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Abstract: The Gujiao ore field, located in the middle segment of the Lüliang Mountain in central
North China Craton (NCC), is one of iron skarn deposits of western iron belt in China. The U–Pb
dating results of zircon by LA-ICP-MS suggest that the ore-related monzonite from the Guojialiang
deposit was formed at 129.7 ± 1.7 Ma, early Cretaceous, which is consistent with the timing of iron
skarn deposits in the Handan–Xingtai district of western iron belt. The zircons of monzonite present
notable positive Ce anomalies (Ce/Ce* = 23.38–45.85), high Ce4+/Ce3+ values (154–385) and relatively
high oxygen fugacity (f O2 = −13.09 to −15.36), and yield relatively low Ti-in-zircon temperatures.
The physico-chemical conditions of the Guojialiang deposit were quite similar to these of ore-bearing
plutons in the Handan-Xingtai district. The ore-bearing magmas are derived from the enriched
lithospheric mantle with crustal material contribution, which played key role in oxidation state of the
magma and the iron mineralization in the western iron belt.
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1. Introduction

The North China Craton (NCC) has experienced reactivation or decratonization during the
Late Mesozoic [1–3], accompanied by large-scale magmatism and endogenic mineralization [4–9].
The skarn-type iron deposit is one such mineralization type that has provided a crucial source of
high-grade iron ores, especially in China [10]. Despite a majority of skarn-type iron deposits being
associated with arc setting [11], the Mesozoic skarn Fe deposits in the NCC were generated within an
intraplate extensional setting [8]. The iron skarn deposits are mainly distributed in the central-eastern
NCC and roughly form two belts, eastern iron skarn deposit belt and western iron skarn deposit belt
(Figure 1a) [12]. The western iron skarn deposit belt consists of the Southern Taihang district ore deposit
cluster, Gujiao (or Taiyuan) ore field, and Linfen ore field (Figure 1a). All these iron deposits in the
western belt have similar ore-related intrusive rocks, monzonites, and/or diorites, and similar country
rocks: Middle Ordovician marine carbonate rocks. The age, geological features, and metallogenesis of
iron skarn deposits in the Southern Taihang district have been well studied [7,8,13]. In contrast, there are
few researches about the iron skarn deposits in the Gujiao ore field. These studies reported zircon U–Pb
age and geochemistry of the Huyanshan complex in the Gujiao ore field [14,15]. However, the geology
and mineralization of iron skarn deposits have not been discussed in the previous papers. Furthermore,
the ore-bearing monzonite implication to iron skarn mineralization is still not clear in the Gujiao
ore field.
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Figure 1. (a) Simplified geological map showing distribution of major iron skarn deposits in the North
China Craton (NCC) (modified from [12]). (b) Geological map of the Gujiao ore field showing the
distribution of the Huyanshan complex.

Mantle, continental crust materials, and oxidation state of magma play key role in formation of
magmatic hydrothermal deposits such as porphyry copper, iron skarn, and porphyry molybdenum
deposits, see, e.g., in [8,16–27]. Study of physico-chemical conditions of ore-bearing rocks is crucial
to understand mineralization and to make metallogenic prognosis. The accessory mineral zircon is
not only a conventional geochronological host for uranium and thorium; it is also widely used in
revealing physico-chemical conditions of host rocks [18,22,25,28–30]. For example, the Ti concentration
of zircon correlates with crystallization temperature [31], and Ce anomalies and Ce/Nd ratio reflect
redox state of magma [29]. Sun et al. performed a contrastive study of zircons from ore-bearing and
ore-barren plutons in the Handan-Xingtai district [8]. They concluded that the ore-bearing plutons had
higher oxygen fugacity and lower temperature than ore-barren plutons. However, oxygen fugacity
and temperature of the Gujiao ore-bearing monzonite are not studied yet. In this paper, the geological
characteristics of the Guojialiang iron skarn deposit in the Gujiao ore field, and in situ zircon U–Pb
dating results, and trace element composition of zircons from ore-bearing monzonites are presented.
Geochemistry of ore-bearing rocks as well as ore mineralization age and the petrogenesis–metallogenic
significance of intrusive rocks in the Gujiao ore field are discussed.

2. Geological Background

2.1. Ore Field Geology

The Gujiao iron skarn ore field, as one of the Mesozoic intraplate iron skarn fields in the western
iron skarn deposit belt of NCC, is located in the middle segment of the Lüliang Mountain in central NCC
(Figure 1a). The lithologies exposed in the Gujiao region are Precambrian metamorphic rocks, Cambrian
sedimentary rocks, Ordovician carbonate rocks, Carboniferous-Permian coal-bearing sedimentary
rocks, and Quaternary unconsolidated sediments (Figure 1b). The magmatic rocks are dominated
by the Yanshanian period intrusive complex, Huyanshan complex, comprising monzonite, aegirine
monzonite porphyry, and syenite. The complex outcropped ~50 km2 and mainly intruded into the
Ordovician carbonate sedimentary rocks (Figure 1b). The igneous rocks of the Huyanshan complex
have intermediate SiO2 contents, with high Al2O3, total alkali, Sr, and light rare earth elements (LREE)
contents and low Y and heavy rare earth elements (HREE) contents [14]. These geochemical features
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of the Huyanshan complex are similar to those in the igneous complexes in the Handan-Xingtai
district [32–34]. Skarns are distributed in the contact zone between monzonite and carbonate rocks.
The iron skarn deposits are only associated with the monzonite in the Gujiao ore field. The zircon U–Pb
dating of the Gujiao monzonites yielded 129.9 ± 2.3 Ma and 130 ± 3 Ma [14,15], which are consistent
with the emplacement ages (136 to 129 Ma) of complexes in the Handan-Xingtai district [7,8,33,35,36].

2.2. Iron Deposit Geology

The Guojialiang deposit is located in the eastern Gujiao ore field. The exposed rocks are
middle Ordovician carbonate rocks and Carboniferous-Permian paralic deposits. The middle
Ordovician limestones were intruded by monzonites, which resulted in skarnization in the contact zone
between limestone and monzonite, and marbleization of limestone near the intrusion rocks (Figure 2).
The monzonite can be divided into two lithofacies by rock texture; one with equigranular texture as
intrusive stock, and the other with porphyritic texture as apophysis. The transition of the textures
between equigranular and porphyritic monzonite is gradual. The ore bodies mainly controlled by
fold structure generally occur as lenticules in the contact zones between the limestone and monzonite
apophysis as well as bedded veins in the limestone interlayers. In addition, some ore bodies occur in
contact zones between limestone xenoliths and monzonite stock.
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Figure 2. Geological map of the Guojialiang deposit showing iron skarn mineralization controlled
by monzonite.

Hydrothermal alteration is well developed in the contact zones in both pluton and the surrounding
limestone. The alteration zone can be divided into altered monzonite zone, endoskarn zone, exoskarn
zone, and diopside-marble zone. The altered monzonite zone commonly occurs as lenticule and the
intensity of alteration increases gradually from pluton to the country rocks. In the altered monzonite
zone, feldspars are replaced by sericite, clay, and epidote; amphibole is replaced by albite and
garnet; and sphene and garnet occur as hydrothermal minerals (Figure 3a). The endoskarn zone is
comprised of garnet, diopside, and minor phlogopite and calcite. The exoskarn zone covers larger
area than the endoskarn zone and mainly consists of diopside, phlogopite, and minor calcite and
quartz. The diopside–marble zone is characterized by marbleization of limestone with local diopside
near the exoskarn zone. Diopside skarn is dominated. Euhedral crystals of garnet and diopside are
locally found in open spaces (Figure 3b,c). Iron ore bodies commonly occur as irregular masses in the
endoskarn zone and as bedded veins in the marbleized limestone layers.

The Fe content of ore bodies ranges from 35 to 54 wt. %, with average of 45 wt. %. Phlogopite-magnetite
and diopside-magnetite are two main ore types. The diopside-magnetite ore, with massive textures,
consist of magnetite (25–40 vol. %), diopside (25–40 vol. %), phlogopite (10–15 vol. %), calcite (5–10 vol.
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%), and specularite (0–5 vol. %) (Figure 3d). Phlogopite-magnetite ore includes magnetite (40–55 vol. %),
phlogopite (30–40 vol. %), calcite (5–10 vol. %) and pyrite (~5 vol. %) (Figure 3e).
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Figure 3. Petrography and microphotographs of the Guojialang deposits. (a) Altered monzonite
showing feldspars, amphibole and garnet. (b,c) Euhedral garnet and diopside in open spaces.
(d) Diopside-magnetite ore type. (e) Phlogopite-magnetite skarn ore type. (f) Phlogopite veins
in diopside skarn. (g) Diopside overprinted by calcite and quartz. (h) Diopside replaced by
actinolite; diopside and actinolite replaced by talc. (i) Monzonite texture and mineral relations.
Ab—albite; Pl—plagioclase; Afs—alkali-feldspar; Am—amphibole; Grt—garnet; Di—diopside;
Mag—magnetite; Py—pyrite; Phl—phlogopite; Cal—calcite; Qtz—quartz; Act—actinolite; Tlc—talc;
Spn—sphene; Zrn—zircon.

Based on the petrographic observation, the metasomatism can be divided into four stages of skarn
formation: prograde stage, retrograde stage, sulfide stage, and pneumatolytic stage. The prograde
stage is dominated by garnet and diopside. The retrograde stage is characterized by phlogopite,
actinolite and magnetite that replace garnet and diopside. Phlogopite veins in the diopside skarn are
common (Figure 3f). A large volume of magnetite formed during the retrograde stage. The sulfide
stage is weakly developed and formed calcite, quartz and pyrite, overprinting diopside and filling in
pores of diopside (Figure 3g). The pneumatolytic stage is dominated by calcite, specularite, and talc.
The diopside and actinolite is replaced by talc (Figure 3h).

3. Sample and Analytical Methods

Rock samples were collected from the monzonite in the northeast part of the Guojialiang village,
Gujiao, China (GS01; 37◦44′25” N, 111◦58′48” E). The medium-grained and porphyritic monzonite is
composed of plagioclase (40–50 vol. %), alkali-feldspar (35–40 vol. %), and hornblende (10–15 vol. %),
with accessory zircon, apatite, sphene, and magnetite (Figure 3i).

Zircon grains were separated from the monzonite sample GS01 through a series of procedures,
including crushing in a jaw crusher; desliming in water; density separation in dense liquid, magnetic
separation; and, finally, handpicking under binocular microscope (United Scope LLC, Irvine, CA,



Minerals 2020, 10, 316 5 of 14

USA). Zircon grains were then mounted in epoxy resin and polished. Cathodoluminescent images and
transmitted /reflected microscopy were used to avoid fractures and inclusions and to select ablation
locations in the zircon grains.

Zircon U–Pb dating was performed using a ThermoX2 inductively coupled plasma–mass
spectrometry (ICP-MS) equipped with a GeoLas Pro 193 nm ablation system at the Testing Center
of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, China. The output laser energy
density was fixed at 10 J/cm2 and the ablation of laser was conducted at 6 Hz for 55 s after 25 s
background acquisition. A spot diameter of 30 µm was conducted for all analyses. Helium was
used as the carrier gas. The zircon 91500 was used as the external standard for U–Pb isotopic
element ratio dating. The NIST SRM610 glass was used as external standard and 29Si as the internal
standard to calibrate trace element concentrations. Offline data processing was conducted using
the ICPMSDataCal software (version 10.8, China University of Geosciences, Wuhan, China) [37].
Uncertainties of individual analyses are reported with 2σ errors. The plotting of concordia diagrams
and weighted mean age calculations were performed using Isoplot/Ex_ver3 (version 3.0, Berkeley
Geochronology Center, California, CA, USA) [38]. 206Pb/238U age is accepted for zircons younger than
1000 Ma, whereas 206Pb/207Pb age is reliable for zircons older than 1000 Ma.

Zircon Ti temperature calculation following the method described by Watson et al. [39] and
used by Sun et al. [8] for the complexes in the Handan-Xingtai district. Ce4+/Ce3+ and ƒO2 were
calculated herein to imply oxygen state of monzonite. Zircon Ce4+/Ce3+ were estimated using the
method described by Ballard et al. [22]. In lattice strain model, the La and Pr are often problematic due
to their low concentrations in zircon; Eu and U are also not used for their multivalence issues [28,40].
The trace element contents of melt are replaced by whole rocks from Ying et al. [14]. The ƒO2 were
calculated using the calibration method from Smythe and Brenan [28]. The detail method is described
in the Supplementary Document File S1. For comparison to iron deposits in the Handan–Xingtai
district, the water content in ore-bearing magma of monzonite of Huyanshan complex is considered
identical to that from ore-bearing magma in the Handan-Xingtai district (8.0 wt. %) [8].

4. Results

4.1. Zircon U–Pb Age

Zircon grains from monzonite (sample GS01) are commonly 100–200 µm in length and are light pink to
colorless, euhedral, and prismatic. The Th and U contents in most zircons are high (from 1343 to 3937 ppm
and from 1510 to 3090 ppm, respectively) except in the old inherited zircon (Table 1). The Th/U ratios
vary from 0.51 to 1.55 indicating a magmatic source. Eleven analyses with good concordance (>90%) have
206Pb/238U ages ranging from 126.2 to 135.2 Ma, with a weighted mean age of 129.7 ± 1.7 Ma (MSWD =

1.18, n = 11; Figure 4). These ages are in agreement with those from Ying et al. [14] and Huo et al. [15].
The inherited zircon analyses show 207Pb/206Pb ages ranging from 1773 to 2186 Ma, which is consistent with
ages of the tectonic-magmatic event in the Lüliang district and event in the central NCC [41–43].
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Table 1. LA-ICP-MS U–Pb data for zircons from the monzonite in the Guojialiang deposit.

Spot Th
ppm

U ppm Th/U 207Pb/206Pb 2σ 207Pb/235U 2σ 206Pb/238U 2σ
207Pb/206Pb

2σ
207Pb/235U

2σ
206Pb/238U

2σ ConcordanceAge (Ma) Age (Ma) Age (Ma)

1 2290 2547 0.90 0.0494 0.0021 0.1373 0.0070 0.0199 0.0005 168.6 100 130.7 6.2 127.1 3.0 97%
2 2421 2568 0.94 0.0576 0.0027 0.1625 0.0079 0.0202 0.0004 516.7 104 152.9 6.9 129.1 2.6 83%
3 1480 1663 0.89 0.0557 0.0033 0.1489 0.0093 0.0192 0.0005 442.6 133 140.9 8.2 122.7 3.2 86%
4 1343 1607 0.84 0.0556 0.0031 0.1573 0.0093 0.0203 0.0004 435.2 126 148.4 8.1 129.7 2.8 86%
5 2331 2236 1.04 0.0581 0.0027 0.1609 0.0086 0.0198 0.0005 600.0 104 151.5 7.5 126.7 3.0 82%
6 1994 1912 1.04 0.0540 0.0027 0.1482 0.0077 0.0198 0.0004 368.6 124 140.3 6.8 126.2 2.8 90%
7 2578 2334 1.10 0.0464 0.0021 0.1283 0.0059 0.0199 0.0004 16.8 122 122.6 5.3 127.3 2.6 96%
8 2084 1683 1.24 0.0515 0.0029 0.1459 0.0080 0.0205 0.0005 264.9 130 138.3 7.1 130.6 3.3 94%
9 2329 2145 1.09 0.0540 0.0026 0.1518 0.0078 0.0203 0.0005 372.3 117 143.5 6.9 129.4 3.1 90%
10 2828 2297 1.23 0.0560 0.0041 0.1506 0.0140 0.0192 0.0006 453.8 163 142.4 12.3 122.3 4.0 84%
11 2308 1916 1.20 0.0604 0.0043 0.1724 0.0137 0.0204 0.0006 616.7 156 161.5 11.9 130.5 3.8 78%
12 1944 2398 0.81 0.0483 0.0020 0.1416 0.0058 0.0212 0.0004 116.8 100 134.5 5.1 135.2 2.6 99%
13 2368 2090 1.13 0.0541 0.0029 0.1579 0.0086 0.0210 0.0004 376.0 113 148.8 7.6 134.1 2.7 90%
14 2368 2189 1.08 0.0498 0.0021 0.1377 0.0060 0.0199 0.0004 187.1 35 131.0 5.4 127.3 2.6 97%
15 84 138 0.60 0.1085 0.0049 4.5854 0.2592 0.3047 0.0111 1773.8 84 1746.6 47.1 1714.6 54.6 98%
16 205 219 0.93 0.1324 0.0049 6.8924 0.2731 0.3757 0.0084 2129.3 63 2097.7 35.1 2055.9 39.2 97%
17 247 483 0.51 0.1355 0.0044 7.2698 0.2573 0.3866 0.0079 2172.2 56 2145.1 31.6 2106.8 36.6 98%
18 291 424 0.69 0.1364 0.0041 7.3884 0.2707 0.3898 0.0097 2183.3 54 2159.6 32.8 2121.7 45.0 98%
19 2722 2452 1.11 0.0503 0.0020 0.1424 0.0058 0.0204 0.0004 209.3 93 135.2 5.1 130.2 2.7 96%
20 3937 3090 1.27 0.0543 0.0023 0.1518 0.0076 0.0201 0.0005 388.9 96 143.5 6.7 128.0 2.9 90%
21 1526 1510 1.01 0.0562 0.0027 0.1603 0.0077 0.0206 0.0005 461.2 117 151.0 6.7 131.5 3.1 86%
22 103 66 1.55 0.1368 0.0061 6.8413 0.3343 0.3615 0.0110 2186.7 77 2091.1 43.3 1989.4 51.9 95%
23 2168 2194 0.99 0.0522 0.0023 0.1491 0.0065 0.0205 0.0004 294.5 91 141.1 5.7 130.8 2.7 92%

Note: The analyses used to calculate average age are marked by italics.
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4.2. Zircon Trace Elements

The studied zircons have high total REE concentration from 3614 ppm to 4782 ppm (Table 2),
and they are enriched in HREE and depleted in LREE with outstanding positive Ce and weak negative
Eu anomalies. The chondrite-normalized REE patterns show a left-leaning with Ce peak (Figure 5),
implying a magmatic source [44]. It has been shown that high Y (>4433 ppm) and high total REE
(>~3800 ppm) content are typical for zircons originated from monzonite [45]. The La concentrations of
the zircons are mostly lower than 3 ppm, whereas the Lu concentrations are mostly higher than 370 ppm.
The calculated Eu/Eu* [Eu/Eu* = EuN/(SmN × GdN)1/2] and Ce/Ce* [Ce/Ce* = CeN/(LaN × PrN)1/2] ratios
from the eleven zircon analyses range from 0.60 to 0.72 and 23.38 to 45.85, respectively (Table 2).

Table 2. Trace elements of zircons with well concordance from monzonite and the results of temperature
and oxygen fugacity in the Guojialiang ore deposit.

No. La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er

1 1.63 291.35 2.49 20.09 15.37 6.68 63.01 19.17 233.09 101.57 556.62
6 2.55 282.60 3.34 24.56 16.23 7.55 63.73 19.49 237.36 102.77 574.62
7 2.66 322.00 3.80 28.96 20.32 8.60 77.51 22.91 277.39 118.63 653.33
8 1.78 293.10 3.49 27.40 19.43 8.15 77.84 23.84 297.97 136.49 754.95
9 2.94 296.58 3.29 24.41 16.55 7.45 65.56 20.50 252.68 112.89 639.64

12 1.12 259.56 1.72 13.67 11.63 5.04 51.88 17.41 225.51 107.67 637.49
13 2.78 331.48 4.19 31.25 21.37 8.57 77.97 24.34 293.76 129.19 721.01
14 2.38 305.33 3.39 25.51 18.91 7.77 72.85 22.29 267.23 117.72 653.45
19 2.94 327.52 3.82 27.64 20.71 9.16 79.65 24.69 288.62 119.46 648.35
20 1.76 281.47 2.61 19.03 14.96 6.41 62.29 19.85 248.36 109.37 627.17
23 3.09 439.98 4.16 30.58 22.11 8.36 82.05 24.59 311.91 137.12 768.40

No. Tm Yb Lu Hf Ti T/◦C Eu/Eu* Ce/Ce* Ce4+/Ce3+ log fO2 ∆FMQ

1 151.15 1779.77 371.64 6957.23 2.82 641 0.66 35.46 218.20 −15.36 3.43
6 153.73 1792.44 377.68 6603.01 3.27 651 0.72 23.74 173.92 −14.97 3.52
7 176.44 1948.98 418.54 6534.23 3.36 653 0.66 24.83 154.14 −14.83 3.6
8 201.46 2249.38 491.63 6072.93 5.80 695 0.64 28.83 169.38 −13.73 3.53
9 171.16 1918.43 420.42 6366.11 5.51 691 0.69 23.38 193.80 −13.90 3.47

12 176.20 2019.06 453.84 5887.37 4.81 680 0.63 45.85 385.27 −14.21 3.45
13 192.46 2176.00 475.35 5779.29 7.25 713 0.64 23.81 156.82 −13.09 3.70
14 175.36 1981.16 431.11 6217.55 2.82 641 0.64 26.36 175.35 −15.16 3.63
19 167.62 1901.34 408.66 6463.16 4.81 680 0.69 23.96 154.72 −14.14 3.53
20 169.06 1944.30 426.28 6086.94 7.68 700 0.64 32.20 213.10 −13.21 3.92
23 203.10 2253.16 493.31 5805.57 6.16 718 0.60 30.09 245.93 −13.25 3.41

Note: ∆FMQ denote the fayalite-magnetite-quartz buffer.
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4.3. Zircon Thermometer and Oxygen Meter

Zircon is widely used as thermometer and oxygen fugacity gauge in recent years
[8,18,22,28,29,39,46,47]. Ti-in-zircon thermometer is a useful method to constrain magma temperature
condition [31,48–50]. The Ti-in-zircon temperatures for eleven spots of zircon that has good concordance
age from GS01 are in the range of 641 to 718 ◦C. The zircon oxygen-meter reflects the oxidation state
of the source magma, where zircon crystallization is affected by several parameters such as Ce/Nd,
Ce4+/Ce3+, and oxygen fugacity (f O2) [8,21,28,29,47]. The calculated results of zircon Ce4+/Ce3+ ratios
for sample GS01 varies from 154 to 385. The f O2 ranges from −13.09 to −15.36 with an average f O2 of
∆FMQ +3.6 (Table 2).

5. Discussion

5.1. Geochronology of the Ore Deposits

40Ar/39Ar dating of phlogopite associated with skarn and U–Pb dating of hydrothermal allanite
with ages of 137 ± 2 Ma and 136 ± 1 Ma, respectively, are coeval with zircon U–Pb ages of 136 ± 2 Ma
from ore-bearing intrusions in the Handan-Xingtai district [13,51]. In addition, Deng et al. reported
U–Pb ages of hydrothermal zircons from five major iron skarn deposits ranging from 133.6 to 128.5 Ma,
which are consistent with U–Pb ages (134.1 to 128.5) of zircons from ore-bearing intrusions in each
deposit in the Handan-Xingtai district [7]. These dates provide a robust correlation between the timing
of the magmatism and mineralization, showing that the ages of ore deposits were identical to the
ore-bearing intrusions. Our new age of 129.7 ± 1.7 Ma from zircon U–Pb dating is consistent with the
zircon U–Pb age of 129.9 ± 2.3 Ma conducted by Ying et al. [14]. This shows that the Guojialiang iron
skarn deposit formed around 129.7 Ma. The geochronology data suggests that the iron skarn deposits
in western ore belt formed in the Early Cretaceous.

The inherited zircons may provide useful information on the genesis of magmas [52,53].
Inherited zircons, ~1800–2500 Ma in age, are commonly found in the ore-bearing intrusions from the Taiyuan
ore field, Linfen ore field, and Handan-Xingtai district [8,13–15,35,51]. Not incidentally, ~1800–2500 Ma
is a critical period of magmatic event and crustal growth in NCC [42,43,54]. The abundant zircons with
Paleoproterozoic age in the ore-related plutons suggest that the ancient lower crustal materials played a
key role in the magma genesis. This inference is further supported by Sr–Nd isotope data (Figure 6).
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Figure 6. Sr–Nd isotope diagram for the syenitic-monzonitic intrusions from the western ore belt.
The early Cretaceous enriched lithospheric mantle is constrained by uncontaminated basalt and
Ordovician kimberlite in the eastern NCC [55–59]. The lower crust of NCC is from work in [60]. The
early Cretaceous gabbros and lamprophyres in Southern Taihang area are given for comparison [9,61,62].
The monzonite and syenite from Gujiao after the work in [14] and Handan-Xingtai after the work in [34].

5.2. The Condition of Magma

Trace element concentration in igneous zircons is shown to be sensitive to source rock type
and crystallization environment [63]. Ti-in-zircon temperature may provide important evidence for
the magmatic processes of crystallization. The monzonite in the Guojialiang ore deposit shows low
Ti-in-zircon temperatures of 641–718 ◦C, which is slightly lower than the crystallization temperature of
complexes in the Handan-Xingtai district. In addition, crystallization temperature of ore-bearing rocks
was significantly lower than that of ore-barren plutons (Figure 7a).

The zircons from monzonite in the Guojialiang ore deposit have high Ce/Ce*, Ce4+/Ce3+, and logf O2

values, which is similar to these from the ore-bearing rocks of the Handan-Xingtai district (Figure 7b,c)
and also consistent with relatively high average oxygen fugacity of ∆FMQ+2.78. In contrast, the
oxygen fugacity of ore-barren syenite ranges from ∆FMQ-3.34 to ∆FMQ-1.51 which is much lower
than ore-bearing rocks (Figure 7d). Therefore, the ore-bearing magma had lower temperature and
higher oxidation state compared to ore-barren magma. It is likely that the ore-bearing magmas were
derived from an enriched lithospheric mantle with more crustal material contribution during ascend
than that of the ore-barren magmas [8,32,34].
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Handan-Xingtai district are from work in [8].

5.3. Implication for Mineralization

Zircon, as a common accessory mineral in natural rocks, is a robust indicator for many geological
processes, such as crustal assimilation [64], crustal recycling [65], and metal concentrations [11]. Previous
studies indicate that involvement of mantle materials can elevate iron contents of ore-related magma for
formation of Fe skarn deposits [11]. Oxidation state of magmas could also be originally inherited from
magma source and could be changed by magma processes such as crystallization, assimilation and
mixing [66–68]. The inherited zircons and Sr–Nd isotope data suggest that the ore-bearing monzonite
plutons likely formed by magma mixing from metasomatized mantle and crust, whereas ore-barren
syenite plutons are derived from the metasomatized mantle with insignificant crustal contamination
in the western Fe skarn ore belt (Figure 6) [8,14,34]. The zircon trace elements show that the oxygen
fugacity of ore-bearing monzonite was much higher than ore-barren syenite (Figure 7). Thus, the high
oxygen fugacity of monzonite magma can be probably attributed to ancient crustal materials [8]. Fe3+ is
more incompatible than Fe2+ for most early crystalized minerals in magma (e.g., olivine and pyroxene).
Under high f O2 condition, such as ∆FMQ+1.2 to ∆FMQ+3, the Fe3+/Fe2+ ratio is high and sulfur in the
magma occurs as sulfate, such as SO3

2− and SO4
2− rather than S2− [69]. Such conditions are needed to

prevent Fe loss; otherwise, the Fe2+ would combine with S2− to form insoluble FeS.
Metasomatic reactions in igneous-related hydrothermal fluids, such as diffusion and infiltration,

are commonly major mechanisms for skarn formation [70,71]. Dissolution-assimilation is proposed
as a mechanism for the formation of skarn deposits at Guojialiang. Euhedral diopside and garnet
have been found in geodes from the diopside and garnet endoskarn zones. Assimilation of the
country limestrone by post-magmatic hydrothermal fluid effectively promoted skarn formation.
The Fe-enriched hydrothermal fluid caused metasomatic alteration and deposited ore along contact
zones when the temperature decreased.
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6. Conclusions

1. LA-ICP-MS zircon U–Pb dating suggests that the mineralization of the Guojialiang iron skarn
deposit in the Gujiao ore field occurred at ~130 Ma, which is consistent with the timing of iron
mineralization in the Handan-Xingtai district.

2. The ore-related monzonite in the Gujiao ore field, with high oxygen fugacity, Ce/Ce*,
and Ce4+/Ce3+, had lower temperature and higher oxidation state compared to ore-barren magma.

3. Contribution of the crustal material to the magma source might have affected oxidation state of
magma, which may be a critical factor for the iron mineralization in the western iron belt.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/4/316/s1,
File S1: Method for using zircon REE oxygen barometer and Ti thermometer.
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