In our paper, the thermometer and Oxygen fugacity are estimated using the trace element concentrations in zircon and melt composition (represented by whole-rock). The detail methods are descripted as following.

Blundy and Wood [1] showed a model to predict the mineral melt partition coefficient for a cation (i) by the lattice strain energy, which created by substituting a cation whose ionic radius (*r*i) differs from the optimal value for that site (*r*0) according the equation:

$$\ln D_{\rm i} = \ln D_0 - \frac{4\pi E N_{\rm A}}{RT} \left(\frac{r_{\rm i}}{3} + \frac{r_0}{6}\right) (r_{\rm i} - r_0)^2 \tag{1}$$

Where *D*i is partition coefficient of element i,  $D_0$  is the strain compensated partition coefficient,  $N_A$  is Avogdro's number, *R* is the gas constant, and *T* is the temperature (K). When *D*0,  $N_A$ , *R* and *T* are treated as constants, the ln*D*i versus (ri/3 + r0/6)(ri - r0)2 yields a linear relation.

Based on the lattice strain model, the zircon  $Ce^{4+}/Ce^{3+}$  ratios could use following formula [2].

$$\left(\frac{Ce^{4+}}{Ce^{3+}}\right)_{zircon} = \frac{Ce_{melt} - \frac{Ce_{zircon}}{D_{Ce^{3+}}^{zircon/melt}}}{\frac{Ce_{zircon}}{D_{Ce^{4+}}^{zircon/melt}} - Ce_{melt}}$$
(2)

Where Ce melt and Ce zircon are the concentrations of Ce in melt and zircon, respectively. *D*Ce<sup>3+</sup> and *D*Ce<sup>4+</sup> are partial coefficients calculated from the linear fit of trivalent cations (REE<sup>3+</sup>), and tetravalent cations (such as, Th<sup>4+</sup>, U<sup>4+</sup>and Hf<sup>4+</sup>), respectively (Figure S1).



**Figure S1.** Diagrammatic representation of zircon/rock distribution coefficients by a latticestrain parameter for trivalent and tetravalent cations[2]. The  $r_i$  represent ionic radius of a cation i, and  $r_0$  is ionic radius of the optimal cation.

Partition coefficients for  $D_{Ce^{3+}}$  and  $D_{Ce^{4+}}$  can be determined by interpolation. Due to La and Pr are present very low concentration levels in natural zircons, and Eu, U are multivalent elements, these elements should be excluded in the calculation procedure [3]. Values of  $r_0$  used for 3+ and 4+ cations were 0.93 Å (determined by regression) and 0.84 Å (8-fold coordinated Zr<sup>4+</sup>), and ionic radii for  $r_i$  were from Shannon [4]. Smythe and Brenan [3] descripted a following equality for estimating Ce<sup>4+</sup>/Ce<sup>3+</sup> in melt:

$$\left(\frac{Ce^{4+}}{Ce^{3+}}\right)_{melt} = 1.04877 * \left[\frac{Ce_{zircon} - \left(Ce_{melt} * D_{Ce^{3+}}^{zircon/melt}\right)}{\left(Ce_{melt} * D_{Ce^{4+}}^{zircon/melt}\right) - Ce_{zircon}}\right]$$
(3)

Where  $D_{Ce^{3+}}$  and  $D_{Ce^{4+}}$  can be obtained from Equation (2). The proportions of Ce<sup>3+</sup> and Ce<sup>4+</sup> are related to  $fO_2$  of melt which can be obtain through the following equation by Smythe and Brenan [3]:

$$\ln\left(\frac{Ce^{4+}}{Ce^{3+}}\right)_{\text{melt}} = \frac{1}{4}\ln fO_2 + \frac{13136(\pm 591)}{T} - 2.064(\pm 0.011)\frac{\text{NBO}}{T} - 8.878(\pm 0.112) *$$

$$\text{xH}_2O - 8.955(\pm 0.091)$$
(4)

Where NBO/T is the proportion of non-bridging oxygens to tetrahedrally coordinated cations calculated on an anhydrous basis that can be calculated by the bulk element composition [5], and xH<sub>2</sub>O is the mole fraction of water dissolved in the melt. Ce<sup>4+</sup>/Ce<sup>3+</sup> in melt can be obtained from Equation (2) and T is temperature degrees in K determined using the Ti-in-zircon thermometer as described below.

The Ti-in-zircon thermometer has been widely used to identify magma forming or metamorphism temperatures. The experimentally calibrated thermometer is provided using the expression [6]:

$$\log(Ti_{\rm zircon}) = (6.01 \pm 0.03) - \frac{5080 \pm 30}{T(K)}$$
(5)

Where *Ti*<sub>zircon</sub> denote the concentration of Ti in zircon in ppm, and T is temperature degrees in K.

The concentration of trace elements for melts are represented by average values of two samples from Guojialiang monzonites in Huyanshan complex by Ying et al. [7] presented in Table S1.

| Trace Element (ppm)   | La               | Ce               | Pr                             | Nd                              | Sm   | Eu   | Gd   | Tb                | Dy               | Ho       |      |
|-----------------------|------------------|------------------|--------------------------------|---------------------------------|------|------|------|-------------------|------------------|----------|------|
| XML08-2               | 36.5             | 64.1             | 7.74                           | 28.6                            | 4.98 | 1.66 | 4.45 | 0.67              | 3.95             | 0.8      |      |
| XM108-3               | 22.1             | 52.8             | 6.84                           | 25.2                            | 4.69 | 1.32 | 4    | 0.6               | 3.57             | 0.69     |      |
| Average               | 29.30            | 58.45            | 7.29                           | 26.90                           | 4.84 | 1.49 | 4.23 | 0.64              | 3.76             | 0.75     |      |
| Trace element (ppm)   | Er               | Tm               | Yb                             | Lu                              | Hf   | Th   | U    | Та                | Zr               | Y        |      |
| XML08-2               | 2.27             | 0.35             | 2.28                           | 0.35                            | 4.3  | 4.2  | 0.9  | 0.45              | 156              | 23       |      |
| XM108-3               | 1.95             | 0.3              | 1.92                           | 0.29                            | 4.2  | 3.2  | 0.6  | 0.43              | 149              | 19       |      |
| Average               | 2.11             | 0.33             | 2.10                           | 0.32                            | 4.25 | 3.70 | 0.75 | 0.44              | 152.50           | 21.00    |      |
| Major element (wt. %) | SiO <sub>2</sub> | TiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | TFe <sub>2</sub> O <sub>3</sub> | MnO  | MgO  | CaO  | Na <sub>2</sub> O | K <sub>2</sub> O | $P_2O_5$ | LOI  |
| XML08-2               | 62               | 0.29             | 19                             | 3.29                            | 0.1  | 0.69 | 1.86 | 5.22              | 5.32             | 0.11     | 2.07 |
| XM108-3               | 61.5             | 0.26             | 18.4                           | 3.13                            | 0.13 | 0.31 | 2.65 | 6.74              | 4.76             | 0.11     | 1.98 |
| Average               | 61.75            | 0.28             | 18.70                          | 3.21                            | 0.12 | 0.50 | 2.26 | 5.98              | 5.04             | 0.11     | 2.03 |

Table S1. Major and trace element data for the Guojialiang monzonites from Huyanshan complex.

## References

- Blundy, J.; Wood, B. Prediction of crystal-melt partition coefficients from elastic-moduli. *Nature* 1994, 372, 452–454.
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. *Contrib. Mineral. Petrol.* 2002, 144, 347–364.
- 3. Smythe, D.J.; Brenan, J.M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. *Earth Planet. Sci. Lett.* **2016**, 453, 260–266.
- 4. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and Chaleogenides. *Acta Crystallogr. Sect. A* **1976**, *32*, 751–767.
- 5. Smythe, D.J.; Brenan, J.M. Cerium oxidation state in silicate melts: Combined *f*O2, temperature and compositional effects. *Geochim. Et Cosmochim. Acta* **2015**, *170*, 173–187.

- 6. Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. *Contrib. Mineral. Petrol.* **2006**, *151*, 413–433.
- 7. Ying, J.F.; Zhang, H.F.; Tang, Y.J. Crust-mantle interaction in the central North China Craton during the Mesozoic: Evidence from zircon U–Pb chronology, Hf isotope and geochemistry of syenitic-monzonitic intrusions from Shanxi province. *Lithos* **2011**, *125*, 449–462.