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Abstract: Because kaolinite has multiple defects, it is very important to study the effect of different
doped cations on the electronic structure and mechanical properties of kaolinite (Al4Si4O18H8) from
the microscopic point of view with the first-principle calculation method. The results exhibited that
the doping of Mg(II) and Na(I) makes the ion bond and layer spacing of kaolinite crystal change,
and the bond length of the chemical bond between the doped and O atom is positively related to the
atomic radius of the doped cations. Compared with undoped kaolinite crystal, the band gap width of
the Mg-doped and Na-doped kaolinite crystal was larger, but the typical insulator characteristics
were still maintained. Compared with undoped kaolinite crystal, Mg-doped and Na-doped kaolinite
crystal had more electron transfer to O, while the Mg–O bond and Na–O bond had more ionic bond
properties and less covalent bond composition than the Al–O bond. Finally, the elastic properties of
undoped, Mg-doped, and Na-doped kaolinite crystal were further analyzed by calculating the elastic
constant matrix. The influence of doping Mg(II) and Na(I) on C11 and C22 was greater than that on
C33, indicating that doping had a greater influence on the stiffness in the direction of the parallel
crystal plane. The doping of Mg(II) and Na(I) weakened the rigidity of kaolinite crystal materials and
improved the plasticity and ductility of the materials. The atom-scale information provided a basis
for explaining the mechanical behavior of kaolinite and is expected to provide guidance for solving
the deformation problems in soft rock roadways.
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1. Introduction

As one of the most important clay minerals in soft rock tunnels [1–3], it is very important to
analyze the structural characteristics and mechanical properties of kaolinite for related issues in the
field of mineral exploitation and development [4]. However, it is very difficult to determine the atomic
structure and mechanical properties of the kaolinite by the experimental method because of its very
fine particle size and the complexity of its compositional structure. The theoretical analysis of the
electronic mechanical properties of clay minerals from the micro-perspective will help to solve the
engineering problems. The first-principle calculation method has been proved to be a very powerful
tool for studying the mechanical and electronic properties of kaolinite at the molecular level [5–7].

In fact, there are a large number of defects and impurities in kaolinite crystals in nature. Impurity
substitution is a common and important form of impurity entry. After the external impurity atoms
and ions enter into the interior of kaolinite, due to the difference of the electric charge between the
impurity elements and the substituted elements, redundant electrons and holes appear in the crystal.
Thus, the physico-chemical properties of kaolinite crystal are affected to a certain extent. Therefore, it is
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very important to investigate the effect of substitutive impurities on kaolinite. At present, there has
been some experimental and theoretical research on the effect of substituting impurities on kaolinite at
home and abroad [8–11], such as FeAl (Si) (which shows that the Al and Si atoms in kaolinite crystal
are replaced by foreign Fe atoms, as well as the role of MgAl (Si) in nature and artificial kaolinite.
In 2009, He, M.C. et al. [12] studied the formation energies and transition energy level of the various
defects in kaolinite by using the first-principles method. Afterwards, He, M.C. et al. [13–15] analyzed
the electronic structure characteristics of kaolinite, such as the energy band structure and density of
state, and calculated the transition energy levels and impurity formation energy of the dual defects
in kaolinite.

As proven by previous experiments, the introduction of substituted cations into kaolinite change
the atomic and electronic structure, and mechanical properties of kaolinite due to the difference
of the mass and size between the object atom and the host atom. However, it is not clear which
element has a greater influence on the electronic structure and mechanical properties. Therefore, it is
of great significance to study systematically the effects of different doped cations with different ion
radiuses and atomic masses on the electronic structure and mechanical properties of the material from
a micro-perspective. The effect of doped cations on the atomic and electronic structure and mechanical
properties of kaolinite were systematically investigated by using the first-principles calculations,
which provided theoretical support for solving the problem of large deformations in deep mines in
practical engineering.

In order to understand the influence of the cation radius and atomic mass on the mechanical
properties of kaolinite, two kinds of metal cations with a higher content were selected to be mixed
into kaolinite. As the Al atom was more easily replaced by some cations than the Si atom, the Al
atom was used as the core atom. In this paper, Mg and Na were selected to replace Al in kaolinite
crystals. The substituted cations could serve as a trapping site for electrons or holes, thereby providing
an adsorption center for water molecules. According to a previous calculation [12], MgAl and NaAl

have lower transition energy levels in the process of structural optimization. So, the Mg(II) and Na(I)
were ideal donor elements. Therefore, it was of great significance to investigate the influence of Mg(II)
and Na(I) replacement in kaolinite crystal. The structural parameters, atomic and electronic structures,
and mechanical properties of undoped, Mg-doped, and Na-doped kaolinite crystal were studied by
the density functional theory (DFT) method. The atomic origin of the changes of mechanical properties
and electronic structures caused by doping ions was explored in this paper.

2. Materials and Methods

In the calculation of substitution impurities of kaolinite, we used the supercell and considered
the periodic arrangement of crystal structure. All the calculations were carried out in a 2 × 1 × 1
supercell. The periodic density functional theory calculations were performed using the local density
approximation (LDA) in the Vienna Ab-initio Simulation Package (VASP) [16]. The Kohn–Sham
equations were solved by using the projector-augmented wave pseudopotentials. The positions of
all the atoms were relaxed according to the Hartree fork force. The cutoff energy of the plane wave
function was set to 400 electron volt (eV) and the k-point grid of the Brillouin region was set to 7 × 5 × 5.
The valence electrons of kaolinite included 1 s1 of H, 2 s2 2 p4 of O, 3 s2 3 p1 of Al, and 3 s2 3 p2 of Si.
The valence electrons of alkali metal atoms to be considered in the kaolinite model included 2 p6 3 s2 of
Mg and 2 p6 3 s1 of Na due to heterovalent substitution. The geometry of the atom was optimized by
the conjugate gradient algorithm until the Hellman–Feyman force was less than 0.01 eV Å−1 to obtain
the optimized and stable structure of kaolinite. Many scholars have studied the effect of heterovalent
substitution on the mechanical properties of material crystals [17–19]. In 2019, Gao, X.Y. et al. [20]
investigated the influence of La, Ge, Pr, and Nd doping on electronic structure and elastic properties
of diopside. In the same year, Islam, M.N. et al. [21] studied the influence of Ni doping in a lead
halide and a lead-free halide perovskites for optoelectronic applications, and the result showed that
undoped and Ni-doped lead and lead-free halides were found to have a direct band gap, mechanical
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stability, and ductility. Zhang, Y.M. et al. [22] investigated the structure evolution, elastic, and electronic
properties of Pt-doped Ti alloy under pressure.

Based on the stable configuration of kaolinite, different octahedral displacement models were
obtained, and the crystal structure characteristics such as the bond length between atoms and layer
spacing were calculated. Due to the close relationship between the structure and properties of the
material and its microelectronic structure, i.e., the position distribution and energy distribution of
electronic states in order to analyze the electronic structure information of different kaolinite crystals
intuitively, the band structure, density of electronic state, and charge density of different models
were calculated, respectively. The elastic property was the inherent property of the material itself,
which represented the deformation extent of the material under the applied stress [23,24]. In order
to better understand the influence of doping elements on kaolinite, we systematically studied the
mechanical properties of different kaolinite forms, including the bulk modulus, shear modulus, Young’s
modulus, Poisson’s ratio, and other elastic constants, as well as anisotropy and wave velocity.

3. Results

3.1. Effect on Crystal Structure of Kaolinite

The microscopic mechanisms of the Mg(II) and Na(I) doping in kaolinite were studied first before
considering the influence of doping on the elastic properties. The atomic structure for the relaxed
kaolinite was calculated and numbered (Figure 1), during which the high-symmetry doping site for
Mg(II) and Na(I) to substitute for the Al2 atom in kaolinite was considered.
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Figure 1. Unit cell of kaolinite (Al4Si4O18H8) containing 34 atoms.

According to the previous experimental data [25–27] and calculated results [28,29], the kaolinite
consisted of dioctahedral 1:1 layer structures with an ideal composition of Al4Si4O10(OH)8 [30,31].
The unit crystal layer was composed of a silicon oxygen tetrahedron (SiO4) and an aluminum oxygen
octahedron (AlO4(OH)2) [32,33]. All the top oxygen atoms of the silicon oxygen tetrahedron layer
pointed in the same direction and were connected with the Al in the aluminum oxygen octahedron.
Only two-thirds of the center positions of the aluminum oxygen octahedron were occupied by the
Al, and the remaining one-third formed the vacancy; the occupied octahedron and the vacancy were
regularly intersected. This could be arranged for other instances. Four of the six oxygen atoms linked
to Al were hydroxyl oxygen (OH), and the remaining two were top oxygen (Oa). According to the
position of the hydroxyl, it could be divided into interlayer hydroxyl and internal hydroxyl. The three
oxygen atoms of the silicon ring system were called bottom oxygen (Ob). The crystal cell of kaolinite
used to calculate the electronic structure included 34 atoms, namely four Al atoms, four Si atoms,
eight H atoms, and 18 O atoms. Table 1 lists the optimal structural parameters of the kaolinite model.
The calculated structural parameters were a = 5.155 Å, b = 5.155 Å, c = 7.405 Å, α = 75.14◦, β = 84.12◦,
and γ = 60.18◦, as shown in Table 1. The DFT calculation results of kaolinite crystal were in good
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agreement with the experimental data [19], indicating that the DFT method adopted in this paper was
reliable, laying a foundation for the subsequent reliable doping results.

Table 1. Calculated vs. experimental lattice parameters of kaolinite (Al4Si4O18H8) using basis sets
described in the present study.

Phase a b c α β γ V

Calculated 5.149 Å 8.934 Å 7.384 Å 91.930◦ 105.042◦ 89.698◦ 327.840 Å3

Exp. [25] 5.155 Å 8.945 Å 7.405 Å 91.700◦ 104.862◦ 89.822◦ 328.710 Å3

Difference 0.126% 0.122% 0.281% 0.251% 0.172% 0.138% 0.265%

The average calculated bond length of the kaolinite model is listed in Table 2, and the calculated
value of DTF matched well with the experimental value [34]. The Al–O bond length in kaolinite
was longer than the Si–O bond length, which means that the strength of the Al–O bond was weaker
than the Si–O bond, which can partly explain why the Al ion in an octahedral position in kaolinite
was more easily replaced by some cations than in a tetrahedral position. The Si–Oa connected to
the alumina octahedron was shorter than the Si–Ob bond not connected to the alumina octahedron;
similarly, the Al–Oa connected to the silica tetrahedron was shorter than the Al–Ob not connected to
the silica tetrahedron. The calculation results exhibited that the ionic bond of kaolinite along the c axis
was weaker than that along the a,b plane. The results can partly explain why the large deformation of
lattice in kaolinite is always observed along the c axis.

Table 2. Calculated vs. experimental average bond length of the undoped kaolinite (Al4Si4O18H8),
Mg-doped kaolinite (Al3MgSi4O18H8), and Na-doped kaolinite (Al3NaSi4O18H8).

Phase OH–H Al2–OH Mg–OH Na–OH Al2–Oa Mg–Oa Na–Oa Si2–Oa Si2–Ob

Exp. [34] 0.750 1.921 - - 1.971 - - 1.610 1.620
Al4Si4O18H8 0.970 1.874 - - 1.995 - - 1.615 1.637

Al3MgSi4O18H8 0.970 - 2.017 - - 2.095 - 1.601 1.556
Al3NaSi4O18H8 0.980 - - 2.243 - - 2.255 1.599 1.550

Table 2 also shows the average calculated bond length of the Mg-doped and Na-doped kaolinite
crystal. The doping cations had the greatest effect on the Al2–O bond length, but had little effect on the
Si–O and O–H bond. Further, we compared the influence of Mg(II) and Na(I) on the average bond
length, which was in the following order: Na–OH > Mg–OH > Al2–OH, Na–Oa > Mg–Oa > Al2–Oa,

and the change trend of the Si–O bond was opposite. Because Na had the largest ion radius, the bond
length of the Na–O bond was also the largest. At the same time, the larger ion radius of Na “pushed”
the top oxygen (Oa) outward, making the top oxygen (Oa) closer to the tetrahedral Si, so the Si–O bond
had a small degree. From this, we could see that the average bond length of the doped atom and the O
atom was positively related to the atomic radius of the doped atom.

From the change of average bond length, it could be seen that the type of replacement cation was
an important factor affecting bond length. Therefore, it was necessary to study the change rate of the
atomic layer spacing of the Mg-doped and Na-doped kaolinite crystal relative to that of the undoped
kaolinite crystal. This is listed in Table 3, where ∆dij represents the atomic layer spacing of layer i and
layer j. From the table, we can see that the doping cations had a great influence on the related ∆d23 and
∆d34, but had a little influence on the distant ∆d12, ∆d45, and ∆d56. The influence of Na(I) on the atomic
layer spacing was greater than that of Mg(II); that is, the change of the atomic layer spacing was also
related to the atomic radius of the doped atom.
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Table 3. Relative to the undoped kaolinite (Al4Si4O18H8), the statistics of atomic layer change rate of
Mg-doped kaolinite (Al3MgSi4O18H8) and Na-doped kaolinite (Al3NaSi4O18H8).

Doped Kaolinite ∆d12(%) ∆d23(%) ∆d34(%) ∆d45(%) ∆d56(%)

Al3MgSi4O18H8 −0.62 7.01 2.14 −1.48 −0.09
Al3NaSi4O18H8 −0.15 11.27 5.31 −3.36 −1.74

3.2. Effect on the Electronic Structure of Kaolinite

To better understand the influence of substitutional impurities on the interaction of various
elements in kaolinite crystals, the band structure, density of states, and charge density of different
doped kaolinite crystals were analyzed.

The band theory of solids simplifies the motion of electrons in crystals into independent motion
in an equivalent potential field, i.e., single electron approximation. The separate energy levels of
each atom in the crystal became very dense and split into a series of quasi-continuous energy bands.
Each band consisted of N atoms. Each energy level could be occupied with two electrons of opposite
spin according to the Pauli exclusion principle, so each band could hold up to 2N electrons. At absolute
zero, the electrons in an insulator crystal would fill the energy levels in turn from low to high. In the
band structure, one band was completely filled with electrons, had the highest energy, and was termed
the valence band, and the next higher energy band was termed the conduction band. The energy
separation between the highest valence band state (valence band maximum) and the lowest conduction
band state (conduction band minimum) was called the band gap, and their energy difference was
termed the band gap width.

The band gap width determined the conductivity of the material. The band gap width of the
metal conductor was very small or zero; however, the band gap width of the insulator was large (about
3–6 eV). The band gap width of the semiconductor was between the conductor and the insulator,
at about 0.1–2 eV. The energy band structure diagrams of the undoped, Mg-doped, and Na-doped
kaolinite crystal are shown in Figure 2. In the energy band structure diagram, the transverse axis is
the high symmetry point in the simple Brillouin region, which is Γ(0,0,0), B(0.5,0,0), F(0,0.5,0), and
G(0,0,0.5), and the vertical axis is the energy. The above results exhibited that the energy band structure
of the kaolinite was relatively flat and its Fermi energy level was located at the valence band maximum
(VBM). The VBM values of the undoped, Mg-doped, and Na-doped kaolinite were at the G(0,0,0.5)
in the Brillouin zone, and the conduction band minimum (CBM) values were at the Γ(0,0,0) in the
Brillouin zone. The indirect band gap width of the undoped kaolinite was 4.99 eV, that of the Mg-doped
kaolinite was 5.03 eV, and that of the Na-doped kaolinite was 5.12 eV. Therefore, kaolinite doped with
different elements had typical insulator characteristics. The order of the band gap width of each crystal
was Al4Si4O18H8 < Al3MgSi4O18H8 < Al3NaSi4O18H8. That is, the doping of Mg(II) and Na(I) made it
more difficult for electrons to obtain enough energy to move from the valence to conduction band state.
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Figure 2. The band structure of the undoped kaolinite and doped kaolinite along high-symmetry lines
in the Brillouin zone. (a) The band structure of the undoped kaolinite (Al4Si4O18H8), (b) the band
structure of Mg-doped kaolinite (Al3MgSi4O18H8), and (c) the band structure of Na-doped kaolinite
(Al3NaSi4O18H8).
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In solid-state physics, the density of state, as a visualization result of band structure, can reflect
the distribution of electrons in each orbit, as well as the interaction between atoms, and reveal the
information of chemical bonds. In Figure 3, we plot the total and partial density of states of the
undoped, Mg-doped, and Na-doped kaolinite crystal to understand the effect of Mg(II) and Na(I)
doping on the bonding and electronic structure of kaolinite. We set the Fermi energy EF to 0 eV. Due to
the different symmetry and positions, the partial density of state values of different types of oxygen
atoms are plotted in Figure 3. The partial density of state values of different oxygen atoms had similar
change trends, which may be due to the high ionic degree of oxygen atoms. As shown in Figure 3,
the valence band of 10 eV < E < EF was mainly composed of the O 2p state, which implied a large
amount of charge transfer from Al 3p, Si 3p and H 1s states to O 2p states. The 2s and 2p states of O
bonded with Mg and O adjacent to Al had higher peaks, indicating that Mg is more metallic than Al
and had more electron transfer to O. In the same way, the 2s and 2p states of the Na-bound O and
the O adjacent to Mg had higher peaks, indicating that Na was more metallic than Mg and had more
electrons transferred to the O adjacent to it.
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On the other hand, it can be seen from Figure 3 that some residual charges existed in the 3s/3p
states of Al and Si atom of kaolinite crystal, which means that there were obvious covalent components
in the chemical bonds of Al–O and Si–O in kaolinite. At the same time, under the action of a local
electric field, the overlap degree of the 3p orbit of Mg and 2p orbit of adjacent O was lower than that of
Al, which made the covalent bond composition of Mg–O lower than that of Al–O. There was almost no
overlap between the 3p orbit of Na and 2p orbit of the adjacent O, and the covalent bond composition
of Na–O was very small. In other words, the doping of Na(I) and Mg(II) reduced the covalent bond
composition of the crystal.

To better understand the bonding characteristics between atoms in the kaolinite system, a charge
density analysis of kaolinite crystal was carried out. Figure 4a shows the charge density diagram of the
plane of O2–Al2–O5 in the undoped kaolinite crystal. Figure 4b,c shows the charge density diagram of
the plane of O2–Mg–O5 in the Mg-doped kaolinite and that of O2–Na–O5 in the Na-doped kaolinite,
to aid in understanding the influence of doping atoms on the bonding and electronic structure of
kaolinite more intuitively and vividly. It can be seen from the Figure 4 that the charge density of Na is
smaller than that of Mg and Al. The localization of the charge density of O is stronger, and the charge
density around O is more and more disorientated towards the direction of the doped atom (Mg/Na).
This shows that the covalent bond properties of the Mg–O bond and Na–O bond are weaker than that
of the Al–O bond, and the ionic bond properties are stronger.
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3.3. Effect on the Mechanical Properties of Kaolinite

The elastic constant matrix of the undoped kaolinite was obtained by density functional theory
and the VASP software package. So as to evaluate the effectiveness and rationality of the calculation
method and parameter setting, the elastic matrix constant of the undoped kaolinite was calculated first
and compared with the existing experimental data [35,36] (see Table 4). The DFT calculation results of
the elastic matrix constant of kaolinite crystal were in good agreement with the experimental data.
According to the calculation results in Table 4, the elastic constants of the undoped kaolinite crystals
met the mechanical stability conditions. The C33 of the undoped kaolinite crystal was obviously smaller
than C11 and C22; that is, the elastic constant related to the elastic property in the direction of vertical
crystal surface was obviously smaller than that in the direction of the parallel crystal surface, showing
that the van der Waals force effect between crystal layers of the undoped kaolinite crystal was far
smaller than the bond effect in the crystal layer.

Table 4. The calculated elastic constants of the undoped kaolinite (Al4Si4O18H8), Mg-doped kaolinite,
(Al3MgSi4O18H8) and Na-doped kaolinite (Al3NaSi4O18H8) compared with experimental data.

Elastic
Constants

Al4Si4O18H8 Al3MgSi4O18H8
Calculated (GPa)

Al3NaSi4O18H8
Calculated (GPa)Exp. [35] (GPa) Exp. [36] (GPa) Calculated (GPa)

C11 126.4 171.51 139.18 128.09 114.48
C22 - - 170.20 153.08 102.55
C33 57.8 52.62 45.50 44.47 38.39
C44 31.6 14.76 9.66 6.84 3.55
C55 - - 18.62 16.95 12.48
C66 53.6 66.31 53.60 45.93 20.03
C12 - - 52.46 49.87 48.98
C13 8.5 27.11 28.30 16.70 13.47
C14 - - −4.50 2.33 −2.94
C15 - - −35.78 −22.17 −21.40
C16 - - −4.50 0.53 −9.76
C23 - - 11.72 6.73 5.83
C24 - - −7.30 −12.86 6.89
C25 - - −14.50 −13.35 −13.79
C26 - - −25.55 −4.50 5.45
C34 - - −3.72 0.85 −4.37
C35 - - −4.46 6.60 −9.37
C36 - - 3.86 0.65 −6.53
C45 - - −1.25 1.35 0.75
C46 - - −13.18 −11.34 0.89
C56 - - 2.75 2.03 6.86

The elastic constant matrix of the Mg-doped and Na-doped kaolinite is also listed in Table 4.
Comparing the elastic constants of different models, it was obvious that the change of C11 and C22 in
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the Mg-doped and Na-doped kaolinite was greater than that of C33; that is, the influence of doping on
the stiffness of parallel crystal plane was greater.

The elastic modulus reflected the ability of the material to resist deformation on the macro scale
and reflected the bonding strength between atoms, ions, or molecules on the micro scale. The greater
the modulus of elasticity, the greater was the stress required for the material to resist elastic deformation,
that is, the greater the stiffness of the material. The bulk modulus (B) is a relatively stable constant,
indicating the ability of the material to resist to volume changes. The shear modulus (G) indicates the
ability of material to resist shear strain. The greater the shear modulus was, the stronger the material’s
rigidity was. Young’s modulus (E) is the elastic modulus along the longitudinal direction, which is a
physical quantity describing the deformation resistance of solid materials. It can be seen from Table 5
that the elastic modulus of the undoped kaolinite crystal calculated by the VASP software package
matched the experimental value [37], which provided a guarantee for calculating the mechanical and
electronic properties of the Mg-doped and Na-doped kaolinite. By calculation, the bulk modulus (B) of
kaolinite crystal was 44.001 GPa, and the bulk modulus (B) of the Mg-doped and Na-doped kaolinite
were smaller than that of the undoped kaolinite crystal, which proved that the incompressibility of
the octahedral replacement model was weaker. The Young’s modulus (E) of the undoped kaolinite
crystal was 57.783 GPa, and the values of the Mg-doped and Na-doped kaolinite were smaller than
that of the undoped kaolinite crystal, which also proved that the ability of octahedral displacement
model materials to resist deformation was reduced. The shear modulus (G) of the kaolinite crystal was
22.552 GPa. Similarly, the shear modulus (G) of the two octahedral displacement models decreased,
that is, the rigidity of the material decreased. All the above calculations showed that the doping of
Mg(II) and Na(I) reduced the stress required for the material to resist further elastic deformation.
The reason for this phenomenon is that the doping of Mg(II) and Na(I) increased the distance between
atoms, thus reducing the van der Waals force between the layers and the bonding in the crystal.

Table 5. The calculated bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (µ),
Vickers hardness (Hv), Pugh’s modulus ratio (G/B), Cauchy pressure Pc (C12–C44), compression wave
velocity (υp), and shear wave velocity (υs) of the undoped kaolinite (Al4Si4O18H8), Mg-doped kaolinite
(Al3MgSi4O18H8), and Na-doped kaolinite (Al3NaSi4O18H8), compared with experimental data.

Phase
Al4Si4O18H8 Al3MgSi4O18H8

Calculated
Al3NaSi4O18H8

CalculatedExp. [37] Calculated

Bulk modulus B (GPa) 47.90 44.001 43.288 30.438
Young’s modulus E (GPa) 51.97 57.783 48.791 33.91
Shear modulus G (GPa) 19.70 22.552 18.592 12.900

Poisson’s ratio µ 0.319 0.281 0.312 0.315
Vickers hardness Hv (GPa) - 2.643 1.103 0.264
Pugh’s modulus G/B ratio - 0.513 0.429 0.424
Cauchy pressure Pc (GPa) - 42.805 43.032 45.432

Compression wave velocity υp (km/s) 5.51 5.321 5.114 4.284
Shear wave velocity υs (km/s) 2.84 2.936 2.673 2.229

The brittle toughness of the material was related to the Poisson’s ratio (µ), which represented the
shear stability of the material. In general, a large Poisson’s ratio was more ductile than the resulting
material. The calculated value of the Poisson’s ratio (µ) of the undoped kaolinite crystal was 0.281,
and the Poisson’s ratio (µ) of the octahedral displacement models was larger than that of the kaolinite
crystal, which proved that the ductility of the Mg-doped and Na-doped kaolinite increased, which
means that the plasticity of the material was improved. We often use the Pugh’s modulus ratio G/B to
predict the brittle ductile behavior of materials. When the ratio of G/B of the material is less than 0.57,
it is ductile; otherwise, the material is brittle. The G/B ratio of the kaolinite crystal was 0.513, so the
kaolinite material had ductility. The G/B ratio of the octahedral replacement model was significantly
smaller than that of the kaolinite crystal, so the doping of Mg(II) and Na(I) made the material show
better ductility; that is, the plasticity of the material was greatly improved. The Cauchy pressure Pc
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(C12–C44) can also reflect the brittle ductile behavior of the material. The calculated value of Pc of the
kaolinite crystal was 42.805 GPa. The values of Pc of the octahedral displacement model were higher
than those of the kaolinite crystal, the bonding direction was weaker, the mobility was lower, and the
toughness of the material was improved. Finally, the Vickers hardness (Hv) could be used to express
the hardness of materials. The calculation formula of Hv is Hv = 2(K2G)0.583

− 3, where K is the Pugh’s
modulus ratio G/B. The calculated value of Hv of the kaolinite crystal was 2.643 GPa. The Vickers
hardness of the octahedron replacement model decreased, implying that the hardening influence of
the material was weakened. The doping of Mg(II) and Na(I) made the elastic wave velocity decrease.

4. Conclusions

The influence of doping Mg(II) and Na(I) cations on the mechanical and electronic structure of
kaolinite was calculated in detail by the LDA method based on the first-principle method.

The main conclusions are as follows:

(1) The doping of Mg(II) and Na(I) changed the ionic bond and the atomic layer spacing in kaolinite
crystals. The average bond length of the doped atom and the O atom was positively related to
the atomic radius of the doped atom. The doping cations had a certain effect on the layer spacing
of the Al–OH layer and Al–Oa layer, but had little effect on the layer spacing of the Si–Oa layer
and Si–Ob layer, which were far away from doped atom.

(2) By analyzing the electronic structure of the crystal, the band gap width of the Mg-doped and
Na-doped kaolinite increased, which indicated that the doping of Mg(II) and Na(I) made it more
difficult for the electrons to obtain enough energy to move from the valence to conduction band
state. Compared with Al, Na and Mg had more electron transfer to the adjacent O; that is, the
charge density around O decreased in the direction of the doped atom (Mg/Na), the covalent
bond composition of Mg–O bond and Na–O bond became weaker than Al–O bond, and the ionic
bond properties were stronger.

(3) The influence of doping Mg(II) and Na(I) on C11 and C22 was greater than that on C33, indicating
that doping had a greater influence on the stiffness in the direction of parallel crystal plane.
In addition, the doping of Mg(II) and Na(I) reduced the elastic modulus of kaolinite crystal and
weakened the rigidity of the material. As the Vickers hardness decreased, the hardening effect
of the material weakened. The changes of Poisson’s ratio (µ), Pugh’s modulus ratio (G/B), and
the Cauchy pressure (Pc) indicated that the directivity of atom bonding was weakened, and the
plasticity and ductility of the material were improved.
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