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Abstract: The optimization of the operating parameters of a stirred media mill in the dry grinding of
calcite was investigated. A three-level Box-Behnken design was used for the purpose of examining
the impact of four independent factors, the stirrer speed (SS), grinding time (GT), media filling
ratio (MFR), and solid mass fraction (SMF), on the product particle size (d50). For the purpose
of establishing an empirical correlation between operating parameters and responses, a series of
experiments were carried out. Variance analysis showed a reasonably good value for d50 (R2 = 0.965).
According to the software solutions, the optimum conditions for minimizing the d50 size were found
to be 573 rpm stirrer speed, 11.18 min grinding time, 63% media filling ratio, and 11.52% solid mass
fraction, with 3.78 µm for the d50 size. To verify the improvement of grinding, verification tests were
performed using the above-mentioned optimum conditions and the average d50 size and standard
deviation were found to be 3.83 µm and 0.025, respectively. The average d50 value obtained was
smaller than those obtained in the 27 tests. Furthermore, when the optimum result obtained from
the experiments was compared with the result obtained using the software, a 22% energy saving
was achieved. The impacts of grinding on the structural characteristics of calcite particles were
characterized by XRD analysis. XRD measurements indicated that no change was observed in the
peak areas of ground calcite specimens compared to the untreated calcite specimen.
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1. Introduction

Grinding is one of the oldest production techniques used by humans. Although the process
originates from centuries of experience, it remains important and represents an extremely important
area of research. Calcium carbonate (CaCO3) is a raw material which is found widely in nature. It is a
mineral which is considered to be a filler because of its low price and stable properties. It is generally
white in color, has a hexagonal crystal system and a Mohs hardness of 3.0. Natural calcium carbonate,
or precipitated calcium carbonate, is used as a filler material at different ratios. CaCO3 represents the
filler that is utilized most frequently in the plastic, paper, rubber, paint and ink industries because it is
available around the world, is present in a ready-to-use form, and has low cost, excellent whiteness,
incombustibility and inertness, and low oil-absorbency and water adsorption [1–3]. Deodhar et al. [4]
used nano-sized calcium carbonate mineral as a flame retardant in addition to polypropylene and
found a significant decrease in heat emission rates. CaCO3 is also used as sealant formulations in the
silicone industry [5].

Many parameters may influence the outcomes of dry grinding in stirred media mills. It is possible
to classify such parameters as the mill’s design properties (e.g., impeller types, the features of impeller
arms, the length/diameter ratio of the mill, the orientation of the shaft), vertical [6–8] or horizontal [9–12]
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and operating parameters (e.g., grinding time [7,13–15], stirrer speed [6,9,13,15–18], media loading,
type and size [13,19,20], grinding type. The information obtained from these studies shows that dry
stirred media mills are still in an early to intermediate stage of development. A classic factor in a time
approach can lead to the failure to identify and connect basic and interaction impacts and optimize
grinding parameters [21]. To date, a lot of studies have been carried out to produce fine and ultrafine
materials in a stirred media mill. However, few studies have been conducted to assess operating
parameters with response surface methodology (RSM) [14,22].

RSM represents a set of mathematical and statistical techniques used in the design of experiments,
the establishment of models, the control of the impacts of parameters, and the investigation of the
optimum conditions of each factor for the desired responses [23]. Thus, it is widely used in many
contemporary mineral processing areas [24–30]. The Box-Behnken design (BBD) in RSM is a significant
design tool that is utilized to reduce the number of experiments, as well as time and cost. The BBD
provides accurate information from a lower number of experiments and the interactive impacts of
operating parameters on all responses [31]. In this context, Celep et al. [22] utilized a four-factor
three-level factorial design for their analysis of the impact of a number of parameters of a stirred
mill on the ultra-fine grinding of refractory Au/Ag ores. The grinding results were evaluated by d80.
Following this study, Celep and Yazıcı [14] investigated the effects of certain operating parameters on
ultra-fine grinding of cyanidation plant tailings at three different factors and three levels by utilizing
the Box-Behnken design.

In this research, a three-level Box-Behnken design was used for the purpose of examining the
impact of four independent factors—stirrer speed, grinding time, media filling ratio, and solid mass
fraction—on the product particle size (d50) in the dry grinding of calcite in a stirred media mill. To
optimize these multiple factors, it was possible to implement the conventional method of “changing one
factor at a time.” However, the above-mentioned possibility was excluded, since it is time-consuming
and does not guarantee achieving the optimum set of parameters. As an alternative, the Box-Behnken
design, which is considered a much more reliable approach, was chosen because it is based on a
mathematical model [22].

This study has brought a new perspective to our understanding of the efficient and effective use
of material, energy, and time in grinding.

2. Materials and Methods

2.1. Materials

The calcite specimen acquired from Mertas (Nigde, Turkey) was utilized in this research. The
samples were oven-dried at 60 ◦C to a constant weight. The chemical properties of the calcite specimen
measured by X-ray fluorescence (XRF) are presented in Table 1. A pycnometer was utilized to detect
the specific gravity of the calcite powder. The particle size distribution of the feed material that was
characterized from dry sieving is presented in Figure 1.

Yttria-stabilized zirconia (ZrO2) grinding media (3 mm) (chemical composition: 93% ZrO2, 5%
Y2O3, and 2% others) with high density (6000 kg/m3), obtained from Cenotec Co., Ltd., Haman, Korea,
were used in conducting grinding tests.

2.2. Method

The grinding experiments were performed by a Union Process STD-01 batch-type laboratory scale
pin-type vertical stirred mill with a 750 cc ceramic (Al2O3) tank (see Figure 2). The stirrer axis was
fitted with a shaft and four arms. The shaft length was 26.6 cm, the length of each mixing arm was
5.7 cm and the distance of the shaft from the bottom of the tank was 0.635 cm. The grinding tank
also had a water jacket to ensure cooling, and the temperature was set at 18 ◦C using a PolyScience
PP07R-20 (PolyScience, Illinois, USA) water circulator.
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Table 1. The chemical composition and basic physical characteristics of the calcite specimen.

Constituent Content (%)

Chemical composition

CaCO3 99.5
MgCO3 0.2
Fe2O3 0.01
SiO2 0.01

Al2O3 0.02
LOI * 0.26

Physical properties

Average particle size, d50 (µm) 11
Specific gravity (kg/m3) 2700

LOI *loss on ignition.
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detracted from the stirred media mill after each experiment, and the grinding media were separated
from the calcite specimens as a result of dry sieving. A Wet Laser Diffraction Particle Sizer Malvern 2000
Ver. 2.00 with Hydro 2000 G attachment (Malvern Co., Ltd., Malvern, UK) was utilized to analyze the
feed and ground products. Each test was performed in triplicate, and the reported values represented
a mean average. In this study, the main aim was to detect the best design of variables that might
be utilized in grinding to produce the minimum product particle size (d50). X-ray diffraction (XRD)
patterns were recovered by utilizing PANalytical Empyrean for the analysis of crystal structures of the
calcite specimens. The CuKα (λ = 0.15418 nm) radiation filtered by Ni was utilized for the purpose of
recording patterns in the diffraction angle of 2θ ranging from 5◦ to 70◦ with a measuring time of 8 s at
every angle.

2.3. Experiment Design

To elucidate the effect of a number of operating parameters using a stirred media mill on the
dry grinding of calcite, a four-factor three-level Box-Behnken response surface design was employed
using statistical software (Design Expert 7.0.0). One of the advantages of the Box-Behnken design
for 3–10 factors is that it is a global design and has only three levels of data, with low (−1), center
(0) and high (+) as coded levels. The Box-Behnken design is capable of significantly decreasing the
number of experiments without reducing the optimization accuracy, in comparison with conventional
factorial design methods. An experiment number in accordance with Equation (1) is required by the
Box-Behnken design:

N = K2 + k + cp (1)

where (k) denotes the number of factors, and (cp) denotes the replicate number of the central
point [31–33].

The examined factors chosen as independent variables were the stirrer speed, SS (X1, rpm);
grinding time, GT (X2, min); the media filling ratio, MFR (X3, %); and the solid mass fraction, SMF
(X4, %). The obtained experimental results were assessed by statistical analysis utilizing the same
software package. The factors and coded levels in the current research are presented in Table 2.

Table 2. Experimental factors and their corresponding levels.

Factors Factor Code
Coded Levels

Low (−) Center (0) High (+)

Stirrer speed, SS (rpm) X1 300 450 600
Grinding time, GT (min.) X2 5 10 15

Media filling ratio, MFR (%) X3 50 60 70
Solid mass fraction, SMF (%) X4 10 12 14

3. Results and Discussion

For RSM including the Box-Behnken experimental design, a total of 27 tests with the appropriate
combinations of SS (X1, rpm), GT (X2, min), MFR (X3, %), and SMF (X4, %) were conducted for each of
the four factors at the three levels.

Each experiment was repeated twice, and the reported d50 values are the mean average. Table 3
presents a summary of the experimental series, their factor combinations, and the levels of the
experimental units utilized in the research, in addition to the mean particle size acquired for every
combination of factors.
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Table 3. Box-Behnken design and actual results.

Run Coded Levels of Factors Real Factors Actual Results

No. X1 X2 X3 X4 SS GT MFR SMF

rpm min % % µm

1 1 0 −1 0 600 10 50 12 4.49
2 0 0 1 −1 450 10 70 10 4.7
3 1 0 0 1 600 10 60 14 4.62
4 0 1 1 0 450 15 70 12 4.18
5 0 0 −1 1 450 10 50 14 5.68
6 −1 1 0 0 300 15 60 12 5.35
7 0 −1 0 −1 450 5 60 10 5.8
8 0 0 −1 −1 450 10 50 10 5.44
9 0 0 0 0 450 10 60 12 4.12
10 1 0 1 0 600 10 70 12 4.2
11 0 1 0 1 450 15 60 14 5.02
12 −1 0 0 1 300 10 60 14 6.2
13 1 0 0 −1 600 10 60 10 4.5
14 −1 0 0 −1 300 10 60 10 5.4
15 −1 0 −1 0 300 10 50 12 6.5
16 −1 −1 0 0 300 5 60 12 7.01
17 0 1 −1 0 450 15 50 12 5.04
18 −1 0 1 0 300 10 70 12 5.35
19 0 1 0 −1 450 15 60 10 4.68
20 1 1 0 0 600 15 60 12 3.96
21 0 0 0 0 450 10 60 12 4.26
22 1 −1 0 0 600 5 60 12 4.28
23 0 0 0 0 450 10 60 12 4.24
24 0 −1 0 1 450 5 60 14 6.4
25 0 −1 1 0 450 5 70 12 5.03
26 0 0 1 1 450 10 70 14 4.78
27 0 −1 −1 0 450 5 50 12 6.54

3.1. Models and ANOVA Analysis

The outcomes of the experiments given in Table 3 were compiled with a full quadratic model by
performing multiple regression analysis for d50. The final quadratic models of the response equation
with regard to coded factors are given in Equation (2):

Y = 54.35958 − 0.0282X1 − 0.90417X2 − 0.62692 X3 − 2.97917X4 + 0.000443X1 X2 +

0.000143X1 X3 − 0.00056667X1X4 + 0.00325X2X3 − 0.0065X2X4 − 0.002X3X4 +

0.0000183889X1
2 + 0.023700 X2

2 + 0.0042375 X3
2 + 0.14625 X4

2
(2)

In the equation, Y represents the response (d50); X1, X2, X3 and X4 represent SS, GT, MFR, and
SMF, respectively.

The significance of the fitted quadratic models for d50 is evaluated by analysis of variance (ANOVA)
and the F-test, as demonstrated in Table 4. As the F-value increases, the p-value decreases [34]. The
p-value for the term of models below 0.001 demonstrates the statistical significance of the models [32].
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Table 4. Analysis of variance (ANOVA) for the fitted models.

Source Sum of Squares df Mean Square F-Value p-Value

Model 18.48 14 1.32 23.60 <0.0001
Residual 0.67 12 0.056

Total 19.15 26

Model Summary

R-sq. R-sq. (adj)
0.965 0.9241

R-sq.: (R-Squared); adj.: Adjusted.

Furthermore, the determination coefficient R2 is described as the ratio of the defined variation to
the total variation, and it represents a measure of the degree of fit. With the approaching of R2 to unity,
there is a better fit of the response models to the actual data. The determination coefficient R2 values
for d50 are 0.965 (see Figure 3). Accordingly, it is suggested that the d50 models have a high goodness
of fit and are capable of providing a satisfying prediction of the results of experiments.
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3.2. Three-Dimensional (3D) Response Surface Plots of the Factors

The 3D response surface plots showing the mutual effects of factors on d50 are presented in
Figure 4a–f.

SS is one of the most important factors in stirred media mills. The particle size change graphs
according to GT and SS are given in Figure 4a. In the experiments at 5 min GT, with an increase in
SS from 300 rpm to 600 rpm, a decrease in the d50 size from 7 µm to 4.28 µm occurred. As the graph
indicates, interactions between GT and SS clearly affected the reduced particle size in a positive way,
and the d50 size could be reduced to 3.96 µm.

As is seen in Figure 4b, with an increase in MFR from 50% to 70% and an increase in SS from
300 rpm to 600 rpm, a decrease in the d50 size from 6.5 µm to 4.2 µm occurred. This clearly shows that
the increase in MFR did not affect the d50 size significantly. However, it increased the mill’s power
draw [35,36].



Minerals 2020, 10, 251 7 of 11

Minerals 2020, 10, x FOR PEER REVIEW 7 of 11 

 

 
(a) (b) 

  
(c) (d) 

 
(e) (f) 

Figure 4. Response surface plots of d50 (µm) as a function of: (a) grinding time (min) and stirrer speed 
(rpm); (b) media filling ratio (%) and stirrer speed (rpm); (c) solid mass fraction (%) and stirrer speed 
(rpm); (d) media filling ratio (%) and grinding time (min); (e) solid mass fraction (%) and grinding 
time (min); (f) solid mass fraction (%) and media filling ratio (%). 

SS is one of the most important factors in stirred media mills. The particle size change graphs 
according to GT and SS are given in Figure 4a. In the experiments at 5 min GT, with an increase in SS 
from 300 rpm to 600 rpm, a decrease in the d50 size from 7 µm to 4.28 µm occurred. As the graph 

Figure 4. Response surface plots of d50 (µm) as a function of: (a) grinding time (min) and stirrer speed
(rpm); (b) media filling ratio (%) and stirrer speed (rpm); (c) solid mass fraction (%) and stirrer speed
(rpm); (d) media filling ratio (%) and grinding time (min); (e) solid mass fraction (%) and grinding time
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Figure 4c indicates that SMF did not significantly affect the d50 size. Nevertheless, SS clearly
affected the particle size, and the minimum d50 size was obtained at the maximum level of SS (600 rpm)
and the midpoint of SMF (12%).

It is observed from Figure 4d that, as the values of MFR and GT increase, the d50 size becomes
minimized and reaches 4.18 µm. In other words, the minimum d50 size was obtained nearly at the
maximum points of both factors MFR and GT.

According to Figure 4e, when GT decreased and SMF increased, the d50 size was maximized and
reached 6.4 µm. The desirable point of d50 was obtained at the midpoint of SMF and nearly at the
maximum level of GT. A high solid mass fraction induces a short mean inter-particle distance, and
the particle—particle interactions become more widespread. Therefore, the free motion of particles is
disturbed [37].

Figure 4f indicates that the increase in SMF did not greatly affect the reduction of particle size.
Furthermore, the minimum particle size of d50 was obtained at the midpoint of SMF and MFR. By
increasing the media filling ratio, the particles move strongly and are located along outer wall of
grinding vessel. They then show a regular speed profile. Furthermore, the impact energy increases
to a certain level of the media filling ratio and the size of the particles decreases. While the collision
frequency between particles increases, collision energy decreases. Re-agglomeration may occur
between fine particles at a higher media filling ratio. As the media filling ratio is further increased,
the possible result is an increase in particle size [10].

3.3. Optimization and Verification Tests

Using Design-Expert software, the optimization function was utilized for the purpose of acquiring
the optimal conditions for the d50 size. According to the software solutions, the optimum conditions
for minimizing the d50 size were found to be 573 rpm SS, 11.18 min GT, 63% MFR, and 11.52% SMF,
with 3.78 µm for the d50 size. To verify the improvement in grinding, verification tests were performed
in triplicate using the above-mentioned optimum conditions. Subsequently, each test was performed
three times in the Malvern Mastersizer, and the reported values represent a mean average. Figure 5
shows the statistical evaluation of the measurement values of the d50 size.
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According to the measurement results, the mean average and standard deviation of the d50 size
were found to be 3.83 µm and 0.025, respectively. This average d50 value obtained was smaller than
those obtained in the 27 tests. Furthermore, when the optimum result obtained from the experiments
(Run: 20) was compared with the result obtained using the software, a 22% energy saving was achieved
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(Table 5) [36]. The optimization of energy consumption as a result of detecting operational parameters
for the stirred media mill is crucial.

Table 5. Comparing the optimum actual and predicted result.

Optimum Actual Result Optimum Predicted Result

d50 (µm) 3.96 3.83
Energy consumption (kWh/ton) 34.5 26.9

3.4. XRD Analysis

The impacts of grinding on the structural characteristics of calcite were examined by X-ray
diffraction analysis (Figure 6). No change was observed in the peak areas of the ground calcite
specimens, compared to the untreated calcite specimen. However, the peak intensities of the optimum
predicted result and optimum actual result decreased after milling as a consequence of the reduction
in crystal size of a mineral [38]. Further, the lowest peak intensity was obtained in the optimum
predicted result.
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4. Conclusions

The fundamental goal of this study was the optimization of a number of operating parameters of
a stirred media mill on the dry grinding of calcite. A three-level Box-Behnken design was used for the
purpose of examining the impact of four independent factors—the stirrer speed, grinding time, media
filling ratio, and solid mass fraction—on the product particle size (d50). The final quadratic models of
the response equation with regard to coded factors were derived for d50 sizes. Variance analysis showed
quite a good value for d50 (R2 = 0.965). According to the software solutions, the optimum conditions
for minimizing the d50 size were found to be 573 rpm SS, 11.18 min GT, 63% MFR, and 11.52% SMF,
with 3.78 µm for the d50 size. In the verification test, the d50 size was obtained to be 3.83 µm under
the optimum predicted conditions in accordance with the optimum actual result. Furthermore, when
the optimum result obtained from the experiments (Run: 20) was compared with the result obtained



Minerals 2020, 10, 251 10 of 11

using the software, a 22% energy saving was achieved. The impacts of grinding on the structural
characteristics of calcite particles were characterized by XRD analysis. XRD measurements indicated
that no change was observed in the peak areas of ground calcite specimens compared to the untreated
calcite specimen. The lowest peak intensity was obtained in the optimum predicted result.

This study has shown that it is possible to achieve energy saving as a result of the optimization of
the mill’s parameters. Thus, it is possible to successfully utilize RSM to optimize operating parameters
of a stirred media mill. Moreover, this study is important in terms of the efficient and effective use
of material and time, the support for environmental protection, and the determination of operating
parameters faced in previous studies.
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