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Abstract: Barite has numerous applications including barium mud for oil well drilling, manufacture of
elemental barium, filler for paper and rubber industries, and contrast material for X-ray radiology for
the digestive system. Currently, froth flotation is the main method for the beneficiation of barite using
fatty acid as a typical collector. In this research, it was found that lauryl phosphate is also a promising
collector for barite flotation. Results from microflotation, contact angle, and zeta potential indicate
that lauryl phosphate is adsorbed on the barite surface and thus achieves superior flotation efficiency
at a wide pH range. The interfacial water structure and wetting characteristics of barite surface
with/without lauryl phosphate adsorption were also evaluated by molecular dynamics simulations
(MDS). The results from molecular dynamics simulations and interaction energy calculations are
in accord with the experimental results, which suggest that lauryl phosphate might be a potential
collector for the flotation of barite.
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1. Introduction

Barite is a salt-type mineral with a chemical composition of BaSO4, which is crucial in many
industries, such as petroleum, weighting material for drilling mud in natural gas operations, barium
chemical productions [1], and functional barite materials [2,3]. Flotation is the main process for the
recovery of barite from ores [4].

Sodium oleate and pine oil are typically used as collector and frother in barite flotation at pH 10 [5,6].
However, oleate is sensitive to slimes [7], low temperatures [8,9], and hard-water ions [10]. In this
regard, many other collectors have been explored in barite flotation. Barite is either prefloated with cetyl
stearyl sodium sulfate or depressed in apatite flotation using fatty acids at pH 12 [11]. Additionally,
barite is selectively floated from fluorite using sodium petroleum sulfonate as a collector with sodium
hexametaphosphate as a depressant at pH 11 [7]. Furthermore, barite is also a typical invaluable
mineral from flotation of Mountain Pass bastnaesite [12]. Given the critical role of collector chemistry
in barite flotation, more effective collectors are needed for high efficient separation. The phosphate
collectors have been used in the flotation of calcite [13], perovskite, ilmenite and rutile, chromite [14],
wolframite [15], magnesite [16], smithsonite [17], bastnaesite [18], and quartz [19]. The price of
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phosphate collectors is as low as the typical fatty acid collector [9]. For this reason, barite flotation
using lauryl phosphate as collector was studied with respect to the effect of phosphate adsorption
on contact angle and Zeta potential of barite surface. The results are important for understanding
this phosphate chemistry in the flotation of barite from fluorite, apatite, and bastnaesite. Molecular
dynamics simulations (MDS) examine the interfacial water structure at mineral surface [20], the water
mobility [21], the hydrogen bond [22], and the adsorption sites of organic molecules at the mineral
surface in solution [18,23,24]. In this regard, lauryl phosphate was evaluated as the collector in barite
flotation for the first time by molecular dynamics simulations. The hydrophobicity, lauryl phosphate
adsorption characteristics, flotation response, and reaction energy were examined and compared. It is
expected that the present research will improve the fundamental understanding of lauryl phosphate
adsorption at the barite surface, and its improved flotation efficiency for the separation of barite from
fluorite, apatite, and bastnaesite.

2. Materials and Methods

2.1. Materials

Cola®Fax PME (potassium lauryl phosphate, C12H26O4PK) was obtained from Colonial Chemical
Incorporated Company, TN, USA). Barite from a mineral collection shop was used for the contact
angle, zeta potential, and flotation experiments. Acetone, methanol, and deionized (DI) water
were used to clean the glassware. DI water, with a resistivity larger than 18 mΩ, was used for all
experiments. pH was adjusted by HCl and NaOH solutions. KCl was the background electrolyte in
zeta potential measurements.

2.2. Contact Angle Measurements

The barite surface was polished and cleaned by the rinse with acetone, methanol, and DI water,
followed by blow drying with high-purity nitrogen. The samples were then treated with argon
gas plasma and again dried with high-purity nitrogen gas. Then, the captive bubble contact angle
measurements were made by a Rame–Hart goniometer (Model 100-00-115, Reme-Hat, Inc. Mountain
Lakes, NJ, USA). The measurement of an intermediate captive bubble contact angle was accomplished
by the release of an air bubble from the needle tip after formation with a syringe; the bubble was
then captured beneath the bastnaesite surface, followed by film rupture and bubble attachment [9].
The equilibrium contact angle was measured for all cases of attachment. The average value of five
equilibrated captive bubble contact angles at different locations on the mineral surface was reported.
The maximum contact angle variation was found to be ±1◦ [25,26]. The equilibrium contact angle
image was captured by a Kodak Ektapro high-speed video camera (Intensified Image, Eastman Kodak
Company, Motion Analysis Division, San Diego, CA, USA) connected to the PC for data acquisition.

2.3. Zeta Potential Measurements

The lauryl phosphate solution, with a concentration of 5 × 10−6 M, was prepared using 10 mM
KCl solution and Cola®Fax PME reagent. The pH values were adjusted by HCl and NaOH solutions.
The barite sample was dry ground to −45 µm and a 0.1 wt% suspension was prepared using 5 × 10−6 M
lauryl phosphate with 10 mM KCl. The suspension was treated with 10 min centrifugation and
the supernatant was used in the determination of the electrophoretic mobilities by a Zeta potential
analyzer (Zeta PALS, Brookhaven Instrument Corp, Holtsville, NY, USA). Based on the particle
mobilities as a function of pH, the zeta-potentials (ξ) were calculated by the Smoluchowski equation in
Equation (1) [27].

U =
εξ

4πη
E∞ (1)

U, η, ε, and E∞ are the particle mobility (m/s), the viscosity of the solvent (Pa·s), the dielectric constant
(F/m), and the applied electric field (v/m), respectively.
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2.4. Microflotation Tests

A −100 + 200 mesh size fraction of barite was used for flotation. The flotation was conducted in a
112 mL column cell with a porous sintered glass bottom (pore size about 5 µm). A magnetic stirrer
was used to maintain the particle suspending state for the microflotation experiment. One gram of
barite with size fraction of −100 + 200 mesh was conditioned in the lauryl phosphate solution for 5 min
and followed by 2 min flotation with 50 mL/min nitrogen gas flow. The average recovery value from
3 microflotation tests was reported [28].

2.5. Molecular Dynamics Simulations

The lauryl phosphate structure was used from a previous paper using the Gaussian 09 program [29].
The crystal lattice parameters of barite were taken from the American Mineralogist Crystal Structure
Database [30]. The barite (001) surface was used for the lauryl phosphate adsorption simulation [31].
The pKa of lauryl phosphate is 2.85 and 7.35, respectively [29]. The distribution of the lauryl phosphate
species, such as RH2, RH−, and R2− (R represents C12H25PO4), as a function of pH is summarized
in Table 1. The interfacial adsorption state of the lauryl phosphate species at the barite surface was
investigated by Amber [32]. Tables 1 and 2 list the number of atoms in molecular dynamics simulations
and the intermolecular potential parameters. A periodic structure with a dimension of 27 × 28 × 126 Å3

for the configuration of water, lauryl phosphate, and the barite surface was built by the visual molecular
dynamics (VMD) graphics tool [33]. NVT [moles (N), volume (V), and temperature (T)] together
with Hoover’s thermostat were used. The integration of the particle motion was evaluated by the
leap-frog method with a time step of 1 fs (femtosecond). The electrostatic interactions were represented
by the Ewald sum. A final 0.5 ns (nanosecond) simulation was analyzed after 1.5 ns equilibration
period [19,34].

Table 1. The composition and molecule number on the barite surface with lauryl phosphate species.

Number of Molecules

Na+ RH2 RH− R2− Water

pH < 2.85 6 2182
2.85 < pH < 7.35 6 6 2182

pH > 7.35 12 6 2182

Table 2. Parameters for barite with lauryl phosphate species.

Species Charge [e] ε [kcal/mol] r [Å] Reference

Barium in barite 2 0.364 3.703 [35,36]
Sulfur in barite 1.544 0.274 4.035 [35,36]

Oxygen in barite −0.886 0.1554 3.5536 [35,37]
Water oxygen −0.8476 0.1554 3.1659 [37]

Water hydrogen 0.4238 0 0 [37]

The distribution of the molecules at the mineral surface is described by the relative concentration
profiles in Equation (2) [22]. N(Z− 0.5∆Z, Z + 0.5∆Z) is the average atom number appearing in
the duration of (Z− 0.5∆Z, Z + 0.5∆Z) (∆z = 0.01). M and S are atom mass and the basal surface
area, respectively.

ρz =
N(Z− 0.5∆Z, Z + 0.5∆Z) ×M

∆Z× S
(2)
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The diffusion coefficient (D) was calculated by Equation (3) [34], where Na is the diffusive atom
number; ri(0) and ri(t) are the mass center positions of the solutes at the time of origin and t, respectively.

D =
1

6Na
lim
t→∞

Na∑
i=1

〈[ri(t) − ri(0)]
2
〉 (3)

The mineral surface–lauryl phosphate/water interaction energy, ∆E, was computed by Equation (4):

∆E = Ecomplex −
(
Emineral sur f ace + Ereagent

)
(4)

where Ecomplex, Emineral surface, and Ereagent are the interaction energies of the optimized mineral
surface–reagent complex, mineral surface, and reagent such as water and lauryl phosphate. The more
negative values of the interaction energy of ∆E represent the greater interactions between the mineral
surface and the reagent [19].

3. Result and Discussion

The flotation chemistry of barite is critical in the separation of barite from apatite, fluorite, and
bastnaesite. For this reason, the wetting characteristics, lauryl phosphate adsorption phenomena, and
flotation response in barite flotation with lauryl phosphate were examined by contact angle and zeta
potential measurements, microflotation, and molecular dynamics simulations.

3.1. Contact Angle of Barite with Lauryl Phosphate

Contact angle measurements evaluate the hydrophobicity of the mineral, which describes the
repulsion or rejection of water at the mineral surface [38]. In this regard, the contact angles at the
barite surface with lauryl phosphate, as a function of pH and concentration, are presented in Figures 1
and 2. As shown in Figures 1a and 2a, the contact angle of barite is around 40◦ at pH 6.6 and pH 9.3,
which is higher than the value of 35◦ at pH 3.0. As for the contact angle of barite as a function of
lauryl phosphate concentration in Figures 1b and 2b, the contact angle increased from 20◦ at the fresh
barite surface to 60◦ in the presence of 1 × 10−4 M lauryl phosphate. It is evident that bubble rupture
occurs at the barite surface and replaces the surface water reaching equilibrium state from 1 × 10−5 M
to 1 × 10−4 M lauryl phosphate concentration in Figure 2b. The bubble captive contact angle of 20◦

at a fresh barite surface is smaller than the reported sessile drop value of 38◦ [39]. The contact angle
deviations may be due to the differences in experimental methods and conditions [40].
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Figure 2. Captive bubble contact angle at a barite surface with 2.5 × 10−5 M PME as a function of pH (a);
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3.2. Zeta Potential of Barite with Lauryl Phosphate

Zeta potentials examine the potential difference between the dispersing mineral particles and the
attached stationary water layer. For this reason, the change of zeta potential due to the adsorption of
the collector/depressant may be indicative of the hydrophobicity/flotation response [34]. As shown in
Figure 3, the IEP (isoelectric point) of barite is about pH 5.5, which is close to the reported value of
4.7 [7]. The zeta potential of barite decreased around 4–8 mV in the presence of lauryl phosphate when
compared to the barite without lauryl phosphate adsorption, which indicates significant adsorption of
anionic lauryl phosphate at the barite surface as a function of pH. As lauryl phosphate is an anionic
collector at pH > 5.5 (the IEP of barite), the mechanism of adsorption onto the barite surface must
be chemisorption due to the electrostatic repulsion caused by the negative charge barite surface at
alkaline pH. For the pH range less than 5.5, it is not possible from zeta potential data alone to predict
the collector adsorption mechanism, as in acidic conditions, the positive barite surface charge will
attract the lauryl phosphate anion. In this regard, the physisorption and a possible chemisorption were
expected at pH less than 5.5. Further research is needed regarding the adsorption feature at lower
concentration, such as the adsorption coverage and/or density effect on barite surface hydrophobicity,
and comparison of a traditional collector with lauryl phosphate.
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3.3. Barite Flotation with Lauryl Phosphate

The results from barite flotation using lauryl phosphate as a collector is shown in Figure 4. It is
obvious that the barite flotation recovery increases as a function of lauryl phosphate concentration
at different pH. Furthermore, all the barite recovery reaches 95% at 1 × 10−5 M lauryl phosphate
concentration for pH 3.0, pH 6.3, and pH 9.5. However, the barite recovery for pH 3 is lower than
the barite recovery at pH 6.3 and pH 9.5 when lauryl phosphate concentration is less than 1 × 10−5 M.
The main lauryl phosphate species is RH2, when pH less than pH 3, which is more hydrophobic and
lower in solubility when compared to the RH− and R2− species [9]. In this regard, RH2 tends to be
adsorbed at the air/water interface instead of air/mineral interface [41]. For this reason, the barite
recovery at pH 3.0 is less than pH 6.3 and pH 9.5 at low lauryl phosphate concentration of 1 × 10−5 M.
When lauryl phosphate concentration increased above 1 × 10−5 M, the lauryl phosphate species RH2

accumulated at the barite surface as an aggregate [41], and thus resulted in the high barite recovery
of 95%.
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3.4. MDS of Lauryl Phosphate Adsorption at the Barite Surface

The equilibrated lauryl phosphate species such as RH2, RH−, and R2− on the barite (001) surface
are shown in Figure 5. It is obvious that the adsorption states of lauryl phosphate species are not the
same due to its different charge/composition in nature. However, all the lauryl phosphate species are
adsorbed mainly by the adsorption of phosphate head group toward the barite (001) surface and also
the hydrophobic attraction between the hydrocarbon chains of lauryl phosphate. The interaction of
the phosphate head group with barite surface seems to be chemisorption, which agrees with the zeta
potential measurement result and the low solubility product of 6 × 10−39 for (Ba)3(PO4)2 [42].

The relative concentration of lauryl phosphate and water molecules at the barite (001) surface was
analyzed in Figure 6. It is obvious that the water density decreased in the presence of lauryl phosphate
species as a function of distance from the barite surface. There is limited water density decreasing at
the first peak in the presence of lauryl phosphate species, which indicates that the barite surface is
mainly occupied by water molecules, and thus the water coexisted with the lauryl phosphate species at
the barite surface. The above observation agrees with the lauryl phosphate adsorption phenomena as
shown in Figure 5 and further confirmed that the barite surface is hydrophilic [43]. As for the second
water peak to the fifth water peak in Figure 6a, it is evident that the water density decreased a lot when
compared to the first water peak, which confirmed that lauryl phosphate species replaced the water
molecules, and thus created a hydrophobic surface. The relative density of lauryl phosphate species
from the barite (001) surface is almost the same in Figure 6b, which agrees with the flotation result in
Figure 4 at lauryl phosphate concentration larger than 1 × 10−5 M.
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The diffusion coefficient (D) and mean square displacement examine the molecules’ displacement
as a function of time [34]. The high diffusion coefficient of water at mineral surface represents
a disordered and less structured interfacial water state at the mineral surface. On the contrary,
the low diffusion coefficient of water molecules at the mineral surface indicates the ordered and
structured interfacial water state at the mineral surface [34,44]. As shown in Table 3 and Figure 7,
the diffusion coefficient of water in the presence of lauryl phosphate species changed in the range
of 4.71–5.77 × 10−5 cm2/s, which is expected as the water contacts with lauryl phosphate species
with different charges. However, the above diffusion coefficient of water in the presence of lauryl
phosphate is higher than the value of 3.84 × 10−5 cm2/s for the pure water. In this regard, the lauryl
phosphate species replaced the water molecules at the barite surface and thus created a disordered
and less structured interfacial water state with a higher diffusion coefficient. The same phenomenon
has been found in the oleate chemisorption at the calcite and fluorite surfaces [45], alkyl phosphate
chemisorption at the bastnaesite surface [34], and fatty acids chemisorption at brucite surface [20].



Minerals 2020, 10, 280 8 of 11

Table 3. Diffusion coefficient (D) for interfacial water molecules in the system of pure water, RH2, RH−,
and R2− solutions on barite (001) surface as obtained from their mean square displacements.

System D (10−5 cm2/s)

Pure water 3.84
RH2 solution 4.71
RH− solution 5.69
R2− solution 5.77Minerals 2020, 10, 280 8 of 11 
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3.5. Interaction Energy of Lauryl Phosphate Species at the Barite Surface

The interaction energies of water and lauryl phosphate species at the barite (001) surface are
presented in Figure 8. A negative interaction energy value represents stronger adsorption of water/lauryl
phosphate species at the barite surface. The interaction energy for lauryl phosphate species at the
barite surface is smaller than the case for water, which indicate that all lauryl phosphate species are
able to replace water and adsorb at the barite surface. However, the interaction energy of RH2 at the
barite surface is larger than the case of RH− and R2− at the barite (001) surface, which is in accord
with the flotation result that RH2 has lower barite flotation recovery than RH− and R2− at low lauryl
phosphate concentration of less than 1 × 10−5 M. The interaction energy difference for RH− and R2− at
the barite surface is only 5 kJ/mol, which also agrees with findings that the contact angle measurement
results, and the flotation recoveries are similar at mild and alkaline pH range.
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4. Conclusions

The wetting characteristics, lauryl phosphate adsorption phenomena, and flotation response in
barite flotation with lauryl phosphate were studied by contact angle, zeta potential, and microflotation
experiments, and molecular dynamics simulations. It seems that lauryl phosphate can be adsorbed on
barite surface at all pH ranges at a low dosage of 1 × 10−5 M and achieved 95% barite flotation recovery.
Lauryl phosphate is a potential collector in the flotation of barite from fluorite or apatite. Further
research efforts are needed to further evaluate the selectivity of lauryl phosphate in the direct/reverse
flotation of barite from fluorite, apatite, and bastnaesite, and the specific depressant is also needed.
Conclusions at this time are as follows:

(1) Lauryl phosphate results in higher hydrophobicity of barite in mild and alkaline pH range when
compared to acid pH range at low concentration.

(2) A 95% barite flotation recovery can be achieved at a wide pH range using lauryl phosphate as
collector with a low usage of 1 × 10−5 M.

(3) The adsorption of anionic lauryl phosphate at the barite surface seems to be chemisorption at pH
higher than pH 5.5 and a mixture of physisorption and/or chemisorption at pH less than 5.5.

(4) Lauryl phosphate species replaced water and adsorbed at the barite surface at all pH ranges from
interaction energy calculation and molecular dynamics simulations examinations.
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Notation:
ρz density profiles
N Moles
V Volume
T Temperature
M atomic mass
S basal surface area
D diffusion coefficients
Na number of diffusive atoms in the simulation cell
ri(0) mass center positions of the solutes at the time of origin
ri(t) mass center positions of the solutes at the time of t
∆E interaction energy
Ecomplex interaction energies of the optimized mineral surface–reagent complex
Emineral surface interaction energy of mineral surface
Ereagent interaction energy of reagent such as water and lauryl phosphate
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