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Abstract: In the present study, the influence of the sampling density on the coestimation error
of a regionalized, locally stationary and geo-mining nature variable is analyzed. The case study
is two-dimensional (2D) and synthetic-type, and it has been generated using a non-conditional
Sequential Gaussian Simulation (SGS), with subsequent transformation to Gaussian distribution,
seeking to emulate the structural behavior of the aforementioned variable. A primary and an
auxiliary variable with different spatial and statistical properties are constructed using the same
methodology. The collocated ordinary cokriging method has been applied, in which the auxiliary
variable is spatially correlated with the primary one and it is known exhaustively. Fifteen sampling
densities are extracted from the target population of the primary variable, which are compared
with the simulated values after performing coestimation. The obtained results follow a potential
function that indicates the mean global error (MGE) based on the sampling density percentage (SDP)
(MGE = 1.2366 · SDP−0.224).
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1. Introduction

Mining is a business that bases its productive parameters and those of an economic–financial
nature on the basis of fragmentary information, which must be used to limit the various existing
uncertainties about the mineral resource, guaranteeing profitability [1]. Accurate evaluation of viable
mineral resources is crucial in optimal sustainable development and mine planning procedures [2].
In mineral resource estimation, it is crucial the identification of the geological domains to be used
for modeling [3]. Several types of variables, such as regionalized variables or spatial variables,
are relevant [2,4,5] and they must be taken into account for business profitability maximization. Often,
it is difficult to get reliable information of this type.

According to the Pan European Reserves and Resources Reporting Committee (PERC) Reporting
Standard [6], a mineral resource is a concentration or occurrence of material of intrinsic economic
interest in or on the earth’s crust in the form and quantity in which there are reasonable probabilities
of eventual economic extraction. These resources are studied through variables that by nature have
spatial structure. This means that they are not randomly arranged, but rather have a certain order.
This feature is distinctive of data from the field of geology, and they are called regionalized variables
in geostatistics [7].
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For Isaaks and Srivastava [8], geostatistics offers a way to describe spatial continuity, an essential
feature of many natural phenomena that takes advantage from the classical regression techniques.
When the limits of spatial dependence of the variable of interest are known, a linear, unbiased and
optimal estimation technique called kriging is used [8,9]. This is a generic term applied to a variety of
estimation methods that depend on minimizing the estimation error by a least squares procedure [10].
The name of the technique was introduced by Matheron [11], in honor of the pioneering works of D. G.
Krige when estimating gold concentrations in South Africa [12]. When this technique is used in the
mining industry, in most of the cases, the process only depends on a primary variable, and auxiliary
variables (such as sub-elements, pollutants or others) are not considered. Pan et al. [13] state that
cokriging is theoretically more attractive than univariate kriging when estimating simultaneously a
set of correlated variables. Wackernagel [14] defines cokriging as the extension of kriging, where an
auxiliary variable is used to improve the accuracy of the estimate. Due to its complexity when modeling
joint spatial continuity, this coestimation technique has not received sufficient credit. Almeida and
Journel [15] emphasize the use of more easily applicable but still precise techniques, and they introduce
a simplified cokriging method called collocated ordinary cokriging.

The Sequential Gaussian Simulation (SGS) algorithm is also widely used because it is fast and
efficient when building conditional cumulative distribution functions [16]. Techniques like fractal and
multifractal modeling are also used along with SGS to separate various geological processes [17,18].

In this study, the collocated ordinary cokriging and the SGS are applied. When mapping spatial
variables two important stages must be taken into account: the way in which sampling is done, and the
techniques used in prediction. Both processes determine the accuracy of the results. Sampling aspects
are analyzed in diverse works. It is known that purposive sampling is in general more efficient for
model-based mapping [19]. In [20] the universal kriging variance is used as a quality measure to
design samples. In [21] the size of the sample is studied, and they conclude that it is an important factor
to obtain accurate empirical variograms, resulting crucial to sample sufficiently and without bias.

However, costs associated with obtaining information from the earth’s crust are high, especially in
the sector of hard rock mining in which the only way to extract samples is through mechanized methods.
This is the reason this study analyzes the influence of the sampling density on the coestimation error in
an area defined by the target population. The aim of this work is to calculate an approximation
of the appropriate sampling size to obtain good results when applying the collocated ordinary
cokriging technique.

2. Theoretical Framework

The nature of geological data allows examination of some characteristics of the whole population
only in some specific cases. This is the reason in most of the cases part of the population is analyzed,
from which inferences about the total population are made [22]. The objective is to estimate a parameter
of the whole population using information of a sample.

Geostatistics is an applied science that focuses on modeling the spatial continuity of natural
phenomena. This information is used to estimate values in not sampled locations using an unbiased
optimal linear method. This rigorous mathematical formulation was born in France in the 1960s [11].
An essential aspect of geostatistical modeling is the establishment of quantitative measures of spatial
variability or continuity, which are subsequently used as input data in the estimation. Modeling the
spatial variability is a standard process of mineral resource analysts, where for the past 25 years,
the experimental semivariogram has been the most applied tool in mining [23].

Geostatistics studies regionalized phenomena, i.e., phenomena that in the geographical space
follow a certain structure. Sinclair and Blackwell [10] define regionalized variables as variables
distributed in a partially structured manner in the space, such that there is some degree of spatial
self-correlation. These variables can be interpreted as a natural extension of random variables when
they depend on the position. A regionalized variable, at each point x belonging to a domain D ⊂ Rd

in space, being d the dimension of the space (d = 2 for 2D and d = 3 for 3D), makes it correspond
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a variable Z(x) that depends on the position of the point x in space. The regionalized variable is
stationary if its joint distribution function is invariant by translation in space.

The semivariogram is the basic geostatistical tool to measure the spatial self-correlation of a
regionalized variable [24]. It is used in different directions of the space to study the continuity of the
variable. In almost all cases of reservoir modeling, there is a need to model the joint distribution of
multiple variables [25]. In this context, cross semivariograms are defined.

Interpolation algorithms are used to map a primary variable (variable of interest).
Some interpolation algorithms are based on regression of the unknown value on the sample data.
Kriging is one of these regression algorithms. It is a geostatistical estimation technique that gives the
best unbiased linear estimator of a variable. Known certain values of a variable of interest Z1, Z1(x1),
Z1(x2), . . ., Z1(xn), the unknown value at point x0, Z∗1 (x0), is estimated by a linear combination:

Z∗1 (x0) =
n

∑
i=1

λiZ1(xi), (1)

being λi the estimation weights calculated in a way that they minimize the variance.
Sometimes, the sampling of the primary variable is poor but there are other variables (auxiliary

variables) more densely sampled. Assume that Z1(x) and Z2(x) are two regionalized variables.
Variable Z1 will be the primary variable and Z2(x) will work as the auxiliary one. Known certain
values of the first variable Z1(x1), Z1(x2), . . ., Z1(xn), and the auxiliary variable Z2(x1), Z2(x2), . . .,
Z2(xm), ordinary cokriging consists of calculating Z∗1 (x0) as a linear combination of data from both
variables located at sample points in the vicinity of the point:

Z∗1 (x0) =
n

∑
i=1

λ
(1)
i Z1(xi) +

m

∑
j=1

λ
(2)
j Z2(xj). (2)

Each variable is defined in different number of samples. Cokriging is the extension of kriging
to the multivariate case, i.e., it considers not only the variable to be estimated in space, but also
the information of one or several additional variables in nearby sites [26]. Although cokriging has
the same characteristics as kriging, considering additional variables improves the precision of the
estimation in some cases, obtaining also more consistent results than when each variable is estimated
independently using kriging in a multivariate study. However, it should be noted that it makes
estimation more difficult.

Cokriging has several variants and collocated ordinary cokriging is one of them [27]. It can be
used when primary data are available in sparsely distributed points while secondary data are present
in all points of the mesh. According to Xu et al. [28] a full cokriging approach may cause matrix
instabilities due to high autocorrelation between closer secondary data, as opposed to large separation
and low autocorrelation in primary data. This problem can be overcome by retaining at each location
to be estimated the collocated secondary data. The collocated ordinary cokriging estimator is given
by [28]:

Z∗1 (x0)−m1 =
n

∑
i=1

(
λ
(1)
i Z1(xi)−m1

)
+ λ(2) (Z2(x0)−m2) , (3)

being m1 and m2 the means of the primary and secondary variables, Z2(x0) is the secondary variable
sampled at the same location in which the primary variable will be estimated. The weights λ

(1)
i for

i = 1, 2, . . . , n and λ(2) are calculated from the system:

∑n
j=1 λ

(1)
j C12(xj − x0) + λ(2)C2(0) = C12(0),

∑n
j=1 λ

(1)
j C1(xj − xi) + λ(2)C21(x0 − xi) = C1(x0 − xi), i = 1, 2, . . . , n,

(4)
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where C1 and C2 are the covariances of the primary and secondary variables, respectively; and C12

and C21 are the cross-covariances (being C12(h) = C21(h)). These can be obtained by calculating the
variograms and cross-variograms. Because of the complexity of this process, Markov-type screening
hypothesis are considered [29]. In Markov’s model the influence of any primary data Z1(x + h) on
the secondary collocated variable Z2(x) is screened by the primary data Z1(x). In this context, the
cross-covariance can be calculated using:

C12(h) =
C12(0)
C11(0)

C11(h), ∀h, (5)

or equivalently:
ρ12(h) = ρ12(h)ρ1(h), ∀h, (6)

being ρ1(h) the correlogram function of the primary variable and ρ12(h) the cross-correlogram function
between primary and secondary variables.

Under the Markov model, the collocated cokriging Equations (3) and (4) can be written as:

Z∗1 (x0)−m1

σ1
=

n

∑
i=1

(
λ
(1)
i Z1(xi)−m1

)
σ1

+ λ(2) (Z2(x0)−m2)

σ2
, (7)

and:
∑n

j=1 λ
(1)
j ρ12(0)ρ1(xj − x0) + λ(2) = ρ12(0),

∑n
j=1 λ

(1)
j ρ1(xj − xi) + λ(2)ρ12(0)ρ1(x0 − xi) = ρ1(x0 − xi), i = 1, 2, . . . , n,

(8)

where σ1 and σ2 are the two stationary standard deviations of the variables Z1 and Z2 respectively.

3. Methodology

This section summarizes the most relevant stages of the study, which are implemented using
the GSLIB algorithms, acronym for “Geostatistical Software Library”, developed in the Petroleum
Engineering Department of Stanford University. It is considered one of the most relevant computer
developments in the history of geostatistics by some researchers [30]. The whole process is computed
in Python by the authors. The sequence of the main stages of this study is represented in Figure 1.

3.1. Synthetic Case Study Creation

First, a synthetic case study has been created. This option has been chosen because it enables
having data at the population level (universe), making possible to compare this reality with estimations
that depend on different sampling densities. In this way, the real error can be calculated, and
the influence of the sampling density can be measured. Thus, an area of 1 km2 is defined as
spatial domain with coordinates ranging from the origin to 1 km in the East (X) and in the North
(Y). A 200× 200 squared geometry is considered, thus, 40,000 cells of 25 m2 are considered to be
target population.

In each cell a primary variable (Z1) and an auxiliary one (Z2) are created following the Sequential
Gaussian Simulation, and using a random number generator (random seed) and spatial structure
parameters. In this first stage, both variables are measured in the whole population and they are
spatially correlated. Hence, conditions required by the collocated ordinary cokriging technique are
satisfied. On the other hand, real values of Z1 are also known, making possible the comparison with
the estimations obtained for different sampling densities.
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3.2. Semivariographic Modeling of Variables

The spatial structure of Z1 and Z2 is described using the experimental semivariogram. The spatial
continuity is modeled and parameters such as the anisotropy direction, features of the ellipse and
plateau (maximum semivariance) are obtained. These parameters are required in the next stage.

Creating the
synthetic case study

Semivariographic modeling
of variables

Sample extraction:
different sampling densities

Estimation of
different scenarios

Comparison of
coestimations and
simulated reality

Analysis of the
sampling density and errors

Figure 1. Sequence of the main stages of the study.

3.3. Sample Extraction at Different Densities

From the exhaustive variable Z1, 15 different sampling densities are extracted. The minimum is
equivalent to 0.06% of the population and the maximum is the 5% of the population. These scenarios
have been used to develop the study. The spatial arrangement of the samplings is regular, it does not
have clusters.

3.4. Estimation of Different Scenarios

Results of 15 scenarios are estimated using the collocated ordinary cokriging method.
The technique uses parameters that have been calculated in the structural modeling, the spatial
correlation between the variables and the scopes defined for sample search.

3.5. Comparison of Estimations and Simulated Reality

With the purpose of evaluating the representativeness of the sample and the accuracy of the
technique, the estimated results are compared with the simulated reality of the variable Z1, using the
mean squared error (MSE).

3.6. Analysis of the Sampling Density and Errors

At this stage, the relationship between sampling density and the coestimation errors is analyzed.
They result inversely proportional, and it can be expressed by a potential function restricted to a
maximum sample size equivalent to 5% of the target population. It must be taken into account that it is
difficult to have bigger samples than the indicated above in the evaluation of metallic mineral deposits.
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4. Application

The first stage is the creation of the synthetic case study. Two regionalized and spatially correlated
variables in a two-dimensional space are created. Both variables, the primary Z1 and auxiliary Z2 have
a location in the georeferenced space in East (X) and North (Y). The unconditional SGS method has
been used, taking into account a spatial structure and a random seed. This process is developed using
the SGSIM algorithm (Sequential Gaussian simulation program) of GSLIB reimplemented in Python
code, with data presented in Tables 1 and 2. Table 2 contains the structural anisotropic-type parameters
for both variables. The contribution refers to the plateau of the semivariogram (the value at which the
semivariogram stops changing).

Table 1. Parameters to create the area of study.

Parameter Value Unit of Measurement

X coordinate in the origin 0 meters (m)
Y coordinate in the origin 0 meters (m)

Last coordinate in X 1000 meters (m)
Last coordinate in Y 1000 meters (m)

Cell width in X 5 meters (m)
Cell width in Y 5 meters (m)

Number of cells in X 200 unities
Number of cells in Y 200 unities
Total number of cells 40,000 unities

Table 2. Structural parameters of Z1 and Z2.

Parameter Value Units of Measurement

Anisotropy azimuth Z1 45 degrees
Anisotropy azimuth Z2 45 degrees
Maximum value of Z1 500 meters (m)
Minimum value of Z1 200 meters (m)
Maximum value of Z2 300 meters (m)
Minimum value of Z2 80 meters (m)

Subsequently, a corrective affine transformation is applied to the distribution of the variable
correcting the mean and the standard deviation. Table 3 contains the statistics of form and dispersion
applied in the correction of the Gaussian distributions of the simulation.

Table 3. Corrective affine distribution of Z1 and Z2.

Parameter Value

Mean of Z1 10
Mean of Z2 2

Standard deviation of Z1 2.5
Standard deviation of Z2 1.5

For Z2, the 47% of the corrected data were negative and they were replaced by a positive small
value. Thus, the histogram has a positive asymmetric form, see Figure 2. The simulations for both
variables are shown in Figure 3.

With the aim of analyzing the behavior of the primary variable, a diagonal cut is performed from
southwest to northeast on the map of this variable (45◦ azimuth), coinciding with the direction of
anisotropy. We observe the existence of local stationarity between 500 and 900 meters approximately,
see Figure 4. Armstrong [31] states that this assumption of quasi-stationarity is essential between the
homogeneity scale of the phenomenon and the sampling density.
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(a) Histogram, Gaussian Z1. (b) Histogram, corrected Z1.

(c) Histogram, Gaussian Z2. (d) Histogram, corrected Z2.

Figure 2. Histograms, Gaussian variables and transformed variables.

(a) Gaussian Z1 map. (b) Corrected Z1 map.

(c) Gaussian Z2 map. (d) Corrected Z2 map.

Figure 3. Maps of Z1 and Z2 with Gaussian sequential simulation and corrective affine transformation.
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Figure 4. Local stationarity behavior of Z1.

In the second stage, the data required for the estimation processes is prepared. The collocated
ordinary cokriging method with a Markov model is used. The required data are the following:

• Semivariographic fitting model for the primary variable (Z1).
• Semivariographic fitting model for the exhaustive auxiliary variable (Z2).
• Linear correlation coefficient between Z1 and Z2.

At this point both Z1 and Z2 are exhaustive. The auxiliary variable that contributes in the
estimation process of the primary variable is static. The semivariographic fitting models are described
according to the target population of each variable and they will remain constant during the estimation
processes. In Figure 5 the semivariograms of the variables are presented.

From Figure 5, a zonal anisotropy is concluded in 45◦ azimuth direction as the main axis,
for both variables Z1 and Z2. In both variables, there is a slower variability in the direction of
45◦ azimuth than in its orthogonal direction (135◦ azimuth), where the variables present a faster
variability. The experimental data of Z1 and Z2 fit two nested spherical structures: γ1(h) =

6.0 · Sph(300, 250) + 0.8 · Sph(∞, 250) for Z1; and γ2(h) = 2.0 · Sph(500, 300) + 0.75 · Sph(∞, 300) for
Z2. The linear correlation coefficient between Z1 and Z2 will vary depending on the sampling density.

The third stage consists of extracting 15 different sampling densities (SD) from the exhaustive
variable Z1. These values will be combined with the values of Z2 to create the scenarios of estimation.
Table 4 shows the sampling densities for Z1. It can be observed that at higher sampling densities
the error in statistical characterization is lower. The sampling density is constant for Z2, i.e., all the
spatial area of 1 km2 is considered for Z2. A maximum sample size of 5% of the population has been
considered, associated with high costs when retrieving information of metallic elements from the
earth’s crust. It is typical to have case studies with smaller sample size than the 1% of the target
population [17,32]. The limit scenarios (lowest and highest sampling densities) are presented in
Figure 6.
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(a) Semivariogram of Z1. (b) Semivariogram of Z2.

(c) Cross semivariogram of Z1 and Z2.

Figure 5. Semivariograms of the variables..

Table 4. Different scenarios depending on sampling densities.

Scenario Number of
Samples

Sampling
Density Z1 (m2) Sampling Size Z1 (%) Mean Variance Deviation

1 25 625 0.06 10.16 2.97 1.72
2 40 1000 0.10 10.16 2.43 1.56
3 60 1500 0.15 9.86 2.55 1.60
4 70 1750 0.18 9.87 2.88 1.70
5 80 2000 0.20 10.11 3.32 1.82
6 120 3000 0.30 10.10 3.32 1.82
7 160 4000 0.40 10.15 3.60 1.90
8 200 5000 0.50 9.91 4.67 2.16
9 240 6000 0.60 9.98 4.51 2.12

10 280 7000 0.70 9.95 4.77 2.18
11 320 8000 0.80 9.95 4.95 2.23
12 360 9000 0.90 10.01 5.14 2.27
13 400 10,000 1.00 10.02 5.25 2.29
14 1600 40,000 4.00 10.02 5.41 2.33
15 2000 50,000 5.00 10.01 5.55 2.36
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(a) Lowest density sample of Z1. (b) Histogram of the lowest density
sample of Z1.

(c) Highest density sample of Z1. (d) Histogram of the highest density
sample of Z1.

Figure 6. Maps and histogram of samples of Z1, limit scenarios.

In the fourth stage, the collocated ordinary cokriging process for each scenario is
developed (Table 5), varying the linear correlation coefficient depending on the sampling density.
Before performing the coestimation process, it is necessary to define the search neighborhood,
determining the spatial limits that restrict the number of observations that interact in the coestimation.
In a study about the kriging method, Rivoirard [33] points out that the higher the search limits, the
greater the accuracy in the estimation process. However, the latter is limited to the number of existing
observations and their distances over the estimation grid. For example, it would not be adequate to
estimate at point (0, 0) for the lowest density sample of Z1 (in an univariate assumption) in the mesh
of samples in Figure 6 using the existing 25 observations, given that the influence of those farther
observations will hardly describe the reality at that point, unless there exists a complete stationarity in
the study area. In this case, the information obtained from the semivariogram is used to define the
search limits, reducing the size of the ellipse given the increase of the sampling density. The anisotropy
direction for the searched ellipse is 45◦ azimuth and it varies based on the amount of information
available in each scenario. The number of samples used for estimating Z1 varies also based on the
amount of information available. In Table 5 the minimum and the maximum number of samples for
coestimation are presented. The ellipse will be larger in lower sampling density scenarios because of
the absence of samples close to the sites to be estimated.
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Table 5. Different scenarios depending on sampling densities.

Scenario Sampling Linear correlation Ellipse Minimum Number Maximum Number
Density Coefficient of Samples Z1 of Samples Z1

1 625 0.91 300/150 1 4
2 1000 0.96 300/150 1 12
3 1500 0.92 300/150 1 20
4 1750 0.87 300/150 1 20
5 2000 0.88 300/150 1 20
6 3000 0.88 300/150 1 20
7 4000 0.84 300/80 1 20
8 5000 0.88 300/80 1 20
9 6000 0.86 300/80 1 20

10 7000 0.85 300/80 1 20
11 8000 0.85 200/80 1 20
12 9000 0.91 150/80 1 20
13 10,000 0.89 150/80 1 20
14 40,000 0.90 150/40 1 20
15 50,000 0.90 150/40 1 30

5. Results

The estimation scenarios are compared with the simulated real map from which the samples of
Z1 are extracted. It can be observed that smoothing is more noticeable in those scenarios with lower
sampling density, see Figure 7. The coestimation is perfect when the linear correlation coefficient
between the real scenario and the estimated scenario is 1. The linear correlation coefficient will depend
on the number of observations and the semivariographic model that can be fitted according to these
observations. Not very dense scenarios will poorly describe the spatial correlation, obtaining less
accurate results. In Figure 8 the dispersion diagrams between the real variable Z1 and the 15 scenarios
are represented, indicating the linear correlation coefficient. The linear correlation coefficient of
scenario 11 (320 observations) is 0.88 and the map of the variable Z1 respects the real spatial structure.
Scenarios with higher sampling density present also good features.

In Figure 9 the direct semivariograms of Z1 are shown. It can be observed that they are similar
to the real one for densities equivalent to 0.8% or greater, which is associated with the fact that in
these cases the mathematical adjustment should also be similar to the real with independence of
the modelization technique. When the sampling density decreases, the direct semivariogram of Z1

becomes more erratic, decreasing its spatial correlation.
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(a) Real map Z1.

(b) Scenario 1, SD=625 m2. (c) Scenario 2, SD=1000 m2. (d) Scenario 3, SD=1500 m2.

(e) Scenario 4, SD=1750 m2. (f) Scenario 5, SD=2000 m2. (g) Scenario 6, SD=3000 m2.

Figure 7. Cont.
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(h) Scenario 7, SD=4000 m2. (i) Scenario 8, SD=5000 m2. (j) Scenario 9, SD=6000 m2.

(k) Scenario 10, SD=7000 m2. (l) Scenario 11, SD=8000 m2. (m) Scenario 12, SD=9000 m2.

(n) Scenario 13, SD=10,000 m2. (o) Scenario 14, SD=40,000 m2. (p) Scenario 15, SD=50,000 m2.

Figure 7. Coestimation maps versus simulated real Z1.
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(a) Scenario 1, SD=625 m2. (b) Scenario 2, SD=1000 m2. (c) Scenario 3, SD=1500 m2.

(d) Scenario 4, SD=1750 m2. (e) Scenario 5, SD=2000 m2. (f) Scenario 6, SD=3000 m2.

(g) Scenario 7, SD=4000 m2. (h) Scenario 8, SD=5000 m2. (i) Scenario 9, SD=6000 m2.

Figure 8. Cont.
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(j) Scenario 10, SD=7000 m2. (k) Scenario 11, SD=8000 m2. (l) Scenario 12, SD=9000 m2.

(m) Scenario 13, SD=10,000 m2. (n) Scenario 14, SD=40,000 m2. (o) Scenario 15, SD=50,000 m2.

Figure 8. Dispersion diagrams between the real variable Z1 and the 15 scenarios.
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(a) Real semivariogram Z1.

(b) Scenario 1, SD = 625 m2. (c) Scenario 2, SD=1000 m2. (d) Scenario 3, SD=1500 m2.

(e) Scenario 4, SD=1750 m2. (f) Scenario 5, SD=2000 m2. (g) Scenario 6, SD=3000 m2.

Figure 9. Cont.
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(h) Scenario 7, SD=4000 m2. (i) Scenario 8, SD=5000 m2. (j) Scenario 9, SD=6000 m2.

(k) Scenario 10, SD=7000 m2. (l) Scenario 11, SD=8000 m2. (m) Scenario 12, SD=9000 m2.

(n) Scenario 13, SD=10,000 m2. (o) Scenario 14, SD=40,000 m2. (p) Scenario 15, SD=50,000 m2.

Figure 9. Coestimation direct semivariograms versus simulated real Z1.
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As expected at higher sampling densities, the mean squared error is smaller (MSE), see Figure 10.
The relationship between the sampling density in percentage measure (SDP) and the mean global error
(MGE) can be expressed using this potential function:

MGE = 1.2366 · SDP−0.224. (9)

In Figure 11 the mean global error versus the equivalent sampling density is shown.

Figure 10. Mean Squared Error of the coestimation in each scenario.

Figure 11. Mean global error versus the equivalent sampling density.

The deviation of the coestimation is directly proportional to the mean global error. The correlation
coefficient is 0.99, which indicates that the application of the collocated ordinary cokriging method
was consistent and reliable, see Figure 12. Applying linear regression to find the relationship between
the mean global error and the coestimated deviation, the corrected coestimated deviation σ̂COCK
is obtained:

σ̂COCK = 0.8781 · σCOCK + 0.0833. (10)

There is no optimal scenario, since the overall process depends on factors such as the sensitivity
of the variable of interest, the amount of resources to invest to obtain the sample, the error tolerance,
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Figure 12. Relationship between the mean global error and the collocated ordinary cokriging deviation.

and so on. For example, in the 13th scenario with a sampling density equivalent to 1% of the target
population, the estimated mean is 10.02 and the deviation 1.24: µCOCK = 10.02± 1.24. This means
that the estimated value could vary between 8.78 and 11.26. A similar value µCOCK = 10.02± 1.18 is
obtained after correcting the deviation with the proposed function (10). Different parameters of the 15
scenarios are presented in Table 6.

Table 6. Coestimation results.

Scenario Sampling SDP MSE MGE µCOCK σ2
COCK σCOCK σCOCK /µCOCK

Inferior Superior
Density Limit Limit

1 25 0.06 4.77 2.18 10.16 6.20 2.49 0.25 7.67 12.65
2 40 0.10 4.43 2.11 10.16 5.11 2.26 0.22 7.90 12.42
3 60 0.15 3.78 1.94 9.86 4.32 2.08 0.21 7.79 11.94
4 72 0.18 3.43 1.85 9.87 4.16 2.04 0.21 7.83 11.91
5 80 0.20 3.06 1.75 10.11 3.67 1.92 0.19 8.19 12.03
6 120 0.30 2.78 1.67 10.10 3.20 1.79 0.18 8.31 11.89
7 160 0.40 2.60 1.61 10.15 2.93 1.71 0.17 8.43 11.86
8 200 0.50 2.19 1.48 9.91 2.54 1.59 0.16 8.31 11.50
9 240 0.60 1.89 1.37 9.98 2.34 1.53 0.15 8.45 11.51

10 280 0.70 2.03 1.43 9.95 2.23 1.49 0.15 8.46 11.45
11 320 0.80 1.44 1.20 9.95 1.68 1.30 0.13 8.65 11.24
12 360 0.90 1.43 1.20 10.01 1.58 1.26 0.13 8.75 11.27
13 400 1.00 1.40 1.18 10.02 1.53 1.24 0.12 8.78 11.26
14 1600 4.00 0.85 0.92 10.02 0.80 0.89 0.09 9.13 10.91
15 2000 5.00 0.76 0.87 10.01 0.68 0.82 0.08 9.19 10.84

6. Conclusions

Collocated ordinary cokriging is reliable and easier to implement than other multivariable
geostatistical methods when an auxiliary variable is spatially correlated with the primary one,
and when the auxiliary data is much more extensive than the primary data. In advance, the primary
variable must be estimated in some domains checking delimitations where homogeneity by
translation exists.

The sampling density is inversely proportional to the coestimation error; the larger the sampling
density the lower the uncertainty of the estimated population. However, there is not a quantification
of the sampling density that guarantees obtaining perfect results, since the coestimation error is subject
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to an intrinsic error. It is crucial to manage the degree of sparsity of the primary data. This must be
related to the sensitivity of the coestimation error in commercial terms. It is assumed that an error
of 1 unit of measure will affect a variable with a low level of sparsity, which has a greater variability.
For decision-making, the global mean deviation of the coestimation is a relevant parameter, since it
determines the mean global error with a very high correlation coefficient. This parameter defines the
worst (µCOCK − σCOCK) and best (µCOCK + σCOCK) of the cases, deriving in the choice of a sample size
with an assumed and controlled risk.

Scenario 11 (320 observations) is presented as one of the best options balancing the number of
samples versus results. It has a linear correlation coefficient of 0.88, a mean squared error of 1.44 and
its linear correlation coefficient is similar to higher density sampling scenarios.
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