shearing effects; Jiao et al. [28] studied the
influence of the micro-pore structure of the flocs in tailings beds on the target underflow concentration.
The honeycomb structure and network formed by flocculated tailings aggregates pose a challenge to
the dewatering performance.

The dewatering process of flocculated aggregate networks has received much attention for
improving the underflow density. With the development of non-destructive testing and image
processing technology, computed tomography (CT) scanning technology has been widely used in
mining and geotechnical engineering research [29–31]. The thickening process of unclassified tailings
entails the densification of the floc structure. The tailings position and pore structure can be observed
from the micro-perspective [32]. Philip et al. [33] studied the modification of the network structure of
flocculated tailings under shearing and examined the consolidation and compactness of the sediment
bed. Malíková et al. [34] carried out industrial innovations on the tailings dewatering process based on
the interactions between colloidal particles at different temperatures and mixing conditions. To date,
CT technology has become the best way to reveal the mechanism of micro-scale precipitation.

Flocculation and dewatering tests were conducted with a self-developed pilot scale continuous
thickener combined with CT scanning technology. After flocculated tailings settlement, water was
sealed in the sedimentary bed between the flocculated flocs. In this device, the rakes and pickets rotate
to roll up the particles in the bed, break the static balance between the particles and water, connect the
pores, discharge the sealed water, and form a high-concentration underflow. The characteristics of the
concentration and porosity of the tailings bed with/without shear were obtained three-dimensional
reconstruction from CT images. The micro-pore structure and distribution of the pore number and
shape are identified from the 3D model. The water channel evolution characteristics of the shear bed
under flocculation and sedimentation are studied to reveal the shearing dewatering mechanism.

2. Materials and Method

2.1. Tailings and Flocculants

Unclassified flotation tailings are obtained from a vanadium processing plant in an iron mine.
The tailings pH is neutral to alkaline, with a low bulk density and high porosity. The specific gravity of
the tailings is 2.966 t/m3, and the bulk density is 1.438 t/m3. The tailings particle size distribution is
shown in Figure 1. With D50 = 17.20 µm, D10 = 1.56 µm, D90 = 94.34 µm, the particles smaller than
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74 µm account for 87.4% of the total weight, and the particles finer than 37 µm account for 68.36% of
the total weight.
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Figure 2. Thickening test platform.

The experimental parameters are as follows: The flocculant is a 20 million molecular weight XJTH
Xinjiang anionic polyacrylamide (PAM), the dosage is 30 g per ton of solids, the concentration of the
flocculant solution is 0.01 wt %, and the concentration of the feed slurry is 10 wt %.

2.2. CT Scanning Tests

The development of X-ray CT provides an alternative method for obtaining pore geometry
parameters. In this study, a multifunctional high-resolution system, Phoenix V, General Electric,
was adopted. Adopting the in situ sampling method, the bottom 10 cm of the bed of the cylindrical
settlement column was sampled. When the target underflow concentration, bed height, dwell time
and other requirements are met in the experiments, the settling column and mixing rake frame
are disassembled. The supernatant is discharged to expose the detection bed layer as the target.
After removing the wall of the settling column, a thin plastic plate is inserted at the lower part of the
sample column, and the upper part is covered with a thin plastic plate. The plastic plate and sampling
pipe are fixed and connected with a quick-drying adhesive, and both sides and their sleeve are pressed
into a fixed plastic bag. The prepared dry sample is placed directly in the CT machine. The sample
should not be disturbed to avoid damaging the particle structure. The magnification is 1000 times,
and the resolution of the scanning unit is 5 µm. The scanning length is 100 mm [35].
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2.3. Three Dimensional Reconstruction

The pore size distribution (PSD) is widely used in pore morphology research of porous media [36].
The system noise in the original CT images needs to be filtered with ImageJ and Avizo software
(Version: 2019.1), which can eliminate noise while maintaining the image details. The image binarization
process divides a gray image into a target and background via an optimal threshold. In this study,
the threshold of each image group is 121. Only black and white colours occur in the final binary image,
where the black colour represents the pores, and the white colour represents the tailings material.
These two-dimensional binary images are combined in a certain order to obtain the three-dimensional
(3D) image of the tailings pores. Separated and connected pores can be extracted from the 3D
reconstructed model. The reconstruction process and analysis method are shown in Figure 3.
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The pore microstructure was divided into pore and throat spaces through the maximum sphere
search algorithm, and the various pore spaces are shown in different colours in Figure 3.

2.4. Pore Separation Theory

The maximum sphere search algorithm assumes that the pixels contained in any two adjacent
largest spheres will not completely coincide. The concept of the upper and lower radius limits is
introduced [37]. R2

LEFT represents the square of the lower radius limit, and R2
RIGHT represents the

square of the upper limit, while R2
LEFT < R2 < R2

RIGHT applies.

R2
RIGHT = dist2

(
C, Vg

)
=

(
xg − xc

)2
+

(
yg − yc

)2
+

(
zg − zc

)2
, C ∈ S, Vg ∈ Sg (1)

R2
LEFT = max

{
dist2(V, C)

∣∣∣dist2(V, C) < R2
RIGHT, V ∈ S, C ∈ S

}
(2)

where S is the pore space, Sg are the skeleton particles, R2
RIGHT is the distance between the ball centre

C(xc,yc,zc) and flocculent chain Vg(xg,yg,zg) closest to the ball centre, R2
LEFT is the distance between the

ball centre and the farthest pixel from the ball centre within the ball radius of RRIGHT, and V(x,y,z) is
the pore voxel farthest from the ball center within the radius of RRIGHT.

3. Results

3.1. The Continuous Thickening Tests

The target underflow concentration, residence time and bed height are recorded during the test.
The tailings bed concentration distribution results are shown in Figure 4.

In the continuous thickening tests, the concentration of the feed slurry is 10 wt %, the bed height
is 30 cm, and the residence time is 34 min. The average concentration of the tailings bed without shear
is 50.10 wt %, the underflow is 58 wt %, and the concentration of the top layer is 37 wt %. At a stirring
speed of 2 r/min, the average concentration of the tailings is 55.82 wt %, the underflow concentration is
62 wt %, and the top layer concentration is 38 wt %. The average concentration of the tailings with
shear is 11.42% higher than that of the tailings without shear.
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Figure 4. The concentration distribution of the tailings in the bed.

The average porosities of the tailings compression bed without and with shear are 49.90 wt % and
44.18 wt %, respectively. The sheared bed porosity decreased 12.95%. The shearing effect is beneficial
to the sealed-water drainage process.

3.2. Pore Extraction and Distribution

In the tailings bed, the pores between connected flocs form drainage flow channels. Cubic samples
with 100-pixel side lengths were extracted from the 3D model at different heights to reveal the
relationship between the bed height and porosity, as shown in Figure 5.

Pore Distribution along the Bed Height

The slurry location in the tailings bed has a major influence on the pore morphology and
connectivity. As shown in Figure 5, four samples are detailed from a 10-cm tailings bed at heights of
2.5, 5, 7.5 and 10 cm. The blue cubic area in the left column represents the reconstructed pore network
model, and the pore network skeleton is placed in the middle column, while the right column shows
details of the connected pore skeleton.

The pores at the bottom of the tailings bed are compacted and consolidated but lack connectivity;
most pores are independent and isolated from the network structure (Sample 1: height: 2.5 cm). In the
middle of the bed (Sample 2: height: 5 cm), the pores, arranged in a flat network, are well connected,
thus forming water flow channels. At the top of the bed (Samples 3 and 4), the flocs start to accumulate
after free settling, and the large separation between the flocs establishes well-connected flow channels
for water seepage. The porosity increases from 35.1 to 41.9 wt % within the bed from bottom to top.

The connectivity between pores can be obtained from the pore skeleton model. In the middle
column of Figure 5, the red joint tube-shaped area indicates multiple connected pores. The pores
gradually expand according to a centralized trend, from an unconsolidated and isolated state to a
centralized connected state with the bed height.

The connected nodes and areas in the pore skeleton model increase significantly from bottom to
top of the bed. The formation of water flow channels depends on the distribution of connected pores.
The pore skeleton details in the right column demonstrate the joint channels along the connecting
nodes. The porosity increase is beneficial for the formation of node connections and more water flow
channels [38].
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4. Discussion

4.1. Fractal Characteristics of the Pores

The fractal characteristics of the pores are calculated by the fractal box dimension [39]. The fractal
box dimension covers the fractal body with a square lattice, where is the side length of the square,
and the minimum number of fractal bodies that can be covered with NγB grids is calculated [40].
Then the upper and lower fractal box dimensions of B are defined as:

DimB(up) = lim
r→0

log NrB
− log r

(3)

DimB(down) = lim
r→0

log NrB
− log r

(4)

DimB is the fractal box dimension of B. Its general form is:
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ln N(r) = −D ln N(r) + c (5)

where D is the fractal dimension and c is constant term. It is clear that ln N(r) is linear with ln(r).
The pore structure of the tailings exhibits distinct fractal characteristics, as shown in Figure 6.

The box dimension results reveal that the box dimension of the pores at the bottom of the bed is low,
ranging from 1.8 to 1.95; the fractal dimension gradually increases to 2.1 to 2.15 along the bed height.
A high fractal dimension means a complex pore structure. The fractal parameters exhibit the same
trend as the reconstructed porosity.
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The quantity of pores decreases with increasing bed height. As shown in Figure 7, the pore
quantity decreased 6.97%, 10.16% and 5.95%. The reduction occurs due to the poor connectivity
between the pores at the bed bottom. The isolated pores sealed in water in the network structure.
There are larger but fewer pores at the top of the bed, forming longer and large-diameter flow channels
for sealed water-drainage.
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4.2.2. Pore Volume Change

The pore volume distribution is extracted from the separated pore models, as shown in Figure 8.
According to the CT results, the pore reconstruction volume unit is the voxel, and 1 voxel = 125 µm3.
The average pore volume increases with the bed height. The maximum pore volumes at 2.5, 5, 7.5 and
10 cm along the bed height are 1.917 × 106, 2.155 × 106, 2.363 × 106 and 2.429 × 106 µm3, respectively,
successively increasing 12.42%, 9.26% and 2.97%; the average pore volumes are 2.183 × 105, 2.487 × 105,
2.899 × 105 and 3.249 × 105 µm3, respectively, successively increasing 13.93%, 16.57% and 12.07%.
The maximum pore volume exhibits a similar tendency as the average pore volume.
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The pore volume evolution will affect the flow channel conductivity. A water flow channel is
formed by a connected pore structure, which is the pathway of sealed-water drainage in the tailings
bed. Large-scale pores are well connected, but there are certain quantities of small isolated pores in the
bed, from which the sealed water can hardly be drained. The water retention capability of mature fine
tailings is severely detrimental to the thickening process.

4.3. Pore Volume Distribution

The pore volume distribution in the compression tailings bed is shown in Figure 9. The small-size
pore quantity decreases, and the large-scale pore content increases with the bed height. At 2.5 cm in
the bed (from the bed bottom), the number of pores smaller than 1.25 × 104 µm3 (voxel = 100) accounts
for 45.27% of the total number of pores. The pores larger than 2.5 × 105 µm3 (voxel = 2000) account
for 18.92% of the total pores. Correspondingly, at a height of 10 cm in the bed, the number of pores
smaller than 1.25 × 104 µm3 accounts for 23.42% of the total pores, and the number of pores larger than
2.5 × 105 µm3 accounts for 36.06% of the total pores. The pore volume distributions are quite different.
The tailings sedimentation state gradually changes from a dense state to a loose state.

Under shearing, the tailings flocs transition from the original loose arrangement state and become
rearranged through gravity and mud pressure. In this process, the fine particles settlel into the
macro-pores; the flocs will be deformed and compacted to form a high concentration underflow.
The original macro-pores will be compressed, deformed and divided to form a large number of
micro-pores, which will increase the pore quantity and reduce the total porosity. The water within the
pores flows upward through the bed under shearing.
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Figure 9. 3D pore volume distribution. 
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5. Conclusions

This work studied the micro-pore structure of tailings paste shear beds by continuous thickening
and CT tests. The pore distribution and water flow channel evolution characteristics of the sheared
bed under flocculation and sedimentation were revealed for underflow concentration improvement in
the process of beneficial fine tailings gravity thickening.

(1) The porosity increased from 35.1 to 41.9 wt % from bottom to top in a 30-cm compression
tailings bed. The porosity gradually increased in a consistent way to form a connected pore network,
from a loose isolated state to a centralized connected state.

(2) The pore quantity in the tailings bed decreases with the bed height. The isolated pores at the
bottom inhibit flow channel connectivity establishment, which seals water in the bed that cannot be
readily discharged.

(3) The pore size and fractal dimension increase with the bed height. The average pore volume
increased from 2.183 × 105 to 3.249 × 105 µm3, and the fractal box dimension increased from the range
1.8~1.95 to the range 2.1~2.15 as the bed height increased from 2.5 to 10 cm. The sealed-water storage
space increases with the pore shape complexity.

(4) After natural deposition, the water at the bottom of the bed is evenly distributed, the floc
structure is relatively loose, the water connectivity between pores is good, and water forms a connected
phase. The shear force produced by agitation disrupts the static balance between the floc structure and
water, thus promoting the drainage of the water between the flocs; the flocs are destroyed under the
shear force, the water inside the flocs is released, and the water in the water channels formed by the
connected pores is discharged under the shear force and gravity.

(5) The mechanical shearing in the thickener destroys the original large pores into sub-level pores,
reduces the bed porosity, releases the sealed water and enhances the underflow concentration. The pore



Minerals 2020, 10, 375 10 of 12

quantity increases, and more isolated pores are formed with decreasing porosity. Rake shearing can
notably increase the discharge rate of sealed water, which can improve the utilization and management
of tailings.
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