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Abstract: Nuclear resonant inelastic X-ray scattering (NRIXS) experiments have been applied
to Earth materials, and the Debye speed is often related to the material’s seismic wave speeds.
However, for anisotropic samples, the Debye speed extracted from NRIXS measurements is not
equal to the Debye speed obtained using the material’s isotropic seismic wave speeds. The latter
provides an upper bound for the Debye speed of the material. Consequently, the acoustic wave
speeds estimated from the Debye speed extracted from NRIXS (Nuclear Resonant Inelastic X-ray
Scattering) measurements are underestimated compared to the material’s true seismic wave speeds.
To illustrate the differences, the effects of various assumptions used to estimate the Debye speed,
as well as seismic wave speeds, are examined with iron alloys at Earth’s inner core conditions. For the
case of pure iron, the variation of the crystal orientation relative to the incoming X-ray beam causes
a 40% variation in the measured Debye speed, and leads to 3% and 31% underestimation in the
compressional and shear wave speeds, respectively. Based upon various iron alloys, the error in
the inferred seismic shear wave speed strongly depends upon the strength of anisotropy that can
be quantified. We can also derive Debye speeds based upon seismological observations such as
the PREM (Preliminary Reference Earth Model) and inner core anisotropy model. We show that
these seismically derived Debye speeds are upper bounds for Debye speeds obtained from NRIXS
experiments and that interpretation of the Debye speeds from the NRIXS measurements in terms of
seismic wave speeds should be done with utmost caution.

Keywords: phonon density of states; nuclear resonant scattering; seismic wave speeds; elastic tensor;
anisotropy; high pressure; earth materials

1. Introduction

Advances in instrumentation and experimental techniques are allowing for rapid improvement
in the use of lattice dynamics to determine the elastic moduli of materials at high pressure (e.g., [1,2]).
Inelastic scattering of synchrotron radiation is used to probe the mechanical properties of condensed
matter. The importance of this method over other measurements such as ultrasonic methods or
Brillouin scattering lies in its ability to be used on small samples under extreme pressure conditions,
and has already been successfully applied to Earth materials (e.g., [3]). A review and critical comparison
of the variety of techniques and methodologies used to measure sound velocities in metals at megabar
pressures can be found in Antonangeli & Ohtani [4], and references therein. Nuclear resonant inelastic
X-ray scattering experiments (NRIXS) directly probe the vibrational structure of solids (e.g., [5–8]),
and these measurements provide the Fourier-transformed self-intermediate scattering function from
which the energy levels of the excited acoustic phonons and the Debye speed can be extracted (e.g., [3]).
The Debye speed is a direct link to the material’s elastic properties.
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One application of NRIXS measurements, which is of particular interest to geophysics, is to
understand the alloying effects of nickel and light elements (e.g., S, Si, C, H, etc.) on the elastic properties
of iron at inner core conditions. Due to the extreme high pressures and temperatures at the center of the
Earth, it has been historically difficult to obtain experimental measurements of the acoustic properties of
candidate materials to compare with the seismically observed elastic properties. Recent applications of
NRIXS to iron alloy samples in a diamond anvil cell reveal that NRIXS measurements provide an exciting
new opportunity to experimentally constrain geophysical models of the Earth’s inner core.

This study builds upon the work of Anderson [9,10], who suggested that the Debye speed could
be estimated from single crystal elastic constants, and developed techniques which used theories from
lattice dynamics to link optical vibrations of a solid to its Debye speed to determine seismic shear wave
speeds of materials at high pressures. We show that the Debye speeds calculated from the seismic
wave speeds of polycrystalline materials composed of randomly oriented anisotropic crystal with
bulk or macroscopically isotropic properties (e.g., powdered samples) yields an upper bound for the
material’s Debye speed. Furthermore, we show that increasing the strength of anisotropy of a material
decreases its Debye speed, even when its bulk isotropic properties remain unchanged.

The study highlights the difficulty of comparing NRIXS derived Debye speeds with seismically
observed wave speeds. This is demonstrated by showing the effects of the various approximations to the
calculation of the Debye speed for the case of several iron alloys at inner core pressures and temperatures.
These results are crucial for using NRIXS measurements of the Debye speed in geophysical applications,
and a new methodology is derived that avoids the isotropic assumptions which are currently a large
source of error in procedures which extract seismic wave speeds from NRIXS measurements.

2. Theory

Mechanical information can be extracted from phonon density of states ν(E), since, at low energies,
only the acoustic phonon modes are excited by the incident photon and participate in the inelastic
absorption. This low energy portion of the density of states exhibits Debye-like behavior in which it
is linear with the square of the energy [5]. In the harmonic lattice approximation [11], the density of
states can be written as

ν(E) =
M
ρ

E2

2π2h̄3
1

v3
D

, (1)

where M is the mass of the resonant nucleus, ρ is the density of the solid, 2πh̄ is Plank’s constant, E is
the energy of the photon relative to the resonance energy of the nuclear transition, and vD is the Debye
speed. The Debye speed is defined as an average over all wave speeds such that

1
v3

D
=

1
3

3

∑
m=1

∫ dΩq̂

4π

1
c3

m(q̂)
, (2)

where cm(q̂) is the wave speed of an acoustic phonon of type m (e.g., longitudinal or
horizontally/vertically polarized transverse waves) propagating in the direction of the unit vector q̂,
and dΩq̂ is the corresponding differential solid angle element. Note that throughout this manuscript,
c denotes acoustic wave speeds, and v represents quantities derived from the phonon density of states.
For the isotropic elastic materials, there is no directional dependence of the wave speeds, and the
expression for the Debye speed vD can be simplified in terms of its compressional (cp) and shear (cs)
wave speeds as

1
v3

D
=

1
3
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m=1
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=

1
3

(
1
c3

p
+

2
c3

s

)
. (3)

Note that the factor of 2 arises from the fact that the shear modes are degenerate.
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The observations from nuclear resonant inelastic scattering provide measurements of the
“projected” density of states g(E, k̂) , also referred to as the “partial” density of states which is given by
(e.g., [8,12])

g(E, k̂) =
M
ρ

E2

2π2h̄3
1

v3
k̂

, (4)

where vk̂ is the “projected mean wave speed”, that is, the wave speeds weighted by the projection of
the incident photon unit wave vector k̂ (Figure 1) on to the unit phonon polarization vectors of type m,
p̂m. It is defined as

1
v3

k̂

=
3

∑
m=1

∫ dΩq̂

4π

∣∣∣k̂ · p̂m (q̂)
∣∣∣2

c3
m(q̂)

, (5)

where cm is the wave speed for acoustic phonon of type m, and 0 ≤
∣∣∣k̂ · p̂m (q̂)

∣∣∣2 ≤ 1 for all k̂ and q̂.
In practice, the slope of the linear fit to the experimentally observed projected phonon density of states
ν versus E2 is used to estimate vk̂.
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Figure 1. Orientation of incident photons and propagation direction for a hexagonal crystal.

The projected mean wave speed, vk̂, is the link between the nuclear resonant derived
measurements of the phonon density of states and the material’s elastic constants. In this case,
the experimentally observable g(E, k̂) is proportional to v−3

k̂
, which is related to the inverse cubed

acoustic wave speeds c−3
m (Equation (5)). However, the sample orientation with respect to the wave

vector is not easily obtained, and the samples are often polycrystalline. For the case of randomly
oriented aggregates (e.g., powdered samples), the experimental result is well represented by averaging
over the incident wave vector direction k̂ [8,12]. The average over the unit sphere of an arbitrary
function g(θ, φ) is denoted by 〈g(θ, φ)〉 =

∫
g(θ, φ)dΩ/4π =

∫
g(θ, φ) sin θ dθdφ/4π where Ω is the

solid angle. The experimentally derived partial density of state is

g(E, k̂) =
M
ρ

E2

2π2h̄3

〈
1

v3
k̂

〉
, (6)
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and can be directly related to the theoretical Debye speed vD (see Appendix C) by〈
1

v3
k̂

〉
=
∫ dΩk̂

4π

1
v3

k̂

=
1

v3
D

. (7)

while the mean projected sound speed vk̂ has been averaged over the incident wave vector k̂ and the
directional dependence of the excitation of the phonon modes has been removed, the acoustic wave
speeds cm(q̂) still depend on their propagation direction q̂.

Alternative Expressions for the Debye Speed under Various Simplifying Assumptions

While randomly oriented anisotropic crystals create a material that appears isotropic in its bulk
or macroscopic acoustic properties, the Debye speed measured from this material is not equivalent
to the Debye speed that would be obtained from a material with equivalent isotropic properties.
This distinction is critical for geophysical applications which seek to derive the seismic P- and S-wave
speeds of materials from NRIXS experiments. The discrepancy arises since the procedure commonly
used to extract these wave speeds assumes that the material is isotropic (e.g., [3]), while the materials
being measured are often anisotropic.

In order to extract isotropic properties such as elastic moduli and seismic wave speeds from
anisotropic materials, a mapping of the anisotropic tensor elements to isotropic wave speeds is
required. Mathematically, there are several schemes for generating the isotropic elastic moduli from
anisotropic fourth-order elasticity tensors under various assumptions such as constant stress condition
(e.g., Reuss average). When it comes to constraints for the Earth’s interior, the isotropic average
information is provided by seismological observations rather than from elasticity tensor with an
assumption. Hence, it is critical to understand how the seismological data averages components
of the elasticity tensor that ultimately result in isotropic models such as the Preliminary Reference
Earth Model [13]. Delbridge & Ishii [14] shows that the relevant averaging scheme for seismic wave
propagation is equivalent to the Voigt average, and the elasticity tensor can be written as

Λijkl =

(
κV

0 −
2
3

µV
0

)
δijδkl + µV

0

(
δikδjl + δilδjk

)
+ γijkl , (8)

where the subscripts i,j,k,and l are used as Einstein notation and δij is the Kronecker delta. The first
two terms on the right-hand side describe the isotropic behaviour arising from isotropic contributions
while the last term, γijkl , describes the anisotropic deviations from isotropy. The superscript V denotes
that Voigt averaging schemes are used to obtain the bulk and shear moduli, κV

0 and µV
0 . The isotropic

seismic waves speeds are related to these elastic moduli as

ρc2
p = κV

0 +
4
3

µV
0 and ρc2

s = µV
0 , (9)

where cp and cs are the material’s compressional and shear wave speeds, respectively. The seismic
wave speeds allow us to estimate the Debye speed under the assumption that it is equivalent to
isotropic wave speeds that appear in Equation (3). We denote this Debye speed as vV

D to indicate the
Debye speed of a material based upon seismic wave speeds.

We can write another expression for the Debye speed by assuming that the directionally averaged
wave speeds can be used as the isotropic wave speeds, that is,

1
v3

D
≈ 1

v̄3
D
≡ 1

3

3

∑
m=1

〈
c2

m

〉−3/2
=

1
3

(
1〈

c2
1
〉3/2 +

1〈
c2

2
〉3/2 +

1〈
c2

3
〉3/2

)
. (10)

these directionally averaged elastic properties are related to the seismic wave speeds and Voigt moduli
as (see Appendix A)
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ρ
〈

c2
1

〉
= ρc2

p = κV
0 +

4
3

µV
0 , and

1
2

ρ
(〈

c2
2

〉
+
〈

c2
3

〉)
= ρc2

s = µV
0 . (11)

For isotropic materials vD = v̄D = vV
D, but for anisotropic materials, v̄D, and vV

D may deviate
from vD. We seek a relationship between them in order to understand the implications of various
assumptions employed when relating a material’s Debye speed to its elastic properties, and hence to
associated seismic wave speeds. The Debye speed (vD) is given by Equation (2), hence

1
v3

D
=

1
3

3

∑
m=1

∫ dΩq̂

4π

1
c3

m (q̂)
=

1
3

3

∑
m=1
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4π

( fm)
−3/2 =

1
3

3

∑
m=1

〈
f−3/2
m

〉
, (12)

where fm = c2
m. On the other hand, the Debye speed based upon the material’s seismic wave speeds

(Equation (10)) can be written as
1

v̄3
D

=
1
3

3

∑
m=1
〈 fm〉−3/2 . (13)

since fm is strictly positive and fm → f−3/2
m is convex for fm > 0, Jensen’s inequality [15,16] tells us that〈

f−3/2
m

〉
≥ 〈 fm〉−3/2 , (14)

which implies that
1
3

3

∑
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〉
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3

3

∑
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〈 fm〉−3/2 . (15)

Furthermore, we can show that
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which leads to the conclusion that

1
3
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∑
m=1

〈
f−3/2
m

〉
≥ 1

3

3
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〈 fm〉−3/2 ≥ 1

3

(
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c3

p
+

2
c3

s

)
. (17)

This is equivalent to
1

v3
D
≥ 1

v̄3
D
≥ 1

vV
D

3 , (18)

from which we can write the desired inequality relating the Debye speed vD to its approximation using
the seismic wave speeds vV

D
vD ≤ vV

D. (19)

Physically, this equation implies that the Debye speed of anisotropic materials (vD) is not
equivalent to the Debye speed estimated from that material’s seismic wave speeds (vV

D), and that
the latter is an upper bound to the former. Consequently, since the commonly used procedure to
estimate seismic wave speeds from NRIXS experiments assumes that the Debye speed can be related
directly to the material’s seismic wave speeds, that is, equality in Equation (19), these speeds are often
underestimated.

3. Results and Discussion

In order to explore the effect of analyzing anisotropic single crystals and polycrystalline aggregates,
elastic tensor elements of five iron alloys with hexagonal-close packed (hcp) [17–20] and one with a
body-centered cubic (bcc) [21] structure are considered (Table 1). The five hcp iron materials are—a
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pure iron at 6000 ◦K with a density of 13.0 g/cm3 [17], a Fe-Si alloy with 12.5 at% Si at 360 GPa and
6900 ◦K [20], a Fe-Ni-Si alloy with 10 at% Ni and 21.25 at% Si with density of 12.5 g/cm3at 360 GPa
and 6500 ◦K [18], a Fe-Si-C alloy with 4.2 at% Si and 0.7 at% C with density of 13.1 g/cm3 at 360 GPa
and 6500 ◦K [19], and a Fe-S-C alloy with 2.1 at% S and 0.7 at% C with density of 13.1 g/cm3 at 360 GPa
and 6500 ◦K [19]. The last material considered is a Fe-Si bcc alloy at 360 GPa and 6000 ◦K with density
of 13.6 g/cm3 [21]. The seismic wave speeds cp and cs are calculated from the elastic tensor elements
(Table 1) such that they are comparable with the seismically observed wave speeds [14].

Table 1. The elastic constants and seismic wave speeds of iron alloys (column 1; [17–21]). The alloy’s
density in g/cm3 (ρ; column 2), seismic compressional wave speed in km/s (cp; column 3), shear wave
speed in km/s (cs; column 4), the strength of anisotropy (AL; column 6; [22]), and the elastic tensor
elements in GPa (columns 6 through 11) are summarized.

Material ρ cp cs AL c11 c33 c13 c44 c66 c12

hcp Fe 13.0 11.8 3.9 1.5 2150 1685 990 140 60 2030

hcp Fe-Si 13.1 11.3 3.9 0.3 1674 1855 1120 176 137 1400

hcp Fe-Si-Ni 12.5 11.8 3.3 1.4 1816 1964 1224 80 49 1718

hcp Fe-Si-C 13.1 11.6 3.7 0.6 1712 2066 1263 164 91 1530

hcp Fe-S-C 13.1 11.8 4.2 0.3 1831 2091 1214 183 173 1485

bcc Fe-Si 13.6 11.5 4.2 1.7 1562 1562 1448 366 366 1448

To investigate how various parameters are influenced by anisotropy, we introduce an absolute
measure of anisotropy, AL , that quantifies the log-Euclidean distance between the Voigt averaged

elastic tensor
〈

Λijkl

〉
and the Reuss averaged elastic tensor

〈
Λ−1

ijkl

〉−1
[22,23]. The log-Euclidean

distance may be written in terms of the Voigt and Reuss averaged isotropic moduli κ0 and µ0 as [22]

AL =

√√√√5 ln

(
µV

0

µR
0

)2

+ ln

(
κV

0

κR
0

)2

, (20)

where the superscripts V and R denote the Voigt and Reuss averages, respectively. The Voigt and
Reuss averages coincide for the case of isotropic material [24], and for this case, AL yields a value
of zero.

3.1. Variations in the Debye Speed

We first calculate the mean projected wave speed vk̂ for all possible incident photon wave vectors
k̂ (Equation (5)). This requires numerically calculating the wave speeds (eigenvalues) and polarization
vectors (eigenvectors) as described in the Appendix A, and then numerically integrating over the
phonon propagation directions, q̂ (Equation (5)). The minimum and maximum values represent
the spread of possible mean projected wave speeds that may be measured for a given single crystal
sample due to changes in orientation of the crystal with respect to the incoming X-ray beam (Figure 1,
Table 2). For the transversely isotropic hcp materials considered in this study, the maximum projected
mean wave speed corresponds to an incident X-ray beam aligned along the axis of symmetry, and the
minimum corresponds to an incident X-ray beam in the plane perpendicular to the axis of symmetry.
The range in vk̂ caused by this orientation effect is proportional to the strength of anisotropy, with a
20% increase per unit of anisotropy (Figure 2). For the hcp pure iron, vk̂ varies by about 40%, whereas
for the less anisotropic hcp Fe-S-C alloy, it is only 13% (Table 2). As expected from the symmetry in
the scattering matrix for cubic materials [11], the projected mean wave speed vk̂ is constant and is
identical to the Debye speed for the bcc Fe-Si alloy (Table 2).
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Table 2. Exact and approximate Debye speeds calculated from the elastic tensor elements of hcp
and bcc iron alloys (column 1). Percent variation (column 2) of the difference of the extreme values
of vk̂ (column 3) with respect to the average of the extreme values due to variations in k̂ are given.
The true Debye speed vD (column 4), and the approximate Debye speed obtained using the analytical
expressions for cm given in the Appendix A (column 5) are compared. The last three columns give the
values obtained using Equation (3) where the elastic moduli κ and µ are estimated using the Voigt,
Reuss, and Voigt-Reuss-Hill averages, respectively. The speeds are all in units of km/s.

Material ±%
[
min vk̂, max vk̂

]
vD vq

D vV
D vR

D vV RH
D

hcp Fe 40% [3.07, 4.60] 3.35 3.35 4.45 3.18 3.87
hcp Fe-Si 16% [4.04, 4.76] 4.23 4.22 4.47 4.16 4.32
hcp Fe-Si-Ni 37% [2.66, 3.85] 2.89 2.96 3.78 2.77 3.32
hcp Fe-Si-C 28% [3.53, 4.66] 3.79 3.83 4.21 3.67 3.95
hcp Fe-S-C 13% [4.38, 4.97] 4.54 4.56 4.77 4.47 4.62

bcc Fe-Si 0% [4.04, 4.04] 4.04 4.04 4.79 3.33 4.13

Figure 2. Percent variation of vk̂ as a function of the strength of anisotropy AL for the five hcp iron
alloys (black circles) in Table 1. The dashed line represents a linear best fit to the data.

In order to examine the Debye speed vD =
〈

v−3
k̂

〉−1/3
(Equation (7)) of powdered samples,

an additional integration over the wave vector k̂ is needed. Because of cubic symmetry, vk̂ = vD for
the bcc Fe-Si alloy (Table 1). The Fe-Si-Ni alloy which has the lowest seismic shear wave speed of
3.3 km/s (Table 1) results in the lowest vD value of 3.0 km/s, and the hcp Fe-S-C alloy which had the
highest seismic shear wave speed 4.2 km/s results in the highest vD value of 4.6 km/s. The Debye
speed vD in Equation (7) can also be calculated approximately using the first-order propagation and
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polarization vectors (see Appendix A) and obtaining the corresponding wave speeds which we denote
by vq

D. This procedure may either be done by numerical matrix multiplication, or for hexagonal
and cubic symmetries, using the analytical expressions as described in the Appendix A. Use of these
analytical expressions for wave speeds and associated polarization vectors to calculated Debye speed is
only valid for weakly anisotropic materials, however, the approximate values of vq

D are nearly identical
to the exact values vD (Table 2). Even for the case of the highly anisotropic materials, such as pure iron,
the error is less than half a percent. On the other hand, Debye speeds based upon various isotropic
averages, vV

D, vR
D, and vVRH

D (Equation (10)) from vD show significant deviations, between 0.5 to 33%,
including bcc Fe-Si alloy (Table 2). The largest deviations occur with vV

D, the averaging scheme that is
most relevant for comparison with seismic wave speeds.

The materials in Table 1 only represent a small subset of the possible variations in the elasticity
tensor. In order to explore the deviations introduced by the approximations more thoroughly,
we generate one million random transversely isotropic elastic tensors whose elements are sampled
from a uniform distribution subject to the restriction that the resulting compressive wave speeds
are greater than the shear wave speeds. The Debye speed vD is compared against vV

D, vR
D, and vVRH

D
(Figure 3). The Debye speeds calculated from the seismically compatible average, vV

D, are all greater
than vD while the Debye speeds calculated using the Reuss average are all less than vD, which is
consistent with the Voigt and Reuss averages representing upper and lower bounds, respectively,
for the elastic moduli. The Debye speeds calculated using the Voigt-Reuss-Hill averages are roughly
distributed about zero, and thus are a “best case scenario” that is most consistent with its true value
(Figure 3). In fact, Anderson [9] showed that the isotropic values calculated with the Voigt-Reuss-Hill
average may be used to accurately estimate a material’s Debye speed, however, one must keep in mind
that the acoustic wave speeds based upon Voigt-Reuss-Hill averages are incompatible with observed
seismic wave speed [14]. Finally, we shows that the seismic wave speeds of Cobalt at pressures of
zero to 40 GPa are accurately calculated using the Voigt average and consistent with independent
experimental measurements (Appendix B).

Figure 3. Distribution of the deviation of the Debye speed obtained using acoustic wave speeds
estimated using the Voigt (red), Reuss (blue), and Voigt-Reuss-Hill (grey) averaged elasic moduli with
respect to the true Debye speed. One million randomly generated tensors of materials with hexagonal
symmetry and identical seismic wave speeds are used.
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In order to explore the deviation between the Debye speeds estimated using the seismic wave
speeds vV

D and the true Debye speed vD as a function of the strength of anisotropy AL, the difference,
vD − vV

D are examined (Figure 4). The seismic wave speeds for all one million tensors are forced to
have identical seismic wave speeds (set to be those of pure iron in Table 1), and yet the difference,
despite the scatter in the data, increases with increasing anisotropy roughly at a rate of about 17% per
unit of anisotropy. The distribution of the deviations also has some structure (Figure 4). For a given
strength of anisotropy, there is an upper and lower limit on the deviation between vD and vV

D. These
limits, as well as the range in between, result from the partitioning of anisotropy into various elastic
tensor elements. Because the elasticity tensors are randomly generated with the only condition being
the constant seismic wave speeds, there are tensors for which anisotropy is purely in the bulk modulus
but not in shear modulus, and vice versa. The shallowly dipping upper limit corresponds to cases
where anisotropy is all in the bulk modulus, only affecting the longitudinal acoustic waves, and the
steeper lower limit corresponds to anisotropy that is purely in the shear modulus. The scatter of points
between the two limits represent various levels of anisotropy partitioning.

Figure 4. The dependence of the deviation of the Debye speed vD from that based upon the Voigt
average, vV

D, and the seismic speeds for the hcp iron alloys in Table 1 as a function of the strength of
anisotropy AL. The semi-transparent grey circles represent the difference between vD (Equation (7))
and vV

D (Equation (3)) for 106 randomly generated transversely isotropic elastic tensors with the same
seismic wave speeds as those of pure iron (Table 1). The red circles correspond to the difference
between vD and vV

D for the five hcp iron alloys (Table 1) and the blue and purple circles denote the
corresponding deviation in inferred acoustic longitudinal and transverse wave speeds, respectively
(Table 3). The dashed lines represent linear best fits to the acoustic wave speed data.

3.2. Extracting Seismic Wave Speeds

Section 2 and the previous subsection showed that the Debye speed extracted from the partial
density of states (Equation (6)), is not equal to the Debye speed estimated from that material’s
seismically observed wave speeds (Equation (3)). This result stems partly from the fact that the
average of the inverse cube of a function (Equation (12)) is not generally equivalent to the inverse cube
of the average (Equation (13)) and because seismic waves “see” the material’s isotropic properties
in a specific manner. Therefore, the Debye speed estimated from seismic wave speeds is an upper
bound for the material’s Debye speed vD. This distinction is critical for geophysical applications of
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NRIXS, which typically seek to compare the experimentally observed Debye speed vk̂ or vD with
seismically observed acoustic wave speeds cp and cs. In this section, we focus on the issues associated
with extracting seismic wave speeds based upon vD.

A common procedure used to extract seismic wave speeds from NRIXS experiments is to use
independent estimates of the the bulk modulus κ and density ρ from an equation of state based upon
X-ray diffraction (e.g., [25–30]). For isotropic material, manipulating the expressions for the acoustic
wave speeds (Equation (9) and noting that κ = κV

0 and µ = µV
0 in order to be compatible with the

quantities provide by an Earth model such as PREM) combined with Equation (3) results in three
equations for the three unknowns µ, cp, and cs in terms of the known quantities vD, κ, and µ such that

κ

ρ
= c2

p −
4
3

c2
s ,

µ

ρ
= c2

s , and

1
v3

D
=

1
3

(
1
c3

p
+

2
c3

s

)
.

(21)

these equations are non-linearly dependent on cp and cs, and are often solved by first linearizing the
equations as is done in Equation (15) of Sturhahn & Jackson [3].

The form of the Debye speed (Equation (3)) used in Equation (21) is only applicable to isotropic
materials, and significant errors may result when applied to anisotropic materials. The difference
between the seismically relevant Debye speed vV

D (Equation (3)) and the observed Debye speed vD
(Equation (7)) maps directly into the the estimated acoustic wave speeds, especially into shear wave
speed, since the Debye speed is heavily weighted by the shear wave speed.

In order to estimate the magnitude of the errors associated with these approximations, acoustic
wave speeds are estimated using the expressions in Equation (21) and the theoretical values of vD,
κV

0 , and ρ using the five hcp iron alloys in Table 1. Since the full elastic tensors for the materials are
available, both the bulk modulus κV

0 and the Debye speed vD are calculated exactly. The inferred
seismic wave speeds (Table 3) using the linear solution of Sturhahn & Jackson [3] show that the linear
approximation results in errors in the compressional wave speed on the order of 10% and errors in the
shear wave speed of 10–30%. Therefore, for iron alloys relevant for the Earth’s inner core, linearization
of Equation (21) results in significant errors due to the terms neglected when linearizing the set of
equations. Solving the non-linear system of equations (Equation (21)) captures the compressional
wave speed to within several percent, however, significant errors of 25% in shear wave speed remain
(Figure 4). The errors associated with these solutions are smaller than those of the linearized solutions,
however, they are substantial, especially for the shear wave speed. The source of the error is the
assumption that vD ≈ vV

D, that is, relating vD directly to the seismic speeds even though the material is
not isotropic (the third equation in Equation (21)).

Table 3. Comparison of seismic wave speeds obtained from vD for iron alloys at inner core conditions
(Table 1). The material’s true compressional wave speed (cp; column 2) is compared against those
obtained using linearized form of Equation (21) (cl

p; column 3) and solving the full non-linear equations
(cnl

p ; column 4). Columns 5 through 7 are the same as columns 2 through 4 except for shear waves.
The last column gives the shear wave speed estimated from the Debye speed using the relationship of
Anderson et al. [31] (cA

s ; Equation (22)).

Material cp cl
p cnl

p cs cl
s cnl

s cA
s

hcp Fe 11.8 10.7 [–10%] 11.5 [–3%] 3.9 2.8 [–28%] 3.0 [–23%] 3.1 [–20%]
hcp Fe-Si 11.2 10.2 [–10%] 11.2 [–1%] 3.9 3.6 [–8%] 3.7 [–5%] 3.9 [–2%]

hcp Fe-Si-Ni 11.8 10.8 [–8%] 11.5 [–2%] 3.3 2.4 [–29%] 2.6 [–22%] 2.7 [–20%]
hcp Fe-Si-C 11.6 10.6 [–9%] 11.4 [–1%] 3.7 3.2 [–13%] 3.4 [–9%] 3.5 [–6%]
hcp Fe-S-C 11.8 10.6 [–10%] 11.7 [–1%] 4.2 3.9 [–7%] 4.0 [–5%] 4.1 [–1%]
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Previous estimates of the error due to anisotropy in the seismic speeds obtained from the Debye
speed are of the order of a few percent [32], while the errors in this study are found to be considerably
larger (Table 3). Bosak et al. [32] significantly underestimates the error due to their choice of averaging
scheme. They use an averaging scheme [33] which yields acoustic wave speeds that are similar to
those obtained by the Voigt-Ruess-Hill average. However, when comparing with seismic wave speeds
from a model such as PREM [13], the wave speeds should be calculated using the Voigt average [14].

Finally, Anderson [10] argued that the ratio cs/vD is roughly a constant value of 0.9± 0.001, and
thus for isotropic materials, the Debye speed may be related to the shear wave speed as [31]

cs ≈ 0.9× vD. (22)

Surprisingly, this simple estimate of cs (Table 3) out-performs all other estimates of cs. Motivated by
this result, we perform a simple regression against the strength of anisotropy and find that

cs ≈ 1.0× vD + 0.7× AL − 0.7, (23)

where cs and vD are given in km/s. This relationship is able to provide a good fit to cs with less than
one percent error (Figure 5). Unfortunately, the strength of anisotropy is not typically known, and in
that case, the regression

cs ≈ 0.45× vD − 2.1, (24)

can predict the shear wave speed to within ∼5% (Figure 5).

Figure 5. Comparison of cs against estimates of cs derived from the Debye speed. The solid grey line
represents a one-to-one line. The dashed lines represent ±5% of the shear speed. Points to the left of
the grey line underestimate cs where as points to the right overestimate cs.
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The problem of estimating seismic wave speeds can be turned around to estimate Debye speeds
based upon seismically constrained wave speeds. Consider, for illustrative purposes, the seismically
observed isotropic wave speeds of the inner core from the PREM model (cp = 11.1 km/s and
cs = 3.6 km/s; [13]). These isotropic values can be used to calculate Debye speed of vD = 4.10 km/s
if the inner core is isotropic (Equation (3)). Alternatively, using the five elastic constants describing
transversely isotropic inner core from seismological observations (c11 = 1577 GPa, c33 = 1647 GPa,
c13 = 1259 GPa, c44 = 168 GPa, c66 = 151 GPa; [14]), the Debye speed is vD = 4.06 km/s (Equation (2)).
This value of the Debye speeds is most similar to that of the bcc iron alloy (4.04 km/s), and least
similar to that of the hcp Fe-Si-Ni alloy (2.90 km/s; Table 2). However, comparison of the seismic
wave speeds (Table 1) suggests the opposite result, with the hcp Fe-Si-Ni alloy (cp = 11.8 km/s and
cs = 3.3 km/s) being more consistent with the seismically observed values than those of the bcc
Fe-Si alloy (cp = 11.5 km/s and cs = 4.2 km/s). This is due to the fact that the higher strength of
anisotropy of the bcc Fe-Si crystal lowers its Debye speed, hence the comparison of the Debye speed
for anisotropic material ideally should be done with the strength of the anisotropy of the material.

4. Conclusions

The seismic wave speeds of materials at high pressure and high temperature are often estimated
from the partial phonon density of states obtained from nuclear resonant inelastic scattering
experiments. This manuscript demonstrates that the Debye speeds extracted from these experiments
are not equivalent to the Debye speed estimated from that material’s seismic wave speeds. Assuming
that the experimentally observed Debye speed is equal to that based upon isotropic seismic wave
speeds introduces significant error for iron alloys at inner core conditions. The magnitude of these
errors depends on the strength of anisotropy, and results in an error of ∼20% per unit of anisotropy.
A second source of error arises when the approximate linearized solutions (i.e., Equations (15) of
Sturhahn & Jackson [3]) are used to estimated compressional and shear wave speeds.

Furthermore, it is shown that the Debye speed estimated from the seismic wave speeds provides
an upper bound to the true Debye speed. Consequently, the acoustic wave speeds extracted from
the NRIXS experiments are underestimated compared to the true seismic wave speeds as obtained
through seismological observations. The compressional wave speed cp is underestimated by ∼10%
per unit of anisotropy, and the shear wave speed cs is underestimated by ∼25% per unit of anisotropy.
Previous estimates of the error associated with anisotropy are underestimated due to the choice of an
averaging scheme that is not the Voigt averaging scheme relevant for models based upon seismological
observations. For iron alloys at inner core conditions, new empirical relationships are derived to
estimate the seismic shear wave speed from the experimentally derived Debye speed within∼5% error.
Additionally, it is shown that if the strength of anisotropy is known, the accuracy of the estimated
seismic wave speeds can be dramatically improved. The results in this study are crucial to constraining
the inner core’s light element composition, and for determining the presence of partial melt.
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Abbreviations

The following abbreviations are used in this manuscript:

NRIXS Nuclear Resonant Inelastic X-ray Scattering

Appendix A. Seismic Wave Speeds

The acoustic wave speeds cm for a given propagation direction q̂ may be determined from the
eigenvalues and eigenvectors of the Christoffel Matrix (Mik ≡ Λijkl q̂j q̂l , where Λijkl are the elements of
the fourth-order elasticity tensor) through the Christoffel Equations (e.g., [34–37]),

ρc2
m(q̂) = Mik p̂m

i p̂m
k = Λijkl q̂j q̂l p̂m

i p̂m
k = p̂mq̂ : Λ : p̂mq̂, (A1)

where p̂m is the unit polarization direction with the superscript and subscript m denote the mode of
the acoustic phonon. Equation (A1) is solved by using the characteristic equation

det |Mik − ρc2δik| = 0, (A2)

where δij is the Kronecker delta. This equation results in the three eigenvectors (p̂m) and eigenvalues
(cm). For isotropic materials, the eigenvectors and eigenvalues correspond to a longitudinal wave if the
polarization direction is parallel to the propagation direction (i.e., p̂1 · q̂ = 1) and two transverse waves
if the polarization direction is perpendicular to the propagation direction (i.e., p̂2 · q̂ = p̂3 · q̂ = 0). For
weakly anisotropic materials, the eigenvectors of Mij are not necessarily orthogonal to q̂.

In order to derive analytical expressions for the wave speeds of hexagonal and cubic symmetries
with weak anisotropy, it is useful to consider the problem in the spherical coordinate system with the
unit vectors

r̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ,

θ̂ = cos θ cos φx̂ + cos θ sin φŷ− sin θẑ, and

φ̂ = − sin φx̂ + cos φŷ,

(A3)

where x̂, ŷ, and ẑ are unit vectors in the Cartesian coordinate system, and θ and φ are polar and
azimuth angles, respectively, in the spherical coordinate system. These angles are typically defined
relative to an axis of crystal symmetry (Figure 1). The propagation unit vector can also be expressed as

q̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ. (A4)

Appendix A.1. Hexagonal Symmetry

For transversely isotropic materials such as hexagonal close-packed (hcp) iron, the elastic stiffness
is described by five independent parameters A, C, F, L, and N [38] that are related to the elasticity
tensor Λ as

Λ1111 = Λ2222 = c11 = A Λ1133 = Λ2233 = c13 = F Λ1212 = c66 = N

Λ1313 = Λ2323 = c44 = L Λ1122 = c12 = A− 2N Λ3333 = c33 = C,
(A5)

where the subscripts indicate the indices of the fourth-order tensor. Note that, in the limiting case of
an isotropic material with zero anisotropy, A = C = κ + 4

3 µ, L = N = µ, and F = κ− 2
3 µ, where κ and

µ are the elastic moduli, the incompressibility and rigidity, respectively.
We assume that the polarization vectors are orthonormal, and use p̂1 = r̂, p̂2 = θ̂, and p̂3 = φ̂.

Substituting these expressions for the propagation and polarization vectors (Equation (A3)) and the
transversely isotropic elastic tensor (Equation (A5)) into the Christoffel equations (Equation (A1))
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gives the first-order perturbation solutions for the longitudinally polarized wave speed c1 and the two
transversely polarized wave speeds c2, and c3 (e.g., [39–41]),

ρc2
1 = A− 2(A− F− 2L) cos2 θ + (A + C− 2F− 4L) cos4 θ,

ρc2
2 = L + (A + C− 2F− 4L) cos2 θ − (A + C− 2F− 4L) cos4 θ, and

ρc2
3 = N + (L− N) cos2 θ.

(A6)

These wave speeds are given as functions of the polar angle θ, the angle between the symmetry axis
and the propagation direction q̂ (Figure 1). Because c1 gives speed for a wave propagating in the
direction of polarization, this coresponds to seismic P-wave speed while c2 and c3 corresopnd to
seismic S-wave speeds. Note that the wave speeds is independent of the azimuthal angle φ.

Using the the first order perturbation solutions for the wave speeds (Equation (A6)), the Debye
speed (Equation (2)) is expressed as

1
v3

D
≈ 1

6

∫ π

0
sin θ

(
1

c3
1(θ)

+
1

c3
2(θ)

+
1

c3
3(θ)

)
dθ. (A7)

Note, that this expression with wave speeds defined in Equation (A6) is valid only for weakly
anisotropic case where the polarization directions for the three acoustic waves can be assumed to be
orthogonal. For strongly anisotropic materials, the polarization vectors and the wave speeds should be
calculated numerically via the characteristic equation (Equation (A2)).

Taking the average over the unit sphere, the expression for the directionally dependent seismic
wave speeds based upon Equation (A6) become

ρ
〈

c2
1

〉
=

1
15

(8A + 3C + 4F + 8L),

ρ
〈

c2
2

〉
=

1
15

(2A + 2C− 4F + 7L), and

ρ
〈

c2
3

〉
=

1
3
(2N + L).

(A8)

These expressions are compatible with the Voigt averaged
〈

Λijkl

〉
moduli which are given as

κV
0 =

1
9
(4A + C + 4F− 4N), and

µV
0 =

1
15

(A + C− 2F + 6L + 5N),
(A9)

since ρ
(〈

c2
2
〉
+
〈
c2

3
〉)

/2 = µV
0 and ρ

〈
c2

1
〉
= κV

0 + 4/3µV
0 . However, the Reuss averaged

〈
Λ−1

ijkl

〉−1

moduli are given as

κR
0 =

(A− N)C− F2

A− N + C− 2F
, and

µR
0 =

15LN[(A− N)C− F2]

6(L + N)[(A− N)C− F2] + LN(4A + C + 4F− 4N)
,

(A10)

which are not compatible with seismological observations. These expressions are consistent with those
obtained by other authors such as Watt and Peselnick [42].
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Appendix A.2. Cubic Symmetry

For cubic materials such as body-centered cubic (bcc) iron, the elastic stiffness is described by
three independent parameters c11, c12, and c44 that are related to the elasticity tensor Λ as

Λ1111 = Λ2222 = Λ3333 = c11,

Λ1122 = Λ2233 = Λ3311 = c12, and

Λ3131 = Λ2323 = Λ3131 = c44.

(A11)

Note that, in the limiting case of an isotropic material with zero anisotropy, c12 corresponds to the
Láme parameter λ = κ− 2

3 µ, c44 corresponds to the shear modulus µ, and c11 = c12 + 2c44. For ease of
notation, we will use the parameters λ, µ, and η to describe the cubic material where λ = c12, µ = c44,
and η = c11 − c12 − 2c44.

In case of hexagonal symmetry, the unit vectors θ̂ and φ̂ provided the fastest and slowest
polarization directions for the two shear waves. This is not the case for cubic material, and even
though we can assume p̂1 = r̂, the polarization for the shear waves would depend upon an additional
angle ξ such that p̂2 = cos ξθ̂ + sin ξφ̂ and p̂3 = cos(ξ + π/2)θ̂ + sin(ξ + π/2)φ̂. The angle ξ depends
upon θ and φ and is obtained through the expression

cot 2ξ =

(
1 + cos2 θ

)
sin2 2φ− 4 cos2 θ

sin 4φ cos θ
. (A12)

We substitute the expressions for the propagation and polarization vectors and the elasticity tensor into
the Christoffel equations (Equation (A1)). The first order perturbation solutions for the longitudinally
polarized wave speed c1 and the two transversely polarized wave speeds c2 and c3 are (e.g., [40,43])

ρc2
1 =λ + 2µ + η(cos4 φ sin4 θ + sin4 φ sin4 θ + cos4 θ),

ρc2
2 =µ + ηχ(θ, φ, ξ), and

ρc2
3 =µ + ηχ(θ, φ, ξ + π/2),

(A13)

where
χ(θ, φ, ξ) = cos2 φ sin2 θ (cos ξ cos φ cos θ − sin ξ sin φ)2

+ sin2 φ sin2 θ (cos ξ sin φ cos θ + sin ξ cos φ)2 + cos2 ξ cos2 θ sin2 θ.
(A14)

Using these wave speeds lead to an expression for the Debye speed (Equation (2)),

1
v3

D
≈ 1

12π

∫ 2π

0

∫ π

0
sin θ

(
1

c3
1(θ, φ)

+
1

c3
2(θ, φ)

+
1

c3
3(θ, φ)

)
dθdφ, (A15)

and the directionally averaged wave speeds

ρ
〈

c2
1

〉
= λ + 2µ +

3
5

η, and

ρ
(〈

c2
2

〉
+
〈

c2
3

〉)
= 2µ +

2
5

η.
(A16)

As with the transversely isotropic case, these speeds are consistent with the Voigt averaged moduli
given as

κV
0 = λ +

η + 2µ

3
and µV

0 = µ +
η

5
, (A17)
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since ρ
(〈

c2
2
〉
+
〈
c2

3
〉)

/2 = µV
0 and ρ

〈
c2

1
〉
= κV

0 + 4/3µV
0 . On the other hand, the Reuss averaged

moduli are given as

κR
0 = κV

0 and µR
0 =

5µ (η + 2µ)

4µ + 3 (η + 2µ)
, (A18)

and they are not compatible with seismic wave speeds.

Appendix B. Experimental Measurements of Cobalt

All examples in the main text of this paper are based on theoretical calculations of hcp and bcc
iron alloys. Here, we briefly report and analyze the results obtain using the elements of the elasticity
tensor of cobalt obtained from [44] which have been determined using measurements from inelastic
X-ray scattering experiments. Note that, because of weak anisotropy represented by strength of
anisotropy (AL) between 0.03 and 0.09 (Table A1), the wave speeds calculated from the elements of
the elasticity tensor following the seismically relevant averaging scheme [14] are consistent with their
experimentally measured values (e.g., [45]). At this levels of anisotropy, the NRIXS derived Debye
speeds and the expressions in Equation (21) provide accurate measurements of the material’s seismic
wave speeds.

Table A1. The Debye vD and seismic wave speeds cp and cs of cobalt at pressures of zero to 40 GPa.
The alloy’s density in g/cm3 (ρ is given in column 2 [45]), while the strength of anisotropy (AL; [22]),
and the Debye speed calculated using Equation (7) and the elements of the elasticity of cobalt (vD; [44])
are given in columns 3 and 4. The material’s seismic wave speed (cp; column 5) is compared against
longitudinal wave speeds obtained using the full non-linear equations of Equation (21) (cnl

p ; column 6),
and experimentally measured values determined using ultrasonics (cUS

p ; column 7; [46] ), inelastic
X-ray scattering (cIXS

p ; column 8; [45]), and impulsive stimulated light scattering (cISLS
p ; column 9; [47]).

Columns 10 through 14 are the same as columns 5 through 9 except for shear/transverse wave speeds.

Pressure ρ AL vD cp cnl
p cUS

p cIXS
p cISLS

p cs cnl
s cUS

s cIXS
s cISLS

p

0 8.8 0.09 3.44 5.7 5.7 5.8 - - 3.1 3.1 3.1 - -

11 9.3 0.06 3.67 6.2 6.2 - 6.3 6.1 3.3 3.3 3.3 3.1 -

40 10.3 0.03 4.18 7.3 7.3 - 7.3 - 3.7 3.7 - 3.9 -

Appendix C. Mean Projected Wave Speed for Randomly Oriented Samples

The partial density of state measured by NRIXS experiments are proportional to v−3
k̂

(Equation (5)).
However, materials composed of randomly oriented anisotropic crystal with bulk or macroscopically
isotropic properties (e.g., powdered samples) are well represented by averaging over the incident
wave vector direction k̂. In this section we will show that for all materials,〈

v−3
k̂

〉
= v−3

D . (A19)

The eigenvalues (λm) of the Christoffel Matrix M are equal to the squared seismic the wave speeds
(λm = c2

m; Equation (A1)), such that Equation (5) can be written as

3

∑
m=1

∫ dΩq̂

4π

∣∣∣k̂ · p̂m

∣∣∣2
c3

m
=
∫ dΩq̂

4π

3

∑
m=1

∣∣∣k̂ · p̂m

∣∣∣2
λ3/2

m
. (A20)

The integrand can be written in matrix form such that

3

∑
m=1

∣∣∣k̂ · p̂m

∣∣∣2
λ3/2

m
=
(

k̂ · P
)
·D−3/2 ·

(
k̂ · P

)
, (A21)
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where P is a matrix whose columns are the normalized eigenvectors p̂m of M, and D is a diagonal matrix
whose diagonal elements are the eigenvalues (λm) of M. Using PT = P−1 and D−3/2 = PT ·M−3/2 · P,
the right-hand side of Equation (A21) can be written in terms of the Christoffel Matrix such that(

k̂ · P
)
·D−3/2 ·

(
k̂ · P

)
=
(

k̂ · P
)
· PT ·M−3/2 · P ·

(
PT · k̂

)
= k̂ ·M−3/2 · k̂. (A22)

For ease of notation, let us temporarily denote the elements of M−3/2 by Mij, and represent the
incident wave vector by the expression for the unit vector in Equation (A4). The above expression can
then be explicitly written out as

k̂ ·M−3/2 · k̂ = (M11 + M22) sin2 φ sin2 θ + (M12 + M21) sin φ sin2 θ cos φ

+ (M23 + M32) sin φ sin θ cos θ + (M13 + M31) sin θ cos φ cos φ

+ M33 cos2 θ.

(A23)

For randomly oriented sample, the above expression needs to be integrated over all incident wave
vector directions, that is, integration over dΩk̂, and only the first and last terms of the right-hand side
Equation (A23) remain. Thus,〈

k̂ ·M−3/2 · k̂
〉
=

1
3
(M11 + M22 + M33) =

1
3

Tr
(

M−3/2
)

, (A24)

where Tr denotes the trace. Using the invariance of the trace, Tr
(

M−3/2
)

can be directly related to the
material’s wave speeds as

Tr
(

M−3/2
)
= Tr

(
D−3/2

)
=

3

∑
m=1

λ−3/2 =
3

∑
m=1

1
c3

m
. (A25)

Thus, the mean projected wave speed (Equation (5)), averaged over all incident wave vector
directions, is equivalent to the material’s Debye speed since

〈
1

v3
k̂

〉
=
∫ dΩq̂

4π

〈
3

∑
m=1

∣∣∣k̂ · p̂m (q̂)
∣∣∣2

c3
m(q̂)

〉
=
∫ dΩq̂

4π

〈
k̂ ·M−3/2 · k̂

〉
=

1
3

∫ dΩq̂

4π
Tr
(

M−3/2
)

=
1
3

∫ dΩq̂

4π

3

∑
m=1

1
c3

m
=

1
v3

D

(A26)
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