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Abstract: High-magnesium calcite (HMC) and aragonite are metastable minerals, which tend to
convert into low-magnesium calcite (LMC) and dolomite. During this process, primary compositions
are frequently altered, resulting in the loss of information regarding the formation environment and
the nature of fluids from which the minerals precipitated. Petrological characteristics have been
used to recognize primary LMC, however, neither the element distribution within primary LMC
nor the effect of diagenetic alteration on element composition have been studied in detail. Here,
two mostly authigenic carbonate lithologies from the northern Gulf of Mexico dominated by primary
LMC were investigated to distinguish element compositions of primary LMC from LMC resulting
from diagenetic alteration. Primary LMC reveals similar or lower Sr/Ca ratios than primary HMC.
The lack of covariation between Sr/Ca ratios and Mg/Ca ratios in the studied primary LMCs are
unlike compositions observed for LMC resulting from diagenetic alteration. The Sr/Mn ratios and
Mn contents of the primary LMCs are negatively correlated, similar to secondary, diagenetic LMC.
Element mapping for Sr and Mg in the primary LMC lithologies revealed no evidence of conversion
from aragonite or HMC to LMC, and a homogenous distribution of Mn is in accordance with the
absence of late diagenetic alteration. Our results confirm that Sr/Ca ratios, Mg/Ca ratios, and element
systematics of primary LMC are indeed distinguishable from diagenetically altered carbonates,
enabling the utilization of element geochemistry in recognizing primary signals in carbonate archives.
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1. Introduction

Carbonate minerals are an important archive of fluid composition, material sources,
and environmental conditions, and are widely used in paleoceanography and paleoecology (e.g., [1–3]).
Marine authigenic carbonate minerals include dolomite, proto-dolomite, high-magnesium calcite
(HMC), low-magnesium calcite (LMC: <5 mol% MgCO3), and aragonite [4–6]. Aragonite and HMC
are metastable and convert into dolomite and LMC in the course of burial [1,7]. During late diagenesis,
element contents and isotope compositions of carbonates can be altered (e.g., [6,8–10]). The compositions
of original aragonite and HMC lithologies can record either primary, depositional, or secondary
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diagenetic processes [11], and cannot typically be used as unaffected archives of the environments
where the minerals formed in the first place after the lithologies have been diagenetically altered.
By contrast, primary authigenic LMC is a stable archive of pristine geochemical signals. For example,
fluid inclusions in marine LMC cement have been used to document the chemical characteristics of the
so-called “Calcite Sea” mode of seawater, which resulted in the recognition of changes in the chemical
composition of seawater in the Phanerozoic [7]. Consequently, distinguishing primary from secondary,
diagenetic LMC is the premise for using this mineral as geological archive [1,7,12–14].

In today’s Aragonite Sea (Mg/Ca mole ratio of seawater ~5.2; [15]), primary authigenic carbonate
minerals are commonly either aragonite or HMC (e.g., [16–19]), while primary LMC has only been
recognized in some deep-sea environments [20]. Interestingly, authigenic LMC from the seafloor of
the Mediterranean Sea and the Gulf of Mexico has been suggested to be of a primary origin, with its
formation favored by brine fluids with low Mg/Ca ratios [12–14,16]. Naehr et al. [21] suggested that
LMC from Monterey Bay with negative δ18O values formed under the influence of meteoric water, either
as primary precipitate or through recrystallization. Secondary LMC formed by diagenetic alteration
has also been occasionally recognized on the seafloor of the modern Aragonite Sea (e.g., [22,23]).
Consequently, constraints on a primary origin of LMC are the prerequisite for using this mineral in the
reconstruction of fluid compositions and paleoenvironmental conditions.

Criteria to identify a primary origin of LMC include textures and geochemical characteristics
(e.g., [1,24–27]). Although the calcium carbonate mineral lattice changes during diagenetic alteration,
the original crystal morphology can be partially retained [22,23,28,29]. Consequently, pseudomorphs
and relict textures are common in secondary, diagenetically altered carbonate minerals. For instance,
Sandberg [1] assessed the reliability of primary LMC according to the absence of neomorphic
textures, indicating diagenetic alteration, and trace element contents. Carbonate crystals formed
through recrystallization commonly show other crystal habits, such as blocky mosaics, and tend to be
larger [1,30].

According to petrological observations, Huang et al. [13,14] argued that authigenic LMCs from
five sites on the seafloor of the northern Gulf of Mexico (GoM) are of primary origin. The GoM
deposits are consistent with a formation from fluids with low Mg/Ca ratios, reflecting brine seeps and
nearby salt deposits. However, diagenetically altered carbonate is not always easily distinguished from
primary authigenic carbonate through petrography alone. In addition to petrography, trends in trace
element contents can be used to recognize transformation of aragonite or HMC to LMC (e.g., [6,31,32]).
Covariations of the contents of elements such as Sr, Mn, and Mg have been found to help identify
the degree of diagenetic alteration (e.g., [6,10,32]). Similarly, back-scattered electron (BSE) imaging
has been used to study the process of replacement of aragonite by calcite at hydrothermal vents [33].
Electron microprobe analysis and particle-induced X-ray emission analysis can be used to describe the
fate of trace elements during speleothem diagenesis [27].

In order to further constrain the applicability of element compositions for recognizing a primary
origin of LMC, element contents of LMC from the northern GoM (sites GC53 and AC601) and highly
spatially resolved element distributions were investigated. Reliable recognition of primary signatures
in LMC will allow this mineral to be used in the reconstruction of paleoenvironments.

2. Geological Setting

The Gulf of Mexico (GoM) formed during Triassic to Early Cretaceous times when the crust was
stretched between the Yucatan microplate and the North American plate [34]. Extensive evaporites
were deposited during the rifting. Later on, thick sedimentary strata made of terrigenous sediments
accumulated in the northern GoM [35,36]. Widespread salt diapirism generated migration pathways
for fluids, favoring hydrocarbon migration [37]. Locally, biogeochemical processes resulting from the
mixing of seawater and hydrocarbon-rich seep fluids led to the precipitation of carbonate minerals
close to the seafloor [36,38].
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Carbonate lithologies dominated by LMC were recovered from the GoM [12–14,39]. It has been
suggested that LMC precipitation was favored by the presence of brine seeps [12–14], since the
local fluids have low Mg/Ca ratios [40,41]. Study site GC53 overlies a salt diapir and a structural
trap of crude oil at the edge of the continental shelf (Figure 1; [42]). Faults, mud volcanos, brine,
and hydrocarbon seeps were discovered close to the site [36]. The presence of abundant authigenic
carbonates and microbial mats at this site were ascribed to hydrocarbon seepage [36]. Study site AC601
is a brine-charged environment located at the lower edge of the continental slope. A brine pool and
brine seeps occur at the seafloor. Dive observations revealed that barite chimneys, carbonate crusts,
living mussels, and bacterial mats are scattered on the seafloor [18,19,43].

Figure 1. Location of sites GC53 and AC601 in the northern Gulf of Mexico.

3. Materials and Methods

Two types of LMC from the GoM were recognized in previous studies ( [13,14]). One sample of
each type was selected for this study (Figure 2). Sample D1S2 was recovered during 89-1 dive (1989) of
Pisces II research submersible targeting site GC53 (water depth of 89 m). The carbonate reveals δ13C
values between −0.1%� and 2.0%�, reflecting precipitation from hydrocarbon-free brine fluids [13].
Sample 4193 was recovered during 4193 dive (2006) of Alvin research submersible targeting site AC601
(water depth of 2340 m). The carbonate shows mostly negative δ13C values between −9.9%� and 0.1%�,
interpreted to reflect the effect of mixing of variable carbon sources that include 13C-depleted methane,
biodegraded crude oil, seawater-dissolved inorganic carbon, and residual carbon dioxide after the
pore water pool was affected by methanogenesis [14]. It was suggested that sample 4193 precipitated
from seepage of hydrocarbon-rich brine fluids [14]. The mineralogical compositions of the studied
carbonates have been described in detail elsewhere ( [13,14]; see also Table 1).

Figure 2. Studied carbonates. Sample D1S2 from site GC53 is an aphanitic micrite. Sample 4193 from
site AC601 is characterized by abundant micropores and shell material.
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Table 1. Mineral compositions (X-ray diffraction analyses) of low-magnesium calcite lithologies in %
and mol% MgCO3 in low-Mg calcite (right column) from the Gulf of Mexico.

Site Sample ID Quartz Barite Siderite Low-Mg calcite MgCO3 (%)

GC53 D1S2 * 5 37 58 5
AC601 4193 ** 11 11 78 5

MgCO3 (%) = mol% MgCO3 in low-Mg calcite. *data from Huang et al. [13]. **data from Huang et al. [14].

Carbonate powders were dissolved for element analyses using either of the two following different
methods at the Institute of Geochemistry, Chinese Academy of Sciences. (1) About 20 mg of carbonate
powder was treated with a 5% ultra-pure acetic acid for about 2 h to separate carbonate and residue
phases. The solution was centrifuged immediately after carbonate dissolution, and then dried on a
hotplate. Finally, the samples were dissolved in 3% HNO3, and spiked with an internal Rh standard
(200 ppb) for manganese and strontium contents of carbonate phases. The element compositions of the
samples were determined using a Plasma Quant MS ICP–MS. (2) About 50 mg hand-drilled powder
was dissolved in HF–HNO3 solutions in Teflon beakers for measurement of calcium, magnesium,
and iron contents of bulk samples. The sealed beakers were placed in an electric oven and kept at
185 ◦C for about 24 h. Then the solutions were dried in the beakers on a hotplate and redissolved by
adding 2 mL ultra-pure HNO3 and 4 mL deionized water. The beakers were sealed and then kept in
an electric oven at 135 ◦C for 5 h after the solution was spiked with an internal Cd standard (200 ppm).
The solution was diluted and then analyzed using a Varian Vista Pro ICP–AES. The accuracy obtained
by determining several reference standards (GSR-3, GSD-4, GSD-6, OU-6, and GSR-12 for CaO, MgO,
and Fe2O3; OU-6, AMH-1, and GBPG-1 for Mn and Sr) was better than 5%.

Element distribution and element spot analyses on thin sections were conducted on a JEOL-8100
electron probe microanalyzer at the Third Institute of Oceanography, Ministry of Natural Resources,
China, with which also back-scattered electron images were made. Thin sections were coated with
carbon before analysis. Spot analyses and element distributions scanning were carried out at an
accelerating voltage of 15 kV and 5 nA.

4. Results

4.1. Element Contents of Carbonate Phases and Bulk Samples

The element contents of the carbonate phases and bulk samples are listed in Table 2. Calcium
contents of sample D1S2 vary widely from 23.4% to 41.6% (average: 33.3% ± 6.0%), while sample 4193
shows little variation in calcium contents (45.0% to 48.6%; average: 46.6% ± 1.1%). Both samples show
low magnesium contents, ranging from 1.28% to 3.61% (average: 2.11% ± 0.87%) for sample D1S2 and
from 1.58% to 2.42% (average: 1.79% ± 0.27%) for sample 4193. Strontium contents of the carbonate
phase vary from 153 to 257 µg/g (average: 223 ± 32 µg/g) in sample D1S2, much lower than those
of sample 4193 (993 to 1530 µg/g; average: 1217 ± 159 µg/g). Manganese contents of the carbonate
phase range from 355 to 539 µg/g (average: 452 ± 63 µg/g) in sample D1S2, and from 1454 to 2993 µg/g
(average: 2282 ± 429 µg/g) in sample 4193.

Table 2. Element contents of the studied carbonates.

Sample No. CaO MgO Fe2O3-T% Sr Mn Sr/Mn Sr/Ca Mn/Ca Mg/Ca

% % % µg/g µg/g µg/g mmol/mol mmol/mol

D1S2-1 29.1 2.85 18.1 199 539 0.37 0.44 1.89 137
D1S2-2 23.4 3.61 25.0 153 441 0.35 0.42 1.92 216
D1S2-3 24.9 3.41 23.7 211 512 0.41 0.54 2.10 192
D1S2-4 34.3 1.91 9.48 242 462 0.52 0.45 1.37 78
D1S2-5 38.0 1.66 7.81 256 396 0.65 0.43 1.06 61
D1S2-6 41.6 1.28 5.11 257 369 0.70 0.39 0.90 43
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Table 2. Cont.

Sample No. CaO MgO Fe2O3-T% Sr Mn Sr/Mn Sr/Ca Mn/Ca Mg/Ca

% % % µg/g µg/g µg/g mmol/mol mmol/mol

D1S2-7 34.2 1.49 5.39 205 515 0.40 0.38 1.53 61
D1S2-8 35.7 1.37 4.69 236 483 0.49 0.42 1.38 54
D1S2-9 38.9 1.38 4.75 248 355 0.70 0.41 0.93 50

Average 33.3 2.11 11.6 223 452 0.51 0.43 1.45 99
Std Dev 6.0 0.87 7.90 32 63 0.13 0.04 0.42 62
4193-1 45.7 1.58 0.86 1380 1926 0.72 1.92 4.29 48
4193-2 47.5 1.60 0.83 1530 2176 0.70 2.05 4.67 47
4193-3 46.3 2.42 1.20 1200 1454 0.83 1.65 3.20 73
4193-4 47.7 1.79 0.83 1150 2778 0.41 1.53 5.92 53
4193-5 46.6 1.62 0.91 1100 2388 0.46 1.50 5.21 49
4193-6 46.7 1.70 1.13 993 2472 0.40 1.35 5.39 51
4193-7 45.6 2.08 0.99 1050 2260 0.46 1.47 5.05 64
4193-8 48.6 1.70 0.69 1290 2993 0.43 1.69 6.27 49
4193-9 45.0 1.58 0.71 1260 2096 0.60 1.78 4.74 49

Average 46.6 1.79 0.90 1217 2283 0.56 1.66 4.97 54
Std Dev 1.1 0.27 0.17 159 429 0.15 0.21 0.85 8

Std Dev = Standard Deviation. Fe2O3-T% is total iron as Fe2O3.

4.2. Element Distribution in Carbonates

Spot analyses with an electron microprobe helped identify accessory minerals, such as pyrite
in sample D1S2 and barite in sample 4193, which coincides with high sulfur contents (Table S1).
Spot analyses also revealed variable Fe contents in sample D1S2, reflecting a scattered distribution of
siderite. BSE images and element maps are shown in Figures 3 and 4. Manganese and Sr contents are
homogeneous in both carbonates (Figure 3B,C and Figure 4B,C), which is consistent with the results
obtained by spot analysis. Pyrite and barite, appearing light in BSE images, can be easily discerned
(Figures 3A and 4A), with barite revealing high Sr contents (Figures 3B and 4B). In contrast to the
homogeneous distribution of Mg in the micrite of sample D1S2, LMC microspar shows higher Mg
content than micrite.

Figure 3. Back-scattered electron (BSE) image (A) and electron microprobe element maps (B–D) of a
selected area of D1S2 carbonate, revealing homogeneous distribution of Sr, Mn, and Mg.
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Figure 4. Back-scattered electron (BSE) image (A) and electron microprobe element maps (B–D) of
a selected area in 4193 carbonate. The microcrystals in 4193 carbonate are composed of barite and
low-magnesium calcite, while the sparry rim is dominated by low-magnesium calcite (A). Strontium
and Mn contents are uniform in calcite and strontium contents are higher in barite (B, C); Magnesium
contents in the sparry rim are higher than that of micrite (D).

5. Discussion

5.1. Geochemical Features of Primary LMC

Aragonite is orthorhombic and tends to incorporate larger cations (e.g., Sr, Ba, U), while calcite is
rhombohedral and accommodates smaller cations (e.g., Mg, Mn; [44,45]). Hence, aragonite cement
typically yields significantly higher Sr and lower Mg contents than calcite (e.g., [44,46]). However,
secondary calcite resulting from aragonite recrystallization typically retains relatively high Sr contents
from its precursor [1,31], still yielding high Sr contents up to thousands of micrograms per gram [47,48].
Consequently, high Sr contents, sometimes in conjunction with low Mg, Fe, and Mn contents, have been
used to identify secondary calcite replacing aragonite [1,6,10,46]. Strontium/Ca ratios of the studied
GoM LMCs are similar or lower than those of bioskeletal calcite and primary authigenic HMC
(~1.36 mmol/mol; [6,49]). The ratios of GoM LMC are much lower than those of authigenic aragonite
(~12.3 mmol/mol; [49]), reflecting a potential difference of Sr/Ca ratios between primary LMC and
calcite deriving from aragonite recrystallization (e.g., [31,47,48]). Magnesium contents have been
reported to increase during the transformation of aragonite to LMC [46]. However, Sr/Ca and Mg/Ca
ratios of the studied LMCs reveal no correlation (Figure 5). Taken together, the Sr and Mg compositions
of GoM LMCs are much unlike those of LMC resulting from aragonite conversion.
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Figure 5. Plot of Sr/Ca vs. Mg/Ca ratios of the studied low-magnesium calcites, primary aragonite,
primary high-magnesium calcite (HMC), and diagenetically altered calcite (diagenetic calcite; [6]).
The endmembers (filled squares) and mineralogical trends of carbonate minerals are after Bayon et
al. [49] and Joseph et al. [6]. Arrows represent the trend of HMC conversion to LMC [6]. Note that the
‘detrital’ represents the endmember of detrital fractions [49].

Partition coefficients of Sr and Mn for LMC are not much different from those for HMC.
Consequently, the signal of original HMC could be difficult to recognize in calcite resulting from
the conversion of HMC. Diagenetic fluids tend to be rich in Mn and depleted in Sr compared to
seawater (e.g., [50–52]). The element concentrations of early diagenetic fluids can be recorded in
secondary carbonate when its primary geochemistry is retained to some extent. Joseph et al. [6] studied
primary and secondary signatures of ancient seep carbonates and showed that Sr/Ca ratios of calcite
are decreasing as Mg/Ca ratios are decreasing (Figure 5); the latter suggesting conversion of HMC to
LMC. Along with the conversion of HMC to intermediate-Mg calcite (IMC, 5–12 mol% Mg) and with
time to LMC, Sr contents decrease when Mg contents decrease; the corresponding Sr/Ca and Mg/Ca
ratios of IMC and LMC show a corresponding covariation [6]. By contrast, the GoM LMCs reveal no
such covariation.

Mucci and Morse [53] illustrated that the distribution coefficient of Sr between calcite and solution
is dependent on the MgCO3 content of calcite, proportional to the mole fraction of Mg in calcite.
Our results suggest that correlation between Sr/Ca and Mg/Ca is distinguishable between secondary,
diagenetically altered LMC, and primary LMC. The Sr and Mn contents of marine carbonates have
commonly been used to identify the degree of diagenetic alteration (Figure 6; [32,50,54]). However,
authigenic minerals forming at methane seeps have mostly higher Mn contents and lower Sr/Mn than
carbonate minerals considered to have retained original seawater signatures (Figure 6; [10]). The primary
GoM LMCs reveal similar Sr/Mn ratios and Mn contents like seep carbonates (cf. [6]). We suggest
that Sr/Mn ratios and Mn contents of hydrocarbon-seep carbonates, like sample 4193 from site AC601,
reflect primary mineralogy, the composition of seep fluids, or the degree of diagenesis. The application
of these element systematics for the assessment of the degree of diagenesis is consequently problematic
in the case of seep carbonates, unless other constraints on the primary composition of carbonate
minerals are available.
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Figure 6. Plot of Mn/Sr ratio vs. Mn content of the primary low-magnesium calcite (LMC; open symbols)
in this study and other carbonates used for comparison (filled symbols). It is suggested that carbonates
with ≥2.0 Sr/Mn and <300 µg/g Mn (dashed line) retain Sr isotopes of original seawater [55]. The
primary LMC reveal low Mn/Sr ratios and relative high Mn contents, which are not distinguishable
from the diagenetically altered carbonate.

To sum up, primary LMC can be distinguished from diagenetically altered LMC using Sr, Mn,
and Mg contents. However, it needs to be stressed that Sr, Mn, and Mg contents of seep carbonates
vary widely. Due to the pervasive fluid mixing during carbonate precipitation at seeps, it can be
expected that some primary seep carbonates reveal similar covariation patterns like diagenetically
altered carbonate minerals.

5.2. Element Mapping of Carbonates

Segments with primary HMC and aragonite composition can be retained in secondary,
diagenetically altered carbonates [6,27,29], showing original geochemical characteristics. Electron
microprobe analysis, which allows detailed characterization of element distribution in primary
carbonate phases, was used to constrain the degree of alteration of GoM LMCs. For instance,
Domínguez-Villar et al. [27] identified residual aragonite with high Sr content in diagenetically altered
carbonate through element microanalyses. Distributions of Mn, Sr, and Mg in discrete textures
have been mapped in diagenetically altered seep carbonates using laser ablation inductively coupled
mass spectrometry [6], revealing significant differences between primary HMC and crystals resulting
from recrystallization; these observations were consistent with cathodoluminescence patterns [6].
GoM sample D1S2 is dominated by LMC with a homogenous micritic texture. The lithology reveals a
homogeneous distribution of Sr and Mg, agreeing with the absence of aragonite or HMC conversion
to LMC. Similarly, the homogeneous distribution of Mn suggests the absence of alteration caused by
late-stage diagenetic fluids. GoM sample 4193 is characterized by a matrix of clotted micrite and an
isopachous rim of microspar. Microspar precipitated in pores and fractures after clotted micrite had
formed. The contents of Sr and Mn are not distinguishable between microspar and clotted micrite,
indicating similar pore fluid composition. Interestingly, the Mg content of the later-stage microspar is
even slightly higher than that of the micritic matrix, opposite to late diagenetic microspar that typically
shows lower Mg contents than primary micrite [6]. Since the studied LMCs have been suggested to
have formed from brine fluids with low Mg/Ca ratio [13,14], relatively higher Mg contents of microspar
could reflect a higher Mg concentration of pore fluids due to increased seawater ingress during the
precipitation of microspar. To sum up, mapping revealed that the element distribution within GoM
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carbonates is dominated by primary LMC and is different from distributions within diagenetically
altered carbonates.

6. Conclusions

This study investigates element distribution within primary LMC deposits recovered from the
seafloor of the Gulf of Mexico (GoM) to provide a perspective for distinguishing primary low-Mg calcite
(LMC) from diagenetically altered LMC minerals. Strontium/Ca ratios of the GoM LMCs are close to or
lower than those of primary HMC, and no covariation with Mg contents is apparent. The encountered
element compositions are unlike those expected in the case of conversion of aragonite or high-Mg
calcite (HMC) to LMC. However, similar to some diagenetically altered carbonates, the studied LMC
lithologies show a negative correlation between Sr/Mn ratios and Mn contents. Such inhomogeneous
composition of the samples can be explained by fluid mixing during carbonate precipitation in
the dynamic subseafloor environments in seep settings of the GoM. Nonetheless, Sr, Mg, and Mn
distributions obtained by electron microprobe analysis reveal no evidence of conversion of aragonite
or HMC to LMC, in sharp contrast with the compositions of diagenetically altered, secondary calcites.
The element compositions of the primary GoM LMCs, formed at times of a modern Aragonite Sea, are
distinguishable from secondary, diagenetic calcite. This can be applied to recognize primary LMCs
in the rock record, and provides a basis for the reconstruction of environmental conditions during
carbonate precipitation in the geological past.

Supplementary Materials: The following files are available online at http://www.mdpi.com/2075-163X/10/4/299/s1,
Figure S1. Thin section (A-D; plane polarized light) and scanning electron microscopy (E and F) photomicrographs
of carbonates, Table S1: Element contents (wt %) revealed by point analyses in low-Magnesium calcite.
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