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Abstract: Wollastonite and calcite minerals are significant raw materials and are extensively used
due to their unique properties. Wollastonite is used in plastics, paint, ceramics, paper, resins, and in
construction as a substitution for asbestos due to its chemical stability, thermal resistivity, needle-like
shape, and brightness. Calcite is one of the most used raw materials because of its low hardness,
high alkalinity, sorptive properties, white and bright color. Wollastonite and calcite are two minerals
found together in nature. The most common method used for separating these two minerals is
flotation. In this study, the surface properties of pure mineral samples were investigated. The pH
profiles of both minerals were obtained by measuring the surface charge of particles followed by the
measurement of the zeta potential in different collector concentrations. The wettability of minerals
was examined by measuring their contact angles.
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1. Introduction

Wollastonite is an industrial mineral that can also be defined as calcium metasilicate (CaSiO3)
formed by the metamorphism of siliceous limestone at temperatures around 450 ◦C or over and occurs
in regionally metamorphosed high-grade rocks and near igneous contact zones [1]. It is used for
ceramics, paints, plastics, and as a substitute for asbestos. As extensively explained in a recent study,
the aspect ratio is the most decisive point for its usage. In this manner, while it is suitable for reinforcing
thermoplastics and thermoset polymer compounds and as a substitute for asbestos at high aspect
ratios, such as in the range of 15:1 to 20:1, wollastonite is chosen for usages in ceramics, metallurgical
fluxes, or simple filler and coating at low aspect ratios within the range of 1:3 to 1:5 [2].

Over the last decade, due to the depletion of coarse sized and high-grade ores, the enrichment
of low-grade and fine-sized ores has become inevitable. Most of the studies have been devoted
to finding out the underlying mechanisms to beneficiate these kinds of ores [1–6]. Although the
possible enrichment conditions of single mineral systems are reported in many studies, there are still
many points to investigate for mixed systems with close similarities in their physical and chemical
properties [7–10]. Thus, according to its silicate content and similar properties to quartz, Swarna
et al. [1], investigated the solubility of wollastonite and its Hallimond flotation behavior as a function
of dodecyl amine concentration and pH value. Their results showed that above 5 × 10−5 M amine
concentration, a sudden increase in the hemimicelle concentration (HMC) was obtained for the flotation
of wollastonite as a function of collector concentration [1]. It is worth noting that their finding was also
in line with the flotation of quartz as a function of amine concentration which proved their similar
physicochemical properties during flotation [11]. One another important finding was the final pH of
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the suspension upon completing the dissolution of Ca2+ ions to suspension became 9.5 in which the
amine complexes on particle surfaces became maximum and effective on their flotation [12]. Apart
from amine and derivatives of amine salts, the usage of fatty acids was also investigated for the
separation of wollastonite from calcite [4]. Thus, selective flotation of wollastonite from calcite is a
bit more difficult than other types of gangue minerals. This situation can be attributed to two main
reasons; i) as wollastonite presents a needle-shaped crystal structure, it deteriorates the attachment
of particles on bubbles during flotation and remains in the tailings section, ii) depending on similar
color of wollastonite and enrichment conditions of calcite, more attention is required to determine
the optimum conditions for selective flotation [4]. In this manner, initial calcite flotation is conducted
after conditioning with fatty acid, and silicate flotation is conducted by using a mixture of anionic and
cationic collectors [13]. The gangue minerals contained in the ore have similar flotation properties as
wollastonite and therefore, selective flotation of wollastonite from gangue minerals is rather difficult.
Reverse gangue flotation or bulk flotation followed by separation of wollastonite from gangue minerals
is often practiced. When the ore contains mostly calcite, the ground is first conditioned with fatty acid
followed by calcite flotation [13]. However, in the literature, fundamental research on the selective
separation of these two minerals in the carbonate and silicate form by using fatty acids is limited.
Although some studies are present for the enrichment of wollastonite or alike minerals by flotation,
few of them tend to investigate the physicochemical properties of wollastonite minerals in the mixture
and correlate them with batch flotation data.

The aim of this study is to characterize the physicochemical properties of wollastonite and calcite
by zeta potential and contact angle measurements along with their flotation characteristics under
optimum conditions.

2. Materials and Methods

2.1. Materials

For experimental studies, ESAN Mining Company calcite and wollastonite samples, taken from
quarries in Turkey with hand sorting, was reduced to under 100 µm and to determine the size
distribution of samples, particle size measurements were carried out for each sample with a Malvern
Mastersizer 2000 (Malvern Panalytical Ltd, Malvern, UK) (Figures 1 and 2).
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Figure 1. Particle size distribution of wollastonite.
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Figure 2. Particle size distribution of calcite. 
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Purities were approximately calculated by considering SiO2 content for wollastonite as well as a loss 
on ignition for calcite because of the common calcium content of both wollastonite and calcite. For 
calculation of loss of ignition, samples were placed in weighed crucibles and weighed. Weight loss 
was measured after heating the samples overnight at 100 °C to remove water, at 550 °C for four hours 
to remove organic matter, and at 1000 °C for two hours to remove carbonates. 
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Figure 2. Particle size distribution of calcite.

As shown in Figures 1 and 2, while the d90 of calcite was 58.6 µm, it is a bit finer for the wollastonite
sample at 50.5 µm. In addition, the mineralogical and chemical composition of each sample was
determined with X-Ray Diffraction Cu X-ray sourced Panalytical X’Pert Pro diffractometer (Malvern
Panalytical Ltd, Malvern, UK) and X-Ray Fluorescence units, respectively. The mineralogical analysis
of each mineral is shown in Figure 3. The chemical analysis results are shown in Table 1. Purities were
approximately calculated by considering SiO2 content for wollastonite as well as a loss on ignition for
calcite because of the common calcium content of both wollastonite and calcite. For calculation of loss
of ignition, samples were placed in weighed crucibles and weighed. Weight loss was measured after
heating the samples overnight at 100 ◦C to remove water, at 550 ◦C for four hours to remove organic
matter, and at 1000 ◦C for two hours to remove carbonates.

Based on analyses of both wollastonite and calcite samples, they were adequately pure enough
for surface chemistry-based characterization. During characterization tests, potassium oleate (K-Ol)
with a molecular weight of 320.55 g/mol specified by the manufacturer (Sigma Aldrich) was used as a
collector reagent in the preparation of solutions with different molarity. The pH adjustments were
made with dilute solutions of reagent grade HCl and NaOH. During all experiments, distilled water
with 15 µmhos/cm S.C. (Specific Conductivity) was used to prevent the effect of other elements on
measurements and flotation tests. In addition to water, technical grade hexane was used in contact
angle measurements with the capillary rise method.

Table 1. Mineralogical composition of wollastonite and calcite minerals.

Component (%) Wollastonite Calcite

Fe2O3 0.23 0.00
SiO2 50.94 0.00

Al2O3 2.45 0.62
CaO 45.56 55.28

Loss on Ignition 0.52 42.05
Purity 84.90 98.71
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Figure 3. XRD analyses of wollastonite (a) and calcite (b) samples.

2.2. Methods

2.2.1. Surface Tension Measurements

Prior to characterization tests, the surface tension values of potassium-oleate reagent were
determined as a function of molarity by Du-Noüy tension ring unit (Figure 4). A Du Noüy Ring
Tensiometer (Krüss®) (KRÜSS GmbH, Hamburg, Germany) was used to measure the surface tension
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of K-Oleate solutions at varying concentrations under the original pH value (7.3 ± 0.02). In these tests,
a mechanical tensiometer (Krüss K6) (KRÜSS GmbH, Hamburg, Germany) was used. The procedure
during these tests is explained as follows: The maximum force that occurs upon moving of the
platinum-iridium ring through the phase boundary is measured when the ring is aligned vertically to
the ring plane. Thus, the surface tension is determined by stretching the lamella until detachment
from liquid. A maximum force Fmax occurs when the lamella, which is produced when the ring moves
through the phase boundary, is aligned vertically to the ring plane. This maximum correlates with the
surface tension σ or interfacial tension according to Equation (1):

σ =
F

L·cosθ
(1)
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All measurements were done in distilled water and at the original pH value of the sample
(7.3 ± 0.02).

2.2.2. Zeta Potential Measurements

Zeta potential measurements were conducted with a microprocessor (ZM3-U-G, SOMATCO,
Riyadh, Saudi Arabia) equipped Zeta-Meter 3.0+ model instrument. All measurements were carried
out under 75 V and the K factor of measurement cells was 0.71 cm−1. The sample for zeta potential
measurements was prepared as follows: About a 0.5 g sample was added to 50 mL collector suspension
at the desired concentration and mixed at 360 rpm for 15 min to provide suitable conditions for zeta
potential measurements by considering the dissolution of Ca2+ dissolution into suspension. This point
is quite important for analyzing processes of salt type minerals because if the suspension has not
reached the stable state, then the measured values will not present reliable results. All measurements
were performed in 10−3 M NaCl solution for obtaining equilibrium conditions for measurement, while
diluted hydrochloric acid and sodium hydroxide were used as pH adjusters. This procedure assured
the measurements under in-situ conditions. The initial and final pH values of the liquids were recorded
for each sample. The average of at least ten measurements together with their standard deviations for
each dispersion were recorded.
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2.2.3. Contact Angle Measurements

Contact angle is a measure of interaction between solid and liquid interfaces. Determination of
contact angle of a mineral or any other substance in a pre-defined suspension helps us to reach its
wettability properties [14]. Although different methods are available for measuring the contact angle
values of plates or plate-shaped materials, capillary rise and thin layer wicking methods are the ones
for determination of the wettability of powder systems, which makes them important and usable for
mineral processing [15–17].

In this study, the capillary rise method was performed for measuring the contact angle values
of both calcite and wollastonite in the presence of potassium oleate solutions with different molarity.
In this method, the increase in liquids with different polarity (water and hexane) were recorded as a
function of time by the measurement of mass gain. The schematic presentation of the system is shown
in Figure 5. As shown in the figure, samples were manually placed in a glass column with a 4 mm
diameter and 10 cm height, which were closed by a non-woven fabric to support the bed. The decrease
in mass of the container including polar (water) or nonpolar (hexane), was recorded every 5 s using an
electronic balance. The time t = 0 approximately corresponded to the exact moment of the submersion
of the column in wetting liquid. Thus, the procedure and the packing of particles play a very significant
role in obtaining reliable results. The packing of particles was conducted under the same tapping time
and number. The properties of liquids used in experiments are given in Table 2.
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Figure 5. Laboratory set-up used for contact angle measurements by capillary rise method: 1—Electronic
Balance, 2—Container with liquid, 3—Wetted sections of tapped solids, 4—Particle bed, 5—Column
with 5 mm diameter, 6—Micrometric screw.

Table 2. Characteristics of liquids used for capillary rise experiments (20 ◦C).

Wetting Liquid Density (kg/m3) Viscosity (mPa·s) Surface Tension (mJ/m2)

Water 997 0.00326 18.4
Hexane 655 0.01 72.8

Considering that restrictions on the calculation of contact angle and surface energy of minerals,
the modified Washburn’s equation involving the dependence of mass gain and time was used [18].
The relation between liquid mass and height in the column is given Equation (2):

m2 =
Cρ2γcosθ
η

(2)
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where m denotes the mass of liquid, C is the effective pore diameter, ρ is the density, γ is the surface
tension, and η is the viscosity of the liquid.

3. Results and Discussion

3.1. Surface Tension Measurements

The surface tension of potassium-oleate as a function of its concentration, M, was measured with
the Du Noüy Ring method. As the pH value is one of the cornerstones for the evaluation of their
effectivity, and since small changes in pH can significantly influence the surface tension of oleate
solutions, it was used in its original pH to eliminate the contribution of any kind of hydrogen or
hydroxyl species on surface tension measurements.

The results shown in Figure 6 indicated that, while the surface tension of potassium oleate was
65 dyn/cm at 2 × 10−6 M concentration, it decreased to 52 when the concentration value increased to
2 × 10−4 M.
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Figure 6. Surface tension measurements as a function of K-Oleate concentration.

3.2. Zeta Potential Measurements

As mentioned in the Methods section, the zeta potential of both calcite and wollastonite was
conducted in the presence of potassium oleate, which was used during flotation tests. The results of
these tests are shown in Figure 7.
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Figure 7. Zeta potential measurements of calcite and wollastonite.

As shown in Figure 7 that upon increasing the concentration of potassium oleate from 10−6 to 10−3

M, the zeta potential of calcite mineral varied from +25.51 mV to −16.2 mV. These results indicated the
stepwise adsorption of oleate on calcite surfaces. In other words, upon the introduction of potassium
oleate to this system, some of the oleate ions will precipitate as calcium oleate, while others remain as
oleic acid and form a monolayer coverage on calcite surfaces. These results also showed the selective
adsorption of potassium oleate on calcite under these conditions, which are in line with their flotation
characteristics [4]. In addition to the effect of reagent concentration, El-Mofty and El-Midany, 2015
showed that when the potassium oleate concentration was 2 × 10−4 M, the zeta potential value was
measured in the positive region when the pH value was 7.7, it considerably decreased to negative
values when the pH value was adjusted to 8.5 [19]. Therefore, besides other parameters, such as particle
size, bubble size, mixing speed, the flotation of these minerals can be achieved after the determination
of optimum reagent concentration and pH value.

On the other hand, only a negligible change was obtained for the zeta potential of wollastonite
particles that can be attributed to the presence of silicate groups in its structure. Thus, in literature,
Swarna et al. [1], used amine for flotation of wollastonite confirmed by dissolution, reagent adsorption,
contact angle, and surface free energy measurements [1]. In these studies, it was found that, while
the dissolution of calcium and silicate shows an opposite trend, the highest flotation recoveries were
obtained at 1 × 10−4 mol/L amine concentration, which was equivalent to a 50% monolayer coverage.
It was also shown that maximum recovery could be obtained at pH 8.5–10.5, which was very similar to
the flotation characteristics of other siliceous minerals, such as quartz and mica [14,20].

3.3. Contact Angle Measurements

As distinct from previous studies in literature, in this study, the contact angle values of wollastonite
and calcite minerals in the presence of different potassium oleate concentrations were determined by
the capillary rise method. The results of these tests are shown in Figure 8.
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Figure 8. Contact angle measurements of calcite and wollastonite minerals as a function of potassium
oleate concentration.

In Figure 8, while the contact angle values of calcite varied from 41.7 to 83.6 degrees, the variation
for wollastonite was measured from 13.8 to 58.8 degrees. These values are in line with possible
adsorption degrees of potassium oleate on calcite and wollastonite surfaces (retrieved from zeta
potential values). Upon increasing oleate concentration in the system, a considerable increase was also
obtained for contact angle values for each mineral. Although these values were contrary in some ways
to their zeta potential trend, their flotation results proved this variation, such that when the recovery of
only calcite mineral was 97.3%, it was found as 47.7% for wollastonite mineral [4]. Thus, there may
also be some differences with other methods, which can be well ascribed to the rising characteristics of
polar and non-polar solutions (water and hexane) on powder sized particle surfaces, unexpected free
spaces between pressed particles, or wrong orientation of particles upon tapping.

3.4. Correlation between Contact Angle and Zeta Potential Measurements

To make a correlation between measurements, combined presentations of contact angle and zeta
potential measurements are shown individually for each mineral (Figures 9 and 10).
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Figure 10. Combined presentation of contact angle and zeta potential measurements for wollastonite.

As shown in Figures 9 and 10, while a considerable increase was obtained in both contact angle
and zeta potential values of calcite, it remained almost negligible in measurement for wollastonite.
This trend then clearly showed that the adsorption rate of oleate on calcite surfaces was expected to be
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higher than on wollastonite surfaces. As mentioned in previous sections, if a comparison was made
for the floatability of each ore under the same conditions, the ultimate calcite concentrate obtained as
another product from the experimental studies has a 99.80% calcite content and 85.4% recovery. A large
loss on ignition (LOI) in wollastonite concentrate was obtained at pH 10 because calcite was floated
well in the first two stages with potassium oleate, which is a fatty acid type collector [21]. On the
other hand, pH 6 is suitable for activating iron-bearing minerals which are silicate type, such as augite.
When all the experimental results were evaluated, the best result was obtained at pH 6, and 1500 g/t
amount of K-Oleate. The calcite produced contained 55.89% CaO, 0.35% SiO2, 0.03% Fe2O3, and 42.30%
LOI, as well as a wollastonite concentrate, was obtained with 52.71% SiO2, 44.65% CaO, 0.44% Fe2O3,
and 0.60% LOI [4]. Thus, these findings also revealed that upon the usage of potassium oleate in the
flotation of Ca-bearing wollastonite ore, it selectively floats calcite and wollastonite remained in the
tailing section (Figure 11).
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4. Conclusions

Because wollastonite forms needle-like crystals, selective flotation of wollastonite from gangue
minerals is rather difficult. Reverse gangue flotation or bulk flotation, followed by separation of
wollastonite from gangue minerals, is often practiced [13]. As well-cited in previous reports for other
types of minerals [14], the influence of shape factor, angularity in particular, not only changes the
interaction between particles but also enhances the particle-bubble interactions, which, in turn, affects
their flotation recoveries. Taking into account that knowledge, the flotation recoveries of wollastonite,
which has a needle-like shape, is affected by this variable which is effective on adsorption of the
collector on its surfaces and so its flotation recoveries vary.

The findings from this study provide a new light for considering the underlying mechanisms of
Ca-bearing wollastonite flotation by evaluating the results of different measurements, such as contact
angle and zeta potential values, under the same conditions. It was found that, while a negligible
change was obtained on the zeta potential of wollastonite, a similar trend was found for its contact
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angle values. In contrast to wollastonite, a significant increase was obtained for calcite both in its
contact angle and zeta potential values under the same collector concentrations. This, in turn, revealed
the selective adsorption of K-Oleate (a fatty acid derivative) on calcite, which explained the higher
flotation recoveries of calcite and wollastonite in the same system.
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