

Supplementary Materials

Heterogeneous Nucleation and Growth of CaCO₃ on Calcite (104) and Aragonite (110) Surfaces: Implications for the Formation of Abiogenic Carbonate Cements in the Ocean

Hongmei Tang ^{1,2,3}, Xiao Wu ^{1,2,3}, Haiyang Xian ^{1,3,*}, Jianxi Zhu ^{1,3}, Jingming Wei ^{1,2,3}, Hongmei Liu ^{1,3} and Hongping He ^{1,2,3}

- ¹ CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), 510640 Guangzhou, China; tanghongmei@gig.ac.cn (H.T.); wuxiao@gig.ac.cn (X.W.); zhujx@gig.ac.cn (J.Z.); weijm@gig.ac.cn (J.W.); hmliu@gig.ac.cn (H.L.); hehp@gig.ac.cn (H.H.)
- ² University of Chinese Academy of Sciences, 100049 Beijing, China
- ³ Institutions of Earth Science, Chinese Academy of Sciences, 100029 Beijing, China
- * Correspondence: xianhaiyang@gig.ac.cn; Tel.: +86-20-85290569

Figure S1. AFM height images of the calcite (104) cleavage surfaces in solutions at $Mg^{2+}/Ca^{2+} = 0$ and pH = 8.0 ± 0.1 with **(a)** $SI_{calcite} = 0.50$; **(b)** $SI_{calcite} = 0.83$; **(c)** $SI_{calcite} = 1.05$. **(d)** Sketch of the atomic arrangements in calcite (104) surface. The cross-section illustrates the angular relationship of the acute and obtuse step edges with terraces. And SEM image with **(e)** $SI_{calcite} = 1.05$; and **(f)** represents the image of the red box marked zone in **(e)**; and **(g)** denotes the EDS analysis of P labeled in **(f)**.

Figure S2. AFM height images of the polished aragonite (110) surface in solution ($Mg^{2+}/Ca^{2+} = 0$, $SI_{calcite} = 1.05$) under flowing conditions at pH = 8.0 ± 0.1 for (a) 0, (b) 5, (c) 10, (d) 25, (e) 45 and (f) 80 min.

Figure S3. AFM height images of the polished aragonite (110) surface in solution ($Mg^{2+}/Ca^{2+} = 3$, $SI_{calcite} = 1.05$) under flowing conditions at pH = 8.0 ± 0.1 for (a) 0, (b) 2, (c) 5, (d) 10, (e) 20 and (f) 40 min.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).