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Abstract: The slags derived from the fire refining of lead bullion, differ distinctly in the mineral
composition, which results from the fact that these slags are end products of a series of chemical reactions
(of both reduction and oxidation). The most common phases included in the refining slags are sulphates
and hydrated sulphates (anglesite, gypsum, ktenasite and namuvite), oxides and hydroxides (wustite
and goethite), nitrates (gerhardtite) and silicates (kirschsteinite and willemite). The other phases are
sulphides and hydrated sulphides (sphalerite and tochilinite), metals (metallic Pb) and glass. Among
the mineral components of these slags can be distinguished—primary mineral constituents, phase
constituents formed in the ISP process and lead refining, secondary mineral constituents, formed in the
landfill. The slags contain, in chemical terms, mainly FeO, CuO and SO3, PbO, in smaller contents SiO2,
Al2O3 and CaO, TiO2, MnO, MgO, K2O, P2O5. The mineralogical and chemical composition indicate
that slags may be a potential source of metals recovery and pyrometallurgical processing of these wastes
seems to be highly rational.
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1. Introduction

Pyrometallurgical extraction of zinc and lead using the Imperial Smelting Process (ISP) is based
on the reduction of roasted Zn-Pb concentrate with coke at 1000 ◦C in a shaft furnace. The feedstock
for the process is a mixture of zinc-lead concentrates; materials recycled from the process, that is,
sludges, dusts, dross; secondary raw materials such as scrap zinc alloys, zinc dross, crude lead from
other sources and waste, including—dusts from steel making, zinc dust and dross, zinc sludge, lead
oxide, cable scrap. The diversity of feedstock implicates varying chemical and mineral composition of
products and waste generated in the ISP process.

The products of the process include crude zinc and crude lead, which are then rectified (Zn) or
refined (Pb). In the process of multi-stage lead fire refining, slag is produced, which is the only waste
of the ISP process deposited in a landfill [1–3].

These slags contain a number of chemical constituents, of which the dominant ones are—ZnO,
PbO, Fe2O3, CaO, SiO2 and their content in the slag exceeds 10% [4].

The mineral composition of slags from the refining process is varied and the most common phase
constituents are oxides and hydroxides (zincite ZnO, wustite FeO, hematite Fe2O3, goethite FeO(OH)),
sulphides (sphalerite ZnS, galena PbS, pyrite FeS2, pyrrhotite Fe1–xS) and sulphates (anglesite PbSO4,
gypsum CaSO4·2H2O), silicates and aluminosilicates (willemite Zn2SiO4, olivine (Mg,Fe)2 SiO4,
(fayalite Fe2SiO4, kirschsteinite CaFeSiO4, forsterite Mg2SiO4), pyroxene AB[Si2O6] (A—Ca, Na; B—Fe,
Mg, Al), melilite Ca,Na)2(Al,Mg,Fe2+)[(Al,Si)SiO7]) which usually form complex conglomerates or
multiphase intergrowths resulting from a number of chemical processes occurring during lead refining.
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These slags were also found to contain carbonates (cerussite PbCO3, smithsonite ZnCO3, hydrozincite
Zn5(CO3)2(OH)6), metal alloys (Pb, Zn, Cu, Fe) and secondary minerals (e.g., gypsum CaSO4·2H2O,
rapidcreekite Ca2(SO4)(CO3)·4H2O, apatite Ca5(PO4)3(F,Cl,OH), ktenasite ZnCu4(SO4)2(OH)6·6H2O
and posnjakite Cu4[(OH)6|SO4]·H2O), which crystallize after the slag is deposited in a landfill [4–11].

Due to the high concentrations of elements, including toxic metals, the refining slags deposited in
a landfill may pose a potential threat to the natural environment on the one hand and a source for their
extraction on the other [11–16].

The basis for determining the potential negative environmental impact of the slags and for indicating
the optimal technology for their processing is a detailed analysis of their chemical and phase composition.
And such analysis was the aim of the study the results of which are presented in this paper.

2. Materials and Methods

Forty slag samples were taken for testing from 4 layers from the entire profile of the Hazardous
Waste Disposal Site of the Miasteczko Śląskie Zinc Smelting Plant. These layers differ in the age of the
waste and the bottom layer is made up of the oldest slags and the top layer is made up of the youngest
slags. These layers are separated by inert layers of granulated slag from the shaft process. The subject
of research, the results of which are presented in this paper, were slags from the top layer (WI, WII,
WIII, WIV), which represented the slag from current lead refining.

The chemical and phase composition of these samples was determined after averaging, grinding
and preparation.

The chemical composition of the slag samples was determined by X-ray fluorescence (XRF) using
a Panalytical Epsilon 1 spectrometer (Malvern Panalytical Ltd., Malvern, UK).

The X-ray phase analysis was performed on a Panalytical Empyrean diffractometer (Malvern
Panalytical Ltd., Malvern, UK) under the following conditions—copper tube, voltage 30 kV, current
25 mA, 2θ scanning angle 5–100◦.

Chemical composition was determined in a micro-area of the tested slag particles by means of
a Jeol JCXA 733 X-ray microanalyzer (JEOL, Tokyo, Japan), equipped with an Oxford Instruments
ISIS (Oxford Instruments, Abington, UK) 300 wave-length spectrometer (WDS) under the following
conditions—focused beam (diameter: 1–2 µm, accelerating voltage 20 kV, current 3 × 10−9 A).The WDS
method is characterized by high energy resolution, it means that the amount of overlap between peaks
of similar energies is low.

The studies were mainly conducted on such grains that the beam did not extend beyond the grain
outline, each wave spectrum measurement was preceded by the determination of the grain diameter.
In the case of multiphase grains, the boundary between the intergrowth and the dominant phase was
determined based on microscopic observations in reflected light. The series of ten microanalyses were
carried out for each of the grains to determine the main chemical components and trace elements.

3. Results

3.1. Chemical Composition

3.1.1. Major Chemical Constituents

The major chemical constituents of the tested samples taken from the top layer of the landfill
include FeO, PbO, CuO and SO3 (Table 1). The total content of these constituents is over 74 wt %.
The content of FeO is slightly diversified, ranging from 24.78 to 26.59 wt %., with an average of
25.75 wt %, which with the standard deviation of 0.75 gives a coefficient of variation (V) of 3%.
The other main chemical constituents show a slightly greater diversity, viz.: PbO content varies from
14.96 to 21.72 wt % (V = 16%), CuO content varies from 13.57 to 20.68 wt % (V = 20%) and SO3 content
varies from 13.17 to 18.45 wt % (V = 14%).
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Another significant constituent in terms of quantity is ZnO. Its content ranges from 9.59 to
11.53 wt %, which, with a relatively low value of the coefficient of variation (V = 9%), indicates its
low differentiation.

Table 1. The chemical composition of the investigated samples WZI, WZII, WZIII and WZIV (in wt %).

Chemical
Constituent

Sample Symbol x s V
WZI WZII WZIII WZIV

SiO2 1.99 ± 0.20 2.98 ± 0.30 3.83 ± 0.39 4.99 ± 0.50 3.45 1.27 37
TiO2 0.09 ± 0.02 0.14 ± 0.01 0.17 ± 0.02 0.15 ± 0.02 0.14 0.04 25
Al2O3 1.35 ± 0.14 2.97 ± 0.30 3.27 ± 0.33 3.56 ± 0.36 2.79 0.99 35
FeO 24.77 ± 1.24 25.94 ± 1.30 26.59 ± 1.33 25.70 ± 1.29 25.75 0.76 3
MnO 0.12 ± 0.01 0.57 ± 0.06 0.57 ± 0.06 0.56 ± 0.06 0.45 0.22 49
MgO 0.36 ± 0.04 0.59 ± 0.06 0.73 ± 0.08 0.50 ± 0.05 0.54 0.16 29
CaO 1.69 ± 0.17 4.75 ± 0.48 5.16 ± 0.52 4.42 ± 0.45 4.00 1.57 39
K2O 0.05 ± 0.01 0.19 ± 0.02 0.23 ± 0.03 LLOD 0.12 0.11 94
P2O5 0.06 ± 0.01 0.08 ± 0.02 0.11 ± 0.01 0.09 ± 0.01 0.08 0.02 23
SO3 17.54 ± 0.88 16.11 ± 0.08 18.45 ± 0.93 13.17 ± 0.66 16.32 2.31 14
ZnO 9.59 ± 0.96 11.53 ± 0.58 10.35 ± 0.52 11.50 ± 0.56 10.74 0.95 9
PbO 21.72 ± 1.09 18.76 ± 0.94 16.97 ± 0.85 14.96 ± 0.75 18.10 2.86 16
CuO 20.68 ± 1.03 15.39 ± 0.77 13.57 ± 0.68 20.40 ± 1.02 17.51 3.58 20
Total 100.00 100.00 100.00 100.00
PbO + CuO + ZnO 51.99 45.68 40.89 46.87 46.36 4.56 10

x—average, s—standard deviation, V—coefficient of variation, LLOD—lower than limit of detection. The results are
given with estimated uncertainties.

The content of the other chemical constituents is low. The average content of SiO2, Al2O3 and
CaO is a few wt %, whereas that of TiO2, MnO, MgO, K2O and P2O5 hardly exceeds 0.60 wt %.

Important information, arising from the chemical composition of the tested samples taken from
the top layer of the landfill, is the total amount of metals that could be recovered. These constituents
include PbO, CuO and ZnO, the total content of which ranges from 40.89 to 51.99 wt % and the value
of the coefficient of variation V is 10%, which indicates a potential for their recovery.

3.1.2. Trace Elements

Among the trace elements, Ag, As, Ba, Bi, Cd, Co, Cr, In, Ni, Sb, Se and Tl were determined.
The prevalence of As is evident, with its contents ranging from 0.94 to 1.33 wt %, hence in principle
arsenic can be regarded as one of the major chemical constituents (Table 2).

Cadmium and antimony are the elements the contents of which are lower than that of arsenic
but several times higher than that of the other. Their content ranges from 0.16 to 0.35 wt % for Cd
and over 0.40 wt % for Sb. In the case of antimony, it should be pointed out that these are the values
determined for two samples (WZI and WZII), as the content in the other samples was below the lower
limit of detection.

The content of elements such as Ag, Ba, Co, Cr, In, Ni or Se does not exceed 0.05 wt % and in the
case of Bi and Tl it is even less than 0.01 wt %. In addition, some of these elements are not present in
all of the tested samples. This is especially true for bismuth and thallium, which were found only in
sample WZI and for silver, which was found in samples WZI, WZII and WZVI.
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Table 2. Trace elements content of the investigated samples WZI, WZII, WZIII and WZIV (in wt %).

Element
Sample Symbol

WZI WZII WZIII WZIV

Ag 0.036 ± 0.006 0.009 ± 0.002 LLOD 0.018 ± 0.003
As 1.33 ± 0.14 1.24 ± 0.13 1.02 ± 0.11 0.94 ± 0.10
Ba 0.043 ± 0.007 0.035 ± 0.005 0.034 ± 0.005 0.053 ± 0.008
Bi 0.0086 ± 0.0017 LLOD LLOD LLOD
Cd 0.33 ± 0.04 0.35 ± 0.04 0.34 ± 0.04 0.16 ± 0.02
Co 0.045 ± 0.007 0.030 ± 0.005 0.030 ± 0.005 0.039 ± 0.006
Cr 0.039 ± 0.006 0.079 ± 0.012 0.064 ± 0.010 0.067 ± 0.011
In 0.048 ± 0.008 0.048 ± 0.008 0.031 ± 0.005 0.041 ± 0.007
Ni 0.043 ± 0.007 0.030 ± 0.005 0.030 ± 0.005 0.031 ± 0.005
Sb 0.44 ± 0.05 0.43 ± 0.05 LLOD LLOD
Se 0.034 ± 0.006 0.028 ± 0.005 0.027 ± 0.004 0.028 ± 0.005
Tl 0.0086 ± 0.0019 LLOD LLOD LLOD

LLOD—lower than limit of detection. The results are given with estimated uncertainties.

3.2. Phase Composition

3.2.1. Major Phase Constituents

The main phase constituents present in the charge mixture as shown in the studies [17,18] included
galena PbS, sphalerite ZnS, iron sulphides, zincite ZnO, anglesite PbSO4, lead oxide PbO, FeO–ZnO
oxides and glass. They were included in the feedstock for the process (zinc blend concentrate, galena
concentrate) and other constituents, which formed the charge mixture, such as—semi-finished products
(Zn–Pb sinters), waste (dust, dross, slag), products from the process (crude zinc, crude lead). Yet in
the composition of the main phases of the tested samples taken from the top layer of the landfill,
as indicated by the present studies, only anglesite (lead sulphate), sphalerite (zinc sulphide) and glass
were present among the phases of the charge mixture. However, new phases formed during the process
and resulting from hypergenic transformations of these phases, taking place in the landfill, were also
found. Among the phases found in the tested samples of the top layer of the landfill, the following
groups were distinguished:

– silicates—kirschsteinite CaFeSiO4, willemite Zn2SiO4,
– sulphates and hydrated sulphates—anglesite PbSO4, gypsum CaSO4·2H2O, ktenasiteZnCu4(SO4)2

(OH)6·6H2O, namuvite Zn4(SO4)(OH)6·4H2O, tochilinite Fe2+
5–6(Mg,Fe2+)5S6(OH)10,

– nitrates—gerhardtite Cu2(NO3)(OH)3,
– sulphides and metals—sphalerite ZnS, metallic Pb,
– oxides and hydroxides—goethite FeO(OH), wustite FeO,
– glass.

The presence of these phases is evidenced by the characteristic reflections in the diffractograms of the
tested samples (Figure 1). Worth noting is the varied intensity of some basic reflections in the diffractograms,
assigned to individual phases, which indicates different content of these in the tested samples.

The study of the chemical composition in the micro-areas revealed that the grains of the main
phases formed intergrowths of very small clusters of individual phases. Grains composed of one phase
only occur very rarely. The determined chemical composition of the grains of the main phase in the
tested samples indicates that in some cases admixtures of various elements, mainly metals, are present.
It was found, for instance, that:

– wustite (Figure 2, Table 3) may contain admixtures of Zn (up to 5.68 wt %), Cu (up to 5.59 wt %),
Sn (up to 1.61 wt %), Sb (up to 2.09 wt %) and of Pb (2.95 wt %),
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– kirschsteinite (Figure 3, Table 3) contained Zn (up to 6.17 wt %), Pb (up to 2 wt %), Cu (up to
1.12 wt %), Mn (up to 0.83 wt %).
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Figure 2. Sample WZI—example of an image of the investigated micro-areas. 1—wustite with Zn
admixture (9%), 2—wustite with silicate admixtures, 3 and 4—wustite with Sb admixture (17–22%),
5—Pb oxide.
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Table 3. Differentiation of the chemical composition of wustite and kirschsteinite, occurring in the
investigated grains of samples taken from the top layer of the landfill.

Element
Wustite Kirschsteinite

Min Max x s V Min Max x s V

O 21.20 22.98 22.10 0.55 2 28.67 33.67 31.92 1.85 6
Na 0.00 0.60 0.15 0.25 168
Mg 0.00 1.96 0.50 0.63 124 1.01 2.04 1.25 0.39 31
Al 0.00 0.51 0.22 0.18 83 1.20 3.70 2.44 0.90 37
Si 12.79 14.72 13.74 0.81 6
K 0.00 0.70 0.35 0.22 64
Ca 0.00 0.89 0.23 0.32 141 14.30 18.79 16.39 1.97 12
Mn 0.00 0.17 0.02 0.05 268 0.00 0.83 0.51 0.31 60
Fe 61.00 77.39 71.01 4.81 7 25.43 29.87 27.90 1.63 6
Cu 0.00 5.59 1.87 1.93 104 0.00 1.12 0.45 0.47 103
Zn 0.00 5.68 1.84 1.97 107 0.19 6.17 2.90 2.36 81
Ag 0.00 0.20 0.05 0.07 146 0.00 0.07 0.01 0.03 245
Cd 0.00 0.21 0.05 0.09 186 0.00 0.30 0.07 0.12 163
As 0.00 0.06 0.01 0.02 212 0.00 0.58 0.22 0.26 117
In 0.00 0.40 0.06 0.13 217 0.00 0.81 0.46 0.34 73
Sn 0.00 1.61 0.35 0.48 138
Sb 0.00 2.09 0.37 0.66 180 0.00 0.70 0.27 0.24 91
Pb 0.00 2.95 1.33 0.98 73 0.12 2.00 0.95 0.61 64

Min—minimum, Max—maximum, x—average, s—standard deviation, V—coefficient of variation.

There are two characteristic relationships in the chemical composition of wustite. With increasing
iron content, the content of copper and zinc decrease (Figures 4 and 5). At the same time the R2 value
of the trend line is very high: 0.74 for Cu and 0.83 for Zn. Therefore, it can be concluded that both
copper and zinc substitute iron in wustite, which is quite common in this type of iron oxides [19–22].

There are a few characteristic relationships in the chemical composition of kirschsteinite:

– with increasing silicon content, the content of aluminum decreases and the R2 value of the trend
line is in this case 0.97 (Figure 6),

– with increasing iron content:

• the content of copper and calcium increases and the R2 value of the trend line is 0.87 for Cu
(Figure 7) and 0.85 for Ca (Figure 8), respectively,

• the content of zinc decreases and the R2 value of the trend line is 0.94 (Figure 9),
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Figure 9. Differentiation of Si and Zn content in kirschsteinite.

The relationship between silicon and aluminum may indicate a diadochal substitution of silicon
and aluminum, due to their crystallographic similarity (similar ionic radius), which is quite common
in silicates [23]. In turn, the relation between Ca and Fe is also geochemically justified in the group of
minerals to which kirschsteinite belongs [24–27].

However, the relations between copper and zinc and iron in kirschsteinite are interesting in the
context of those previously determined in wustite. Although the zinc content in both phases decreases
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with increasing iron content, the copper content in kirschsteinite increases while in wustite it decreases.
It is difficult to explain this phenomenon conclusively.

Thus, among the phase constituents of the examined waste of the top layer, three types can be
distinguished, taking into account their origin:

– mineral constituents, which are part of zinc and lead concentrates used as feedstock in the
pyrometallurgical process—this includes sphalerite only,

– phase constituents formed in the technological process—these include mainly kirschsteinite
and wustite,

– secondary mineral constituents, formed in the landfill under the action of hypergenic factors—these
include gypsum, ktenasite, namuvite, tochilinite, gerhardtite, goethite.

Anglesite, willemite, metallic lead and glass may be of problematic origin, as on the one hand
they may belong to the type of mineral constituents contained in small quantities in zinc and lead
concentrates (anglesite and willemite) and on the other hand to the type of phase constituents formed
in the technological process which are returned to the process (anglesite, metallic lead, glass).

As indicated by numerous studies, gypsum, ktenasite, namuvite, tochilinite, gerhardtite, goethite
are known to be present as secondary phases in many deposits and landfills of metallurgical plants,
among others—the Remšnik ore deposit (Slovenia), the Upper Silesian Mississippi Valley-type deposits
(MVT) (Poland), the Aznalcóllar deposit (Spain), the Świętochłowice Dump (Poland), the base-metal
slag deposits at the Penn Mine in Calaveras County (USA) [24–32].

3.2.2. Trace Phases

The results of chemical composition analysis of the grains in micro-areas revealed the presence
of phases which are present in much smaller quantities and which therefore did not exhibit their
characteristic reflections in the X-ray diffractograms. As in the case of the main phases, the phases
occurring in trace quantities do not form individual grains. Usually they form small size inclusions in
the main phases or occur at the border of the main phases.

These phase constituents include—Pb oxides, which sometimes form intergrowths with wustite FeO
(Figures 10 and 11), quartz SiO2, cerussite PbCO3, alamositePb12Si12O36 (Figure 12), bornite Cu5FeS4,
metallic Ag and metal alloys (Cd-Zn, Pb-Cu, Zn-Cu, Pb-Fe-Zn, Pb-Fe-Cu, Pb-Fe-Sb, Sn-Zn-Pb) (Table 4).
Some grains are equivalent, in terms of chemical composition, to franklinite ZnFe2O4, sometimes with
admixtures of leiteite ZnAs2O4 and to Pb oxide with admixtures of paulmooreitePb2(As2O5) (Figure 13).

As in the case of the main phase constituents, among the phase constituents present in trace
amounts in the examined waste of the top layer, three types can be distinguished, taking into account
their origin:

– mineral constituents, which are part of zinc and lead concentrates used as feedstock in the
pyrometallurgical process—these probably include alamosite, quartz and cerussite, which are
contaminants of the concentrates resulting from the mineralization of the Zn-Pb ore deposits from
which the concentrates are derived,

– phase constituents formed in the technological process—these probably include metal alloys,
Pb oxides and metallic Ag,

– secondary mineral constituents, formed in the landfill under the action of hypergenic factors—these
probably include leiteite and paulmooreite.
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Table 4. Examples of chemical compositions of some phase constituents present in the investigated
grains of samples taken from the top layer of the landfill.

Element Cerussite Pb Oxide Cu and Fe Sulphides AnCe
Alloys

Pb–Fe(Sb) Zn–Cu Pb–Fe–Cu Ag

C 4.3 14.9
O 12.3 4.7 6.3 7.5 14.0 4.1 12.2 11.7

Na 2.0 1.2
Mg 0.1 0.2
Al 0.5 1.0 0.6 0.4 0.7 0.8
Si 3.8 1.3 2.2 2.2 0.7
S 21.8 30.0 26.1 9.3 1.9 1.0 2.6
K
Ca 1.3
Mn
Fe 1.1 16.1 21.9 10.5 14.8 2.8 16.2 11.8 2.9
Cu 54.1 40.7 58.5 41.6 11.9 8.9 0.0
Zn 1.1 3.2 49.6 8.7 2.9 0.0
Ag 0.4 0.2 94.3
Cd 0.3 1.1 0.4
As 4.0 0.1 0.0
In 1.7 0.4
Sn 1.7 1.8 2.0 0.3 0.3 1.2 1.2 1.1
Sb 2.9 3.8 1.3 0.3 0.3 0.3 2.8 23.1 2.8 2.5
Pb 76.8 88.6 82.1 3.4 1.7 4.3 63.2 44.2 42.5 57.8

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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The provenance of franklinite and bornite may be problematic. They may belong to the group
of mineral constituents contained in small quantities in zinc and lead concentrates or to the group of
phase constituents formed in the technological process which are returned to the process.

As indicated by numerous studies, both leiteite and paulmooreite are known to be present as
secondary phases in many deposits and landfills of metallurgical plants (the Tsumebdeposite, Namibia;
Bushveld Complex, South Africa) [33–35].

4. Discussion

The identification of the main phases by X-ray diffraction and the established chemical composition
of the tested samples allowed to calculate the content of these phases and the results of these calculations
are presented in Table 5.

The dominant phases in the samples are anglesite, gerhardtite and wustite, the total content of
which varies from about 52% to about 68 wt %, with the exception of the WZIV sample, where the
total of these three constituents is 27.50 wt %. In that sample, kirschsteinite, ktenasite and goethite are
significant in quantitative terms.

It can therefore be concluded that the samples are quite diverse in terms of phases and in particular
in terms of the proportion of individual phases. And although it seems that samples WZI, WZII and
WZIII are very similar to each other as compared to WZIV, they still show quite strong qualitative
differences between them. This is manifested, for instance, in the presence of:

– namuvite in sample WZII, whereas samples WZI, WZIII and WZIV do not contain this phase,
– tochilinite in samples WZI, WZIII and WZIV, whereas sample WZII does not contain this phase,



Minerals 2020, 10, 371 12 of 15

– metallic Pb and goethite in sample WZIV, whereas these constituents are not present in any of the
other samples,

– kirschsteinite in all samples, except WZI.

Table 5. The main phases content of the investigated samples WZI, WZII, WZIII and WZIV (in wt %).

Phase
Type Phase

Sample Symbol x s V
WZI WZII WZIII WZIV

Primary
Sphalerite 8.39 5.23 5.91 7.08 6.65 1.39 21
Anglesite 25.63 22.83 22.40 10.41 20.32 6.76 33
Willemite 8.53 4.51 6.24 3.94 5.81 2.06 36

Process

Kirschsteinite 3.46 4.88 14.73 5.77 6.32 110
Wustite 22.61 22.24 20.08 1.99 16.73 9.89 59

Metallic Pb 6.97
Glass 5.08 5.19 6.24 6.03 5.64 0.59 10

Secondary

Gypsum 3.98 8.64 9.76 3.24 6.41 3.27 51
Ktenasite 2.78 2.55 8.22 13.77 6.83 5.32 78
Namuvite 16.54
Tochilinite 2.95 6.00 4.14 3.27 2.52 77
Gerhardtite 20.05 8.81 10.27 15.10 13.56 5.10 38

Goethite 12.60

Total 100.00 100.00 100.00 100.00

Phase group

Silicates 8.53 7.97 11.12 18.67 11.57 4.93 43
Sulphates 32.39 50.56 40.38 27.42 37.69 10.11 27
Nitrates 20.05 8.81 10.27 15.10 13.56 5.10 38

Sulphides and hydrated
sulphides 11.34 5.23 11.91 11.22 9.93 3.14 32

Oxides and hydroxides 22.61 22.24 20.08 14.59 19.88 3.70 19
Metals 0.00 0.00 0.00 6.97 1.74 3.49 200
Glass 5.08 5.19 6.24 6.03 5.64 0.59 10
Total 100.00 100.00 100.00 100.00

x—average, s—standard deviation, V—coefficient of variation.

The quantitative variation of the phases occurring in all samples is manifested, among others,
in the content of—kirschsteinite (0–14.73 wt %, V = 110%), ktenasite (2.55–13.77 wt %, V = 78%),
tochilinite (0–6.00 wt %, V = 77%) and wustite (1.99–22.61 wt %, V = 59%). The constituents that exhibit
the least content variation are glass (5.08–6.24 wt %, V = 10%) and sphalerite (5.23–8.39 wt %, V = 21%).

The three distinguished types of phases (primary constituents, which form the feedstock in the
process; constituents formed in the course of the process; secondary constituents, formed in the landfill
under the action of hypergenic factors) are set out in a diagram (Figure 14). In the tested waste of the top
layer, three samples (WZI, WZII and WZIII) are located in the middle of the diagram, which suggests
similar content of these three types of phases, while the location of the projection point of the WZIV
sample indicates a dominant content of secondary constituents. It will be noted, however, that in the
waste under investigation there are still significant amounts of primary constituents, that is, feedstock
in the process, which can be reused for metal recovery, like the other constituents. An important
element of this recovery is certainly the content of metals in these constituents.
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However, from the point of view of the recoverability of metals, it is more important to consider
the quantitative aspects of individual phases, grouped in the form of chemical compounds or the
classification of minerals used in mineralogy, which illustrates the forms of metal occurrence. For this
reason, the phases occurring in the tested samples were divided into 7 groups—(i) silicates, (ii) sulphates
and hydrated sulphates, (iii) nitrates, (iv) sulphides and hydrated sulphides, (v) oxides and hydroxides,
(vi) metals and (vii) glass (Table 5).

Sulphates and hydrated sulphates (anglesite, gypsum, ktenasite and namuvite) show the highest
content in the tested samples, at an average content of about 38 wt %. The second group in terms of
quantity are oxides and hydroxides (wustite and goethite), with their average content close to 20 wt %.
The content of nitrates (gerhardtite) and silicates (kirschsteinite and willemite) are comparable, the average
figures being 13.56 and 11.57 wt %, respectively. Average content of the other phase groups is below
10 wt % and these include sulphides and hydrated sulphides (sphalerite and tochilinite, average content
9.93%), metals (metallic Pb, average content 1.74 wt %) and glass (average content 5.64%).

A very important factor that must be considered in the technological recovery of metals (Pb, Cu
and Zn) is their content in the individual phases.

5. Conclusions

Refining slags deposited in the top layer of the Hazardous Waste Disposal Site are characterized
by varied development of the phase constituents and hence—(i) the main phases are usually in the
form of conglomerates or multiphase intergrowths, (ii) trace elements form small size inclusions in the
main phases or occur at their border.

The predominant phase constituents in the tested slags include—sulphates and hydrated sulphates
(anglesite, gypsum, ktenasite and namuvite) at an average content of ca. 38 wt %, oxides and hydroxides
(wustite and goethite) at an average content close to ca. 20 wt %, nitrates (gerhardtite) and silicates
(kirschsteinite and willemite) at an average content of 13.56 and 11.57 wt %, respectively. Average
content of the other phase groups is below 10 wt % and these include sulphides and hydrated sulphides
(sphalerite and tochilinite), metals (metallic Pb) and glass.

Among the main and trace phase constituents of refining slags, the following can be identified—(i)
primary mineral constituents, which are part of Zn-Pb concentrates (sphalerite, alamosite, quartz
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and cerussite), (ii) phase constituents formed in the ISP process and during chemical transformations
occurring in the course of lead refining (kirschsteinite, wustite, metal alloys, Pb oxides and metallic
Ag), (iii) secondary mineral constituents, formed in the landfill under the action of hypergenic factors
(gypsum, ktenasite, namuvite, tochilinite, gerhardtite, goethite, leiteite and paulmooreite).

The major chemical constituents of the tested samples taken from the top layer of the landfill
include FeO, CuO and SO3, PbO, the total content of which is over 74 wt %. Constituents found at
substantially lower concentrations include SiO2, Al2O3 and CaO, TiO2, MnO, MgO, K2O, P2O5. The
content of the main constituents shows little variation, as the coefficient of variation V is below 22%.

Both the high content of metals, Zn, Pb, with their low variability and the significant content
thereof in the individual phases, as well as their presence in the primary constituents, make refining
slags a potential source of these metals and pyrometallurgical processing of these wastes seems to be
highly rational.

Funding: An article processing charge was funded by Rector’s Grant of the Silesian University of Technology,
grant number 06/060/RGH19/0079.

Acknowledgments: I gratefully thank Z. Adamczyk for the discussion and valuable suggestions while writing
this article.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Vignes, A. Extractive Metallurgy 3; Willey: Hoboken, NJ, USA, 2013.
2. Potesser, M.; Holleis, B.; Antrekowitsch, H.; Konetschnik, S. New Pyrometallurgical Bullion Lead Refining

Process. In Proceedings of the TMS 2008, 137th Annual Meeting & Exhibition, New Orleans, LA, USA,
9–13 March 2008; pp. 1–8.
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