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Abstract: In this study, electrochemistry pretreatment flotation of muscovite was carried out and the
flotation behavior and mechanism of muscovite in the system of sodium oleate and Cu2+ion was
characterized by solution pH value detection, solution conductivity detection, zeta potential, infrared
spectrum and the electronic energy spectrum. The results indicated that under the conditions of
muscovite mass of 10.00 g, pulp mass concentration of 13.33%, flotation speed of 1750 r/min, sodium
oleate concentration of 9.20 × 10−4 mol/L and Cu2+ concentration of 6 × 10−5 mol/L, electrochemical
pretreatment of Cu2+ could strengthen the activation of muscovite. Electrochemical pretreatment of
Cu2+ solution can inhibit the hydrolysis of copper ions, increase the content of Cu2+ in the solution,
strengthen the adsorption of Cu2+ on the muscovite surface, and enhance the electrostatic adsorption
of sodium oleate on the muscovite surface, thereby strengthening the physical and chemical adsorption
of sodium oleate on the muscovite surface.
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1. Introduction

Electrochemical flotation process is a hotpot in the field of mineral processing in recent years.
It mainly focuses on the electrochemical pretreatment of flotation medium, pulp or pharmacy,
which plays a boosting role in improving the index of flotation concentrate [1–4].

Ahmadi [5] pointed out that compared with the conventional bioleaching, the electrochemical
bioleaching of chalcopyrite flotation concentrate leads to about 35%more copper recovery. It seems that
the main reason for increasing copper recovery by electrochemical bioleaching is the control of redox
potential between 400 and 425 mV. In this range of potential, the precipitation of ironoxy-hydroxides
on the chalcopyrite surface, which act as a diffusion barrier and prevent chalcopyrite dissolution,
is significantly reduced. This leads to a higher electrochemical reduction of chalcopyrite andimproves
dissolution. Chander and Fuerstenau [6] found that chalcocite could be separated from molybdenite
through appropriate choice of the potential of flotation. Meng et al. [7] found that chalcopyrite began
to oxidize quickly at a much lower potential than enargite. Enargite was floated well at a potential
higher than +0.2 V vs. SCE (Saturated calomel electrode) while chalcopyrite was completely depressed
at a potential higher than +0.2 V vs. SCE. Selective flotation revealed that enargite can be successfully
removed from chalcopyrite through controlling the pulp potential higher than +0.2 V and lower than
+0.55 V vs. SCE. In order to exploit the Northparkes copper and gold mine in New South Wales,
Australia, containing arsenopyrite, it is necessary to remove the arsenopyrite existing in the raw
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ore. Smith et al. [8] separated arsenopyrite from chalcopyrite and bornite by electrochemical control
flotation process. At the potential of −150 mV and the pH value of 12, about 52% of the low arsenic
and high copper concentrate was obtained, which provided a good way for the removal of arsenic
from copper minerals. Nguyen et al [9] carried out a study on the adsorption of electrochemically
regulated flotation collectors for arsenopyrite. The results indicated that when the oxidation potential
was +516 mV, the mineral recovery reached the highest. This experiment proves that arsenite can
be effectively separated by potential regulation. Zhou et al. [10] conducted a flotation test study
on a complex lead–zinc ore in Jing Dong Tailings Company of Fujian province. The result showed
that in the electrochemical potential controlling flotation processing, using DDTC as collector, the
separation potential range of galena and sphalerite with pyrrhotite can be achieved. Flotation circuit of
lead–zinc–silver tailing ore was achieved. Li et al. [11] showed that in the presence of Cu2+ ion, and a
wide pH range of 2.0 to 12.0, the floatability of pyrrhotite and marmatite was strong, so marmatite
could not be separated from pyrrhotite. The technique of electrochemical flotation was used to separate
marmatite from pyrrhotite in the presence of Cu2+. Pyrrhotite can be depressed and marmatite be
floated through controlling the potential of flotation. Marmatite can be separated from pyrrhotite in
the pulp potential range of −0.25 V to 0 V vs. SHE (Normal Hydrogen Electrode) at pH 11.2 solution.

Different studies have found that electrochemical treatment can change the properties of the
flotation agent, therefore changing the state of the drug itself, the chemical composition, the pH value
and the redox potential value, as well as the proportion of ions, molecules and colloidal particles formed
in the flotation agent solution, and thereby affecting the flotation effect of the target mineral [12–14].
Conventional flotation methods of mica include the acid cation method, basic anion and cation method
and the combined flotation method [15].

However, there are few studies on the application of electrochemical flotation technology for the
flotation of muscovite. Some studies have shown that adding a certain amount of Cu2+ can activate
the target mineral in the flotation process of muscovite [16]. Based on this finding, the paper takes
the flotation behavior of muscovite in the sodium oleate system as the entry point, and reveals the
activation mechanism of Cu2+ with electrochemical pretreatment for enhancing the activation of
muscovite, which is expected to provide a reference for the actual mineral flotation of muscovite [17].

2. Materials and Methods

2.1. Materials and Reagents

Coarse concentrate of hand separation in a muscovite mine from Henan province was used in this
experiment. First, the original ore sample was processed by the processes of crushing, shaking table
purification, screening and acid pickling, and then the acid pickling muscovite sample was washed
to neutral by distilled water. Finally, the ore sample was filtered and dried at low temperature for
flotation tests. In order to understand the chemical composition and crystallization of the mica ore,
the test conducted multi-element analysis and XRD characterization of the samples, and the results are
shown in Figure 1 and Table 1.

Figure 1 shows that the muscovite owned high purity and good crystallinity. According to Table 1,
the muscovite samples mainly contained elements of K, Si, Al, etc., and the combined Na2O and K2O
content was 11.34%; combined with the theoretical content of potassium and sodium, muscovite purity
can reach more than 95%.

The sodium hydroxide (NaOH), copper sulfate (CuSO4·5H2O) and sodium oleate (C18H33NaO2)
used in this study were all analytically pure. They were purchased from Tianjin BASF reagent plant,
Tianjin Guangfu Research Institute and Tianjin Zhiyuan chemical reagent plant, respectively. Distilled
water was used in all tests.
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Figure 1. XRD pattern of muscovite.

Table 1. Results of chemical composition analysis of samples.

Chemical Constituents SiO2 Na2O Al2O3 K2O

Composition content/(wt)% 48.16 0.72 32.50 10.62

2.2. Methods

2.2.1. Electrolysis Experiment

The electrochemical pretreatment of flotation reagent solution was studied by using DC regulated
power supply (ka3005p, Shenzhen preeminent Instrument Co., Ltd., Shenzhen, China). which is shown
in Figure 2. During the pretreatment, a certain concentration of CuSO4 solution was prepared first,
and a certain amount of CuSO4 solution was added into the electrolytic cell. Then, the current and
electrolysis time were adjusted, the type of electrode plate was selected and the distance between the
plates was fixed, and then the electrode plate and DC voltage were stabilized. The power supply was
connected with electrode wire, the switch pressed, and electrolysis started. Its process can be expressed
by the following reaction formula:

CuSO4 
 Cu2+ + SO2−
4 (1)

Cu2+ + H2O
 Cu(OH)+ + H+ (2)

Cu(OH)+ + H2O
 Cu(OH)2 + H+ (3)

Cu(OH)2 + H2O
 Cu(OH)−2 + H+ (4)

Cu(OH)−2 + H2O
 Cu(OH)2−
4 + H+ (5)

When the two plates are made of graphite, the following reactions will take place near the cathode
plate and anode plate:

cathodic reaction : Cu2+ + 2e− = Cu ↓ (6)

anodicreaction : 2OH− = O2 ↑ +2H+ (7)

The electrochemical pretreatment conditions of Cu2+ are shown in Table 2.
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Table 2. Electrochemical pretreatment conditions.

Test Number
Electrochemical Pretreatment Conditions

Electric Current
Magnitude/A

Electrolysis
Time/min

PLATE
DISTANCE/cm

Electrode Material Types
(Anode–Cathodic)

a variable 5 4.5 graphite plate–graphite plate
b 0.1 variable 4.5 copper plate–graphite plate
c 0.1 5 variable lead board–graphite plate
d 0.1 5 4.5 variable

Finally, the electrolyzed copper sulfate solution wastaken out from the electrolytic cell and placed
in a beaker for the subsequent flotation test and related solution property detection.
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reagents; (b), DC regulated power supply.

2.2.2. Micro-Flotation Tests

In the flotation tests, the hanging cell flotation machine FGC(5-35) (Wuhan lock grinding equipment
manufacturing Co., Ltd, Wuhan, China) was used, with the rotating speed of 1750 r/min. In each test,
the muscovite 10.00 g was placed into the flotation cell, adding appropriate distilled water to adjust the
pulp concentration to 13.33%. After stirring 1 min, sodium hydroxide was added to the pulp to achieve
the best pH value in 2 min, then the proper amount of the collector and adjustment agent were added
after electrochemical pretreatment and mixing the slurry. Finally, the foam products were filtered and
dried, and the recovery rate after weighing was calculated. The flotation test flow is shown in Figure 3.
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2.2.3. Zeta Potential Characterization

The zeta potential on the muscovite surface was determined with a ZetaSizer 3000 Malvern
Instrument (Malvern Instruments, Malvern, UK). The overcrushing samples were ground to less than
5 µm by agate grinding. The suspension was prepared by adding 20 ± 1 mg of muscovite sample to
20 mL of distilled water and adding pH adjusting agent in turn, after electrochemical pretreatment
of adjusting agent. The suspension was conditioned for 15 min. Suspension with or without 200 or
400 mg/L of muscovite was placed on a rotating shaker for 30 min. The zeta potential was measured in
accordance with the procedures described in the instrument manual. The reported results were the
average of at least three full repeats of the experiment.

2.2.4. FTIR Spectroscopy Characterization

FTIR spectra of muscovite were recorded to examine the functional groups of muscovite before
and after adsorbing electrochemical regulator. The experimental samples of 2.00 g were added into the
100 mL centrifuge tube with 40 mL of liquid, where the concentration of electrochemical regulator
was 8000 mg/L (400 mg/L × 20 times). Then, the samples were shaken at a centrifugal speed of
100 rpm for 30 min. FTIR spectra were recorded over the region of 600–4000 cm−1. The samples
were examined in KBr pellets (3 mg/300 mg KBr). All samples were analyzed with a Lumex FTIR-08
spectrophotometer [18].

2.2.5. XPS Measurements

The chemical compositions of the muscovite surfaces were determined by XPS on a Thermo
Scientific ESCALAB 250Xi, using an Al Kα X-ray source operated at 200 W with 20 eV pass energy.
The sample preparation method was the same as that of the FTIR spectra experiment, with the vacuum
pressure ranging from 10−9 to 10−8 Torr and a take-off angle of 90◦, which was used for collecting and
analyzing data using Thermo Scientific Avantage 4.52 software.

3. Results and Discussion

3.1. Influence of Cu2+ on Flotation Behavior of Muscovite without Electrochemical Pretreatment

In order to compare the effect of copper ion on the floatability of muscovite before and after
electrochemical pretreatment, the effects of different concentrations of Cu2+ on the floatability of
muscovite before electrochemical pretreatment were tested. The test conditions were as follows: the
muscovite sample was 10.00 g, pulp concentration 13.33%, Cu2+ concentration 6 × 10−5 mol/L, and
sodium oleate (without pretreatment) concentration 9.20 × 10−4 mol/L. Electrochemical pretreatment
conditions, test flow and the results are shown in Table 2, in Figure 3, and in Figure 4, respectively.

Figure 4 shows that the recovery rate of muscovite gradually increased with the increase of
Cu2+ concentration when the pH value of the pulp was 12. When the concentration of Cu2+ was
8 × 10−5 mol/L, the recovery rate of muscovite was 80.90%, which indicated that Cu2+ can greatly
improve the floatability of muscovite.
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3.2. Effects of Electrochemical Pretreatment for Cu2+on Flotation Behavior of Muscovite under
Distinct Conditions

When the pH value was 12, the effects of Cu2+ on the floatability of muscovite as a function of
electrolysis current, time, plate distance and electrode material type are shown in Figure 5.
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Figure 5. Effects of Cu2+ on floatability of muscovite under different electrochemical treatment
conditions (pH = 12, c (Sodium oleate) = 9.20 × 10−4 mol/L, c (Cu2+) = 6 × 10−5 mol/L). (a), electrolysis
current; (b), electrolysis time; (c), plate distance; (d), electrode material types—A: graphite plate–graphite
plate; B: copper plate–graphite plate; C: lead board–graphite plate; D: stainless steel plate–graphite.
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As shown in Figure 5a, the recovery of muscovite was basically unchanged with the increasing of
electrolysis current from 0 A to 0.05 A. From 0.05 A to 0.2 A, the recovery of muscovite increased first
and then decreased with the increase of electrolysis current. When the electrolysis current was 0.1 A,
the recovery of muscovite reached the maximum (about 80.40%). It indicates that electrochemical
pretreatment of Cu2+ can enhance sharply the activation of muscovite during a suitable current range.
Figure 5b shows that the recovery of muscovite decreased with the increase of electrolysis time.
When the pretreatment time increased from 5 min to 20 min, the recovery of muscovite decreased from
80.40% to 54.70%. Therefore, prolonging the electrolysis time is not conducive to strengthening the
activation of muscovite by Cu2+. Figure 5c shows that the recovery of muscovite decreased first and
then increased with the increase of the distance between the plates. When the electrode plate spacing
was5.5 cm, the recovery of muscovite was reduced to 58.60%. This indicates that plate spacing can
influence activation properties of Cu2+, but changing the plate spacing is not a good choice. In addition,
it can be seen from Figure 5d that the electrode plate material type had little effect on the activation
of Cu2+.

3.3. Effect Mechanism of Electrochemical Pretreatment of Cu2+ on Flotation Behavior of Muscovite

The pH value of copper sulfate solution was detected by acidity meter to understand the effect
of the distinct pretreatment conditions. The results are shown in Figure 7. Before that, the paper
calculated the distribution coefficient of Cu2+ components under different pH values, and the results
are shown in Figure 6.Minerals 2018, 8, x FOR PEER REVIEW  8 of 14 
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Figure 6 shows that Cu2+ existed in many forms in the solution. When the pH value was less than
4, Cu2+ was the main component in the solution. When the pH value was more than 4 and less than
10, the content of Cu2+ decreased with the increase of the pH value, while the content of Cu(OH)2

and Cu(OH)+ increased. In addition, when the pH value was more than 9, Cu(OH)3
− and Cu(OH)4

2−

began to form in the solution, in which the content of Cu(OH)3
− increasedfirst and then decreased

with the increase of the pH value, and the content of Cu(OH)4
2− increased with the increase of the pH

value [19].
It can be seen from Figure 7a that the pH of the solution was about 3.3 when the copper sulfate

solution was not electrochemically pretreated. After electrochemical pretreatment with distinct
electrolysis current, the pH of the copper sulfate solution decreased. According to the relationship
between the Cu2+ component distribution coefficient and the pH value of solution, the Cu2+ content
in the solution increased with the increase of electrolytic current. According to Figure 6, the Cu2+

content in the solution increased with the increase of electrolytic current. As shown in Figure 7b,
when the electrolysis time increased from 5 min to 20 min, the pH value of the copper sulfate solution
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gradually decreased. Since H+ was generated in the vicinity of the anode plate during electrochemical
pretreatment of the copper sulfate solution, the concentration of H+ in the solution increased, so that the
pH of the solution decreased, but the Cu2+ content increased. According to Figure 6, the Cu2+ content
in the solution increased with the increase of electrolysis time. Figure 7c exhibits that the pH value of
the copper sulfate solution changed little as the distance increased between the plates. According to
Figure 6, the Cu2+ content in the solution did not change much under this condition. It can be seen
from Figure 7d that when the copper sulfate solution was electrochemically pretreated, the anode
plate material influenced the pH value of the solution. Taking copper or lead plate as anode plate
materials, the pH value of the copper sulfate solution was higher than that of graphite and stainless
steel as the anode, which can be ascribed to oxidation dissolution of copper and oxidation behavior of
lead. According to Figure 6, when the anode plate was made of copper and lead, the content of Cu2+

in the CuSO4 solution was higher than that of graphite and stainless steel.Minerals 2018, 8, x FOR PEER REVIEW  9 of 14 
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3.4. Zeta Potential Effect of Cu2+ on Muscovite Surface under Different Electrochemical
Pretreatment Conditions

For understanding the influence of Cu2+ on zeta potential on the muscovite surface under distinct
electrochemical pretreatment conditions, zeta potential of the muscovite surface was detected after
electrochemical pretreatment, and the concentration of Cu2+ was 6 × 10−5 mol/L with a pH value of 12.
The tested results are shown in Figure 8.
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According to Figure 8a, zeta potentials on the muscovite surface first increased positively and
then slightly negatively with the increase of electrolysis current of Cu2+. At the electrolysis current of
0.1 A, the maximum zeta potential of −23.36 mV was obtained. According to Figure 8b, zeta potential
on the muscovite surface increased negatively with the increase of electrolysis time for Cu2+. When the
electrolysis of Cu2+ solution was 20 min, zeta potential on the muscovite surface was −36.52 mV.
According to the analysis of the hydrolysis reaction, electrode reaction and solution pH value of copper
ions, the small electrochemical pretreatment current and the short pretreatment time will result in
a low precipitation rate of copper near the cathode plate, and the amount of precipitation was very
small. The small consumption of Cu2+ in the solution resulted in the content of Cu2+ in the solution
as very small, while oxygen was released and hydrogen ions were generated near the anode plate.
The increase of hydrogen ions in the solution led to the left movement of the hydrolysis reaction of
copper ions, which led to the increase of the overall content of Cu2+ in the solution. The decrease of the
content of Cu(OH)3

− and Cu(OH)2 led to the increase of the adsorbed Cu2+ on the muscovite surface,
so that the zeta potential on the muscovite surface increased negatively. At a high erelectrochemical
pretreatment current or a longer pretreatment time, the excessive deposition rate of elemental copper
near the cathode plate will consume large amounts of Cu2+, making Cu2+ in the solution decrease as a
whole, thereby decreasing its adsorption on the muscovite surface.

3.5. Infrared Spectrum Analysis of Muscovite Samples

Infrared spectroscopy was employedto study the adsorption state of sodium oleate and Cu2+ on
the muscovite surface. The conditions of this action are shown in Table 3, and the results are shown in
Figure 9.

Table 3. Action conditions of different muscovite samples.

Sample
Numbers

Reagent
Concentration/mol/L

Electrochemical Pretreatment
Conditions

Sodium
Oleate Cu2+ Electrolysis

Current/A
Electrolysis
Time/min

Plate
Distance/cm

Electrode Material
Types

(Anode–Cathodic)

A 9.20 × 10−4 6 × 10−5 — — — —

B 9.20 × 10−4 6 × 10−5 0.1 5 4.5 graphite
plate–graphite plate

C 9.20 × 10−4 6 × 10−5 0.2 5 4.5 graphite
plate–graphite plate

D 9.20 × 10−4 6 × 10−5 0.1 15 4.5 graphite
plate–graphite plate
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Sample A underwent the joint action of untreated copper ions and sodium oleate. As can be
seen from Figure 9, the absorption peak of wave number 3629 cm−1 corresponds to the vibration
absorption peak of hydroxyl, and the other two peaks at 2935 cm−1 and 2860 cm−1 can be attributed to
the vibration absorption peak of the C–H bond in the methyl group and methylene in sodium oleate,
respectively [20,21]. Sample B, sample C and sample D had the joint action of treated copper ions and
sodium oleate. Compared with sample A, the intensity of vibration absorption peak of the C–H bond
corresponding to methylene and methyl groups of sodium oleate in sample B and C is significantly
enhanced, indicating that the increased adsorption of sodium oleate on the sample surface. According
to electrode reaction analysis, solution conductivity analysis, solution pH analysis and potential
analysis, the reason is that electrochemical pretreatment conditions of the copper sulfate solution
can inhibit the hydrolysis of copper ions, increase the Cu2+ content in the copper sulphate solution,
strengthen the Cu2+ adsorption on the muscovite surface, and enhance electrostatic adsorption of
sodium oleate on the muscovite surface, thereby strengthening the physical and chemical adsorption
of sodium oleate on the muscovite surface.

3.6. XPS Analysis of Muscovite Samples

To understand the valence bond morphology of Cu2+ on the muscovite surface before and after
electrochemical pretreatment, XPS characterization was carried out on the muscovite samples treated
with sodium oleate and untreated Cu2+ and the electrochemically pretreated muscovite samples treated
with Cu2+. The conditions of activation are shown in Table 3, and the results are shown in Figure 10.

As can be seen from sample A in Figure 10, copper elements appeared on the surface of the
sample after the action of copper ions, indicating that copper ions adsorbed on the surface of muscovite.
Compared with sample A, the characteristic peaks of each element on the surface of sample B were
changed. Therefore, the electron binding energy and relative content of the main elements on the
surface of the sample were analyzed. The results are shown in Table 4.
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c(Cu2+) = 6 × 10−5 mol/L).

Table 4. Electron binding energy and relative content of major elements on the surface of the sample.

Sample Numbers C/(wt)% Cu/(wt)% Cu2p3/2/eV

A 19.54 0.57 934.07
B 30.80 0.91 933.28

According to Table 4, compared with sample A, the content of carbon and copper on the surface
of sample B increased by 11.26% and 0.34%, respectively. Copper ions and oleate ions adsorbed on the
muscovite surface after electrochemical pretreatment significantly increased. Compared with sample
A, it was also found that the binding energy of Cu2p3/2 on the surface of sample B was changed,
which indicates that the chemical environment of Cu is changed by electrochemical pretreatment with
appropriate conditions. In order to further understand the valence bond morphology of Cu on the
muscovite surface, the paper divided the peak of the spectrogram of the copper element, and the
results are shown in Figure 11 and Table 5.
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Table 5. Valence bond and proportion of Cu on mineral surface.

Sample
Numbers

Total Peak
Area

Cu-OOCR
Peak Area

Cu-OH
Peak Area

Cu-OOCR Relative
Content/%

Cu-OH Relative
Content/%

A 4166.69 1518.25 2648.44 36.44 63.56
B 6820.16 3205.89 3614.27 47.01 52.99

According to Figure 11 and Table 5, the Cu–OOCR valence bond appeared at the sample surface
after the action of copper ions, indicating that the oleic acid group had chemical adsorption on
the muscovite surface. Compared with sample A, the Cu–OOCR ratio on the surface of sample
B was increased by 10.57%, which indicates that the content of copper oleate on the surface of
muscovite increased after the electrochemical pretreatment of copper ions. The main reason lies
in that electrochemical pretreatment of copper ion solution will inhibit the hydrolysis of copper
ion and increase the concentration of copper ion in the solution, which will lead to the increase of
adsorbed copper ion content on the muscovite surface and further strengthen the physical and chemical
adsorption of oleic acid root on the muscovite surface [22].

4. Conclusions

(1) In 9.20 × 10−4 mol/L sodium oleate system, electrochemical pretreatment of Cu2+ solution can
greatly enhance the activation of copper ions on muscovite when the electrolysis current is 0.1 A at the
short electrolysis time.

(2) The electrochemical pretreatment of the Cu2+ solution can inhibit the hydrolysis of copper
ions, increase the content of Cu2+ in the solution, strengthen the adsorption of Cu2+ on the muscovite
surface. The electrostatic adsorption of sodium oleate on the mica surface is enhanced, and then the
physical and chemical adsorption of sodium oleate is also strengthened.
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