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This Special Issue of Minerals covers a broad range of topics related to the mineralogy of noble
metals (Au, Ag, Pt, Pd, Rh, Ru) and the forms of occurrence, formation and distribution of these
elements in natural ore-forming systems. It contains eleven research articles on various problems and
topics, which can be divided into four parts.

The first part of the issue includes three articles dedicated to the study of the specific features
and genesis of mustard gold [1–3]. The typical features of mustard gold include low reflectivity,
porous or colloform texture, and rusty, reddish, orange-red and brown-yellow colors in reflected light.
The characteristics of mustard gold have been studied by many researchers [4–9], but its genesis is
not fully understood and the mechanism of its formation is not completely clear. Tolstykh, Kalinin,
Anisimova and coauthors [1–3] studied mustard gold from three deposits located in different regions
of Russia: Kamchatka Peninsula (Maletoyvayam Ore Field) [1], Central Aldan district of Yakutia
(Khokhoy ore field) [2], and Kola Peninsula (Oleninskoe Deposit) [3].

The main ore components of gold mineralization of the Gaching high-sulfidation (HS) epithermal
Au–Ag deposit (part of the Maletoyvayam ore field) are native gold, tellurides, selenides, and
sulphoselenotellurides of Au and oxidation products of Au-tellurides [1]. Two types of mustard gold
were identified by Tolstykh et al. [1]: (a) mixtures of Fe-Sb(Te,Se,S) oxides and fine gold particles and
(b) spotted and colloform gold consisting of aggregates of gold particles in a goethite/hydrogoethite
matrix. This study examined different types of native gold in this ore deposit and the mechanisms and
sequential transformation of calaverite (AuTe2) into mustard gold.

Kalinin and coauthors [2] reported the results of the study of mustard gold from the Oleninskoe
intrusion-related gold–silver Precambrian deposit of the Fennoscandian Shield. These authors showed
that micropores in the mustard gold are filled with iron, antimony or thallium oxides, silver chlorides,
bromides, and sulfides. They concluded that halogens (Cl, Br) played an important role in the
remobilization of noble metals in the Oleninskoe deposit.

Anisimova and coauthors [3] investigated the features of native gold in karst cavities at the
newly discovered Au-Te-Sb-Tl occurrence within the Khokhoy gold field of the Aldan-Stanovoy
auriferous province (Aldan shield, East Russia). This was the first time the relationships between
residual monolithic gold and unnamed tellurates, thallium carbonates and avicennite (Te2O3) had been
described. Along with this native gold, secondary (sponge and “mustard”) gold was investigated.
The occurrence of monolithic, spongy and mustard gold was discussed.

The second part of the issue includes four articles on thermodynamic [10] and experimental
modeling [11–13] of systems containing noble metals. Some of these articles were a continuation of
the research [14,15] on the topics covered by the Special Issue “Experimental and Thermodynamic
Modeling of Ore-Forming Processes in Magmatic and Hydrothermal Systems” [16].
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Murzin and coauthors [10] constructed physicochemical models for the formation of magnetite–
chlorite–carbonate rocks with copper–gold in the Karabash ultramafic massif (Southern Urals, Russia).
These authors showed that the metasomatic interaction of metamorphic fluid with serpentinites is
responsible for the gold-poor mineralization (1st type), and that the gold-rich mineralization (2nd type)
was formed during the mixing of metamorphic fluid and meteoric water in the open space of cracks
in serpentinites.

Sinyakova and coauthors [11] carried out the crystallization of a Fe-Cu-S melt with the impurities
of Ni, Sn, As, Pt, Pd, Rh, Ru, Ag, Au, Se, Te, Bi, and Sb. The cylindrical crystallized sample consisted
of monosulfide solid solution (mss), nonstoichometric isocubanite (icb), and three modifications
of intermediate solid solution (iss1, iss2, iss3). The simultaneous formation of two types of liquid
separated during the cooling of the parent sulfide melt was observed. Noble metals associated with
Bi, Sb, and Te were concentrated in inclusions in the form of RuS2, PdTe2, (Pt,Pd)Te2, PtRhAsS, and
Ag2Se, doped with Ag, Cu, and Pd, in a monosulfide solid solution. Nobel metals form PtAs2, gold
alloys doped with Ag, Cu, and Pd, Ag2Te and Pd(Bi,Sb)xTe1−x in nonstoichometric isocubanite and
intermediate solid solutions. Rhodium is present in intermediate base metal solid solutions.

The surface species formed upon the contact of the pyrite, pyrrhotite, galena, chalcopyrite and
valleriite with the solutions of H2PtCl6 (pH 1.5, 20 ◦C) were studied using X-ray photoelectron
spectroscopy by Romanchenko et al. [12]. The highest rate of Pt deposition was observed on galena
and valleriite and the lowest, on pyrite and pyrrhotite. Pt(IV) chloride complexes adsorb onto the
mineral surface, and then the reduction of Pt(IV) to Pt(II) and the substitution of chloride ions with
sulfide groups occur, forming sulfides of Pt(II) and then Pt(IV).

Vorobyev and coauthors [13] studied the reactions and species formed at different proportions
of HAuCl4, H2Se and H2S at room temperature. Metal gold colloids arose at the molar ratios
H2Se(H2S)/HAuCl4 less than 2. At higher ratios, pre-nucleation “dense liquid” species followed
by fractional nucleation in the interior and coagulation of disordered gold chalcogenide occurred.
The reactions proceed via the non-classical mechanism involving “dense droplets” of supersaturated
solution which produce AuSe1−xSx/Au nanocomposites.

The third part of the issue contains two articles on Au-bearing arsenopyrite and pyrite [17,18].
A significant number of studies are devoted to Au and other noble metals in these minerals.

Sazonov and coauthors [17] used the Mössbauer spectroscopy method to study the ligand
microstructure of natural arsenopyrites from the ores of major gold deposits of the Yenisei Ridge
(Eastern Siberia, Russia). The elevated gold concentrations typical of arsenopyrites occur with an
elevated content of sulfur or arsenic and correlate with the increase in the occupation degree of
configurations {5S1As}, {4S2As}, {1S5As}, the reduction in the share of {3S3As}, and the amount of iron
in tetrahedral cavities.

Tauson and coauthors [18] studied the forms of occurrence and distribution of “invisible” noble
metals (Au, Ag, Pt, Pd, Ru) in the coexisting pyrite and arsenopyrite from the Natalkinskoe, Degdekan
and Zolotaya Rechka deposits (Magadan region, Russia). They used a combination of methods of local
analysis and statistics of the compositions of individual single crystals of different sizes to analyze the
distribution coefficients of the structural (str) and surficial (sur) forms of noble metals. The data on Ag
mostly indicate its fractionation into pyrite (Dstr Py/Asp = 17). Surface enrichment was considered
a universal factor in the distribution of “invisible” noble metals. A number of elements (i.e., Pt, Ru,
Ag) in pyrite and arsenopyrite tended to increase in abundance with a decrease in the crystallite size.
This may be due to both the phase size effect and the intracrystalline adsorption of these elements at
the interblock boundaries of a dislocation. Arsenopyrite with excess As over S has a tendency to have
greater abundance of Pt, Ru and Pd. Sulfur deficiency was a favorable factor for the incorporation of
Ag and platinoids into the structures of the studied minerals.

The last part of the issue includes two articles [19,20] devoted to the study of ages of gold deposits
in China: Nibao and Chaoyangzhai (Southeast Guizhou). These deposits are an important part of
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the Yunnan–Guizhou–Guangxi “Golden Triangle” region. Zheng, Tsang and coauthors [19,20] also
discussed possible sources of gold mineralization.

The Nibao gold deposit includes both fault-controlled and strata-bound gold orebodies. Zheng and
coauthors [19] determined the mineralization age of these gold orebodies and provided additional
evidence for constraining the formation ages of low-temperature orebodies and their metallogenic
distribution in South China. The results confirm the Middle-Late Yanshanian mineralizing events of
the Carlin-type gold deposits in Yunnan, Guizhou, and Guangxi Provinces of Southwest China.

Tsang and coauthors [20] determined the possible source of the newly discovered medium- to
large-scale turbidite-hosted Chaoyangzhai gold deposit, Southeast Guizhou, South China, using
LA-ICP-MS zircon U–Pb dating, whole-rock geochemistry and in situ sulfur isotopes. Together with the
evidence of similar geochemical patterns between the tuffaceous- and sandy-slates and gold- bearing
quartz, these authors proposed that gold might be sourced from the sandy slates.

Overall, I hope this Special Issue will contribute to a better understanding of the genesis of gold,
silver and other noble metal deposits, the behavior of these elements in endogenic and supergene
environments and suggest ways forward to solve the problem of their full extraction from ores.
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