Heterogeneous Nucleation and Growth of CaCO_{3} on Calcite (104) and Aragonite (110) Surfaces: Implications for the Formation of Abiogenic Carbonate Cements in the Ocean

Hongmei Tang ${ }^{1,2,3}$, Xiao Wu ${ }^{1,2,3}$, Haiyang Xian ${ }^{1,3, *}$, Jianxi Zhu ${ }^{1,3}$, Jingming Wei ${ }^{1,2,3}$, Hongmei Liu ${ }^{1,3}$ and Hongping He ${ }^{1,2,3}$
1 CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), 510640 Guangzhou, China; tanghongmei@gig.ac.cn (H.T.); wuxiao@gig.ac.cn (X.W.); zhujx@gig.ac.cn (J.Z.); weijm@gig.ac.cn (J.W.); hmliu@gig.ac.cn (H.L.); hehp@gig.ac.cn (H.H.)
2 University of Chinese Academy of Sciences, 100049 Beijing, China
${ }^{3}$ Institutions of Earth Science, Chinese Academy of Sciences, 100029 Beijing, China
* Correspondence: xianhaiyang@gig.ac.cn; Tel.: +86-20-85290569

Figure S1. AFM height images of the calcite (104) cleavage surfaces in solutions at $\mathrm{Mg}^{2+} / \mathrm{Ca}^{2+}=0$ and $\mathrm{pH}=8.0 \pm 0.1$ with (a) $S I_{\text {calcite }}=0.50$; (b) $S I_{\text {calcite }}=0.83$; (c) $S I_{\text {calcite }}=1.05$. (d) Sketch of the atomic arrangements in calcite (104) surface. The cross-section illustrates the angular relationship of the acute and obtuse step edges with terraces. And SEM image with (e) SIcalcite $=1.05$; and (f) represents the image of the red box marked zone in (e); and (g) denotes the EDS analysis of P labeled in (f).

Figure S2. AFM height images of the polished aragonite (110) surface in solution $\left(\mathrm{Mg}^{2+} / \mathrm{Ca}^{2+}=0, S I_{\text {calcite }}\right.$ $=1.05$) under flowing conditions at $\mathrm{pH}=8.0 \pm 0.1$ for (a) 0 , (b) 5, (c) 10 , (d) 25 , (e) 45 and (f) 80 min .

Figure S3. AFM height images of the polished aragonite (110) surface in solution $\left(\mathrm{Mg}^{2+} / \mathrm{Ca}^{2+}=3\right.$, S callitie $^{\text {a }}$ $=1.05$) under flowing conditions at $\mathrm{pH}=8.0 \pm 0.1$ for (a) 0 , (b) 2 , (c) 5 , (d) 10 , (e) 20 and (f) 40 min .

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

