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Abstract: Uakitite was observed in small troilite–daubréelite (±schreibersite) inclusions (up to 100 µm)
and in large troilite–daubréelite nodules (up to 1 cm) in Fe-Ni-metal (kamacite) of the Uakit iron
meteorite (IIAB), Republic of Buryatia, Russia. Such associations in the Uakit meteorite seemed to
form due to high-temperature (>1000 ◦C) separation of Fe-Cr-rich sulfide liquid from Fe-metal melt.
Most inclusions represent alternation of layers of troilite and daubréelite, which may be a result of
solid decay of an initial Fe-Cr-sulfide. These inclusions are partially resorbed and mainly located in
fissures of the meteorite, which is now filled with magnetite, and rarely other secondary minerals.
Phase relations indicate that uakitite is one of the early minerals in these associations. It forms
isometric (cubic) crystals (in daubréelite) or rounded grains (in schreibersite). The size of uakitite
grains is usually less than 5 µm. It is associated with sulfides (daubréelite, troilite, grokhovskyite),
schreibersite and magnetite. Carlsbergite CrN, a more abundant nitride in the Uakit meteorite, was
not found in any assemblages with uakitite. Physical and optical properties of uakitite are quite similar
to synthetic VN: yellow and transparent phase with metallic luster; Mohs hardness: 9–10; light gray
color with a pinky tint in reflected light; density (calc.) = 6.128 g/cm3. Uakitite is structurally related
to the osbornite group minerals: carlsbergite CrN and osbornite TiN. Structural data were obtained
for three uakitite crystals using the electron backscatter diffraction (EBSD) technique. Fitting of the
EBSD patterns for a synthetic VN model (cubic, Fm-3m, a = 4.1328(3) Å; V = 70.588(9) Å3; Z = 4)
resulted in the parameter MAD = 0.14–0.37◦ (best-good fit). Analytical data for uakitite (n = 54, in
wt. %) are: V, 71.33; Cr, 5.58; Fe, 1.56; N, 21.41; Ti, below detection limit (<0.005). The empirical
formula (V0.91Cr0.07Fe0.02)1.00N1.00 indicates that chromium incorporates in the structure according to
the scheme V3+

→ Cr3+ (up to 7 mol. % of the carlsbergite end-member).

Keywords: uakitite; carlsbergite; osbornite group; troilite; daubréelite; Uakit meteorite; IIAB
iron; Buryatia

1. Introduction

Nitrides and oxynitrides are very scarce minerals in natural conditions. Most of them (carlsbergite
CrN, osbornite TiN, roaldite (Fe,Ni)4N, nierite α-Si3N4, sinoite Si2N2O) occur solely in extraterrestrial
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environments, in different types of meteorites [1–20]. Only siderazot Fe5N2, which is “grandfathered”
and questionable mineral (there is no modern confirmation for composition), appears to be terrestrial
in origin, and was only identified in fumaroles associations of the Etna and Somma–Vesuvius volcanic
complexes [21–23]. A new mineral, uakitite VN, was observed as an accessory phase in the Uakit
iron meteorite and is the sixth nitride mineral which is found in meteorites [24–28]. The mineral
was approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC)
of the International Mineralogical Association (IMA) as a new mineral species in May 2018 (IMA
2018-003) [26].

In contrast with the natural phase, synthetic VN is a well-known compound since the 1920s [29]
and widely used in the different branches of industry. Like other transition metal nitrides (CrN,
TiN, ZrN, NbN, etc.), it has long been of interest due to its excellent physical and chemical
properties, such as high melting point, metallic conductivity, good chemical stability and high
mechanical hardness. Owing to these properties, synthetic VN has a wide range of technological
applications, e.g., as abrasive material, alloying component, wear and corrosion-resistant coatings, field
emitter, supercapacitors, superconductors and buffer layers in microelectronics [30–45]. Intermediate
compositions of TiN-CrN-VN have higher hardness than that for simple compounds [46,47].

2. History of the Uakit Meteorite

This iron meteorite was found summer 2016 by a gold prospector group during excavation works
on river terrace (stream Mukhtunnyi, left feeder of the Uakit River) in 4 km west of the Uakit settlement,
Baunt Evenk district, northern part of Republic of Buryatia, Russia (latitude: 55◦29′47.50′′ N; longitude:
113◦33′47.98′′ E). At present, one sample (3.96 kg, Figure 1) of the Uakit meteorite was identified.
However, the information about the finding of larger iron meteorite mass (≈50 × 50 cm) is known
among prospectors around Uakit. The date of fall is unknown. During summer 2016, the 3.96 kg
meteorite sample was passed to Oleg Yu. Korshunov (Ulan-Ude), who then handed several cut-offs in
the Geological Institute (GI, SB RAS, Ulan-Ude, Russia) for expert examination. Later, some fragments
of the meteorite were passed in V.S. Sobolev Institute of Geology and Mineralogy (IGM, SB RAS,
Novosibirsk, Russia) for mineralogical studies in detail.

Figure 1. General view of the Uakit iron meteorite (IIAB) and one of cut-offs with troilite–daubréelite
nodules. Symbols: Dbr + Tro—troilite–daubréelite nodule.

The Uakit iron meteorite (IIAB) was approved on the 28 June 2017 by the Meteorite Nomenclature
Committee (see Meteoritical Bulletin Database). The cut-off fragments of the meteorite are now
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deposited in the meteorite collections of the Central Siberian Geological Museum of the IGM (CSGM
IGM, type specimens: 70.3 g and 17.5 g cut-offs, SB RAS, Novosibirsk, Russia), the Museum of the
Buryatian Scientific Centre (51.2 and 18 g cut-offs, MBSC SB RAS, Ulan-Ude, Russia), ExtraTerra
Consortium Lab, Ural Federal University (1.6 g cut-off, Ekaterinburg, Russia) and A.E. Fersman
Mineralogical Museum (<1 g cut-off, Moscow, Russia).

As a result of detailed mineralogical studies two new minerals, were identified in this meteorite:
uakitite VN (IMA 2018-003) [26] and grokhovskyite CuCrS2 (IMA 2019-065) [48]. In this paper, we
provide a detailed description of uakitite. Some data on this mineral in the Uakit meteorite were
reported in a few previous publications [24–26,48,49]. The name of the mineral is given after the
meteorite. The holotype specimens of uakitite are on display in the meteorite collections of the CSGM
IGM, SB RAS, Novosibirsk (registration numbers 52 and 52b, meteorite Uakit) and in the MBSC, SB
RAS, Ulan-Ude (registration number Uakit-MBSC435/G84).

3. Analytical Methods

Polished fragments were used for optical examination of the Uakit meteorite in reflected light.
The identification of all minerals was based on energy-dispersive spectra (EDS), backscattered
electron (BSE) images and elemental mapping (EDS system), using a TESCAN MIRA 3MLU scanning
electron microscope equipped with an INCA Energy 450 XMax 80 microanalysis system (Oxford
Instruments Ltd., Abingdon, UK) at the IGM, Novosibirsk, Russia, and a LEO-1430 scanning electron
microscope equipped with an INCA Energy-300 EDS microanalysis system at the GI, Ulan-Ude, Russia.
The instruments were operated at an accelerating voltage of 20 kV and a probe current of 1 nA in
high-vacuum mode. EDS analyses of uakitite and other minerals were done at an accumulation time
of 20–40 s. The following simple compounds and metals were used as reference standards for most of
the elements: Ca2P2O7 (P), Cr2O3 (Cr), pyrite (S), Si3N4 or BN (N), metallic Ti, Fe, Cu, Zn, Mn, Ni,
V and others. Correction for matrix effects was done using the XPP algorithm, implemented in the
software of the microanalysis system. Metallic Co served for quantitative optimization (normalization
to probe current and energy calibration of the spectrometer). The overlapping of VKβ and CrKα was
specially checked using the Cr2O3 and metallic V standards.

Electron microprobe analyses (EMPA) in wavelength-dispersive (WDS) mode were performed for
metals and sulfides, which are associated with uakitite in the Uakit iron meteorite, using a JXA-8100
microprobe (Jeol Ltd., Tokyo, Japan) at IGM. Grains (sizes > 5 µm) previously analyzed by EDS
were selected for this purpose. The operating conditions were as follows: beam diameter of 1–2 µm,
accelerating voltage of 20 kV, beam current of 50 nA and counting time of 10 (5 + 5) s. The following
standards were used for two microprobe sessions: natural spessartite (Mn), synthetic FeS or FeS2 (S),
Fe-metal or FeS (Fe), Fe-Ni-Co alloy (Ni and Co), GaP (P), Cr2O3 (Cr), ZnS (Zn), CuFeS2 (Cu) and
V2O5 (V). Correction for matrix effects was done using a PAP routine [50]. The precision of analysis
for major elements was better than 2% relative. The detection limits for elements were (in ppm): S,
115–208; Fe, 132–188; Ni, 119–130; Co, 55–102; P, 167–185; Mn, 184–203; Cr, 146–170; Zn, 108–119; Cu,
108; V, 164.

Electron backscatter diffraction (EBSD) studies were provided for three grains of uakitite.
Samples containing uakitite and intended for EBSD studies were subjected to polishing by
BuehlerMasterMet2 non-crystallizing colloidal silica suspension (0.02 µm). EBSD measurements
were carried out by means of an FE-SEM ZEISS SIGMA VP scanning electron microscope equipped
with an Oxford Instruments Nordlys HKL EBSD detector, operated at 20 kV and 1.4 nA in focused
beam mode with a 70◦ tilted stage at Institute of Physics and Technology, Ural Federal University,
Ekaterinburg, Russia. Structural identification of uakitite was performed by matching its EBSD patterns
with the reference structural models using program FLAMENCO.
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4. General Description of the Uakit Meteorite

The 3.96 kg mass of the meteorite is oval (10 × 10 × 7 cm). The exterior part is covered by thin
crust of brown to yellow-brown secondary products (mainly, different Fe-rich hydroxides, Figure 1).
Polished and then etched surfaces of the meteorite cut-offs show the presence of large (≈ 2 cm)
kamacite crystals with evident Neumann lines; no Widmannstatten pattern is observed (Figure 2).
Weathering and fusion crusts are less than 1 mm in the exterior. Sometimes they extend together along
some fractures of the outer part, but their abundance is low (Figure 1). The shock stage is medium and
mainly fixed by shifting of blocks in some schreibersite and carlsbergite crystals and by Neumann lines.

The bulk composition of the meteorite is (ICP-MS, IGM, n = 2): Ni = 5.47; Co = 0.45 (both in
wt. %); Si = 732–886; P = 989–1063; Cr = 127–139; Cu = 149–294; V = 0.10–0.24; Zn = 6–68; Ga = 49–50;
Ge = 203–215; As = 2.4–3.0; Mo = 5.1–5.9; Ru = 18.7; Rh = 2.0; Pd = 1.26–1.40; Sn = 6.9–44; Sb = 0.064–0.10;
W = 3.0; Re = 1.67–1.76; Ir = 20; Pt = 24; Au = 0.51–0.53 (in ppm) [25]. The Uakit iron meteorite is
structurally and geochemically characterized to be a hexahedrite, IIAB group, with tendency to the
IIA subgroup.

Fe-Ni-metal (kamacite) is the main mineral of the meteorite (≈ 93–98 vol. %, Figure 1). Minor and
accessory primary minerals are represented by schreibersite (rhabdite), nickelphosphide, taenite,
plessite (taenite + kamacite + tetrataenite), cohenite, tetrataenite, daubréelite, kalininite, troilite,
carlsbergite, sphalerite, uakitite, copper, grokhovskyite and an unidentified Mo-dominant phase
(<0.5 µm, molybdenite or hexamolybdenum (Mo,Ru,Fe) or Mo or MoC, according to recent meteorite
minerals list in [19]) (Figures 1–3).

Figure 2. Neumann lines and oriented schreibersite grains (Sch) in Fe-Ni-metal (kamacite), Uakit
meteorite (IIAB), images in ordinary and reflected light. Upper images: samples were etched by nital.
The upper left image is for type specimen (70.3 g cut-off) of the Uakit meteorite from the CSGM IGM,
SB RAS, Novosibirsk.
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The appearance of Ni-rich magnetite, pentlandite, heazlewoodite, awaruite to native nickel,
unidentified Ni-Fe-Cr-sulfide as well as Ni-rich goethite, akaganeite, Ni-rich siderite, Ca-Fe-carbonates,
gypsum and unidentified hydrated Fe-rich phosphate and Ca-Fe-sulfate is related to different stages
of the terrestrial alteration [24–26,48,49]. Magnetite, pentlandite, awaruite-nickel and heazlewoodite
seem to be related to the high-temperature alteration (fusion crust?), whereas goethite and other
Fe-hydroxides to low-temperature weathering products. The chemical composition of the principal
minerals in the Uakit iron meteorite is listed in Table 1.

The presence of large sulfide nodules (up to 1 cm) of troilite–daubréelite composition is common
in the Uakit meteorite (Figure 1). Cohenite occurs mainly near the exterior and forms skeletal crystals
up to 0.5 mm; sometimes it is observed on the boundary between kamacite grains. Ni-poorer taenite
(<33 wt. % Ni), Ni-rich kamacite (>6.3 wt. % Ni) and Fe-rich nickelphosphide are most typical for the
cohenite-containing associations.

Figure 3. Mono- and polymineralic inclusions and globules in Fe-Ni-metal (kamacite), Uakit
meteorite (IIAB), BSE images. Symbols: Dbr—daubréelite; Sch—schreibersite; Nph—nickelphosphide;
Tn—taenite; Coh—cohenite; Tro—troilite; Cu—native copper; Crl—carlsbergite; Kln—kalininite;
Sph—sphalerite; Mgt—magnetite.
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Table 1. Chemical composition (WDS, wt. %) of the essential minerals in the Uakit iron meteorite.

Mineral Fe Mn Ni Co Zn Cu Cr V P S Sum Formula Fe Mn Ni Co Zn Cu Cr V P S

based on

Kamacite n = 34 93.46 n.d. 6.09 0.48 n.d. n.d. n.d. n.d. 0.06 n.d. 100.09 1 ion 0.94 0.06 0.00 0.00
sd 0.56 0.51 0.05 0.04

Taenite n = 19 67.63 n.d. 32.12 0.13 n.d. 0.23 n.d. n.d. n.d. n.d. 100.10 1 ion 0.69 0.31 0.00 0.00
sd 6.48 6.54 0.05 0.09

Tetrataenite n = 14 42.66 n.d. 56.96 0.01 n.d. 0.24 0.17 n.d. n.d. n.d. 100.04 1 ion 0.44 0.56 0.00 0.00 0.00
sd 1.08 1.22 0.02 0.10 0.15

Cohenite n = 18 91.64 n.d. 1.57 0.08 n.d. n.d. 0.12 n.d. n.d. n.d. 93.41 3 ions 2.95 0.05 0.00 0.00
sd 0.29 0.06 0.02 0.05

Schreibersite n = 19 50.47 n.d. 34.25 0.09 n.d. n.d. 0.04 n.d. 15.16 0.01 100.03 4 ions 1.83 1.18 0.00 0.00 0.99 0.00
sd 3.56 3.51 0.02 0.09 0.08 0.02

Nickelphosphide n = 12 39.43 n.d. 45.02 0.05 n.d. n.d. 0.25 n.d. 15.17 0.05 99.97 4 ions 1.43 1.56 0.00 0.01 0.99 0.00
sd 2.81 2.74 0.04 0.37 0.06 0.04

Daubréelite n = 39 19.22 0.23 0.07 0.01 0.48 0.07 35.47 0.01 n.d. 44.42 99.91 7 ions 0.99 0.01 0.00 0.00 0.02 0.00 1.97 0.00 4.00
sd 0.84 0.20 0.09 0.02 0.53 0.03 0.63 0.02 0.11

Kalininite n = 11 10.15 0.04 n.d. n.d. 11.50 n.d. 34.55 n.d. n.d. 43.68 99.92 7 ions 0.53 0.00 0.52 1.95 4.00
sd 0.92 0.00 0.91 0.20 0.05

Troilite n = 13 62.42 n.d. 0.16 n.d. n.d. 0.12 0.67 0.01 n.d. 36.53 99.92 2 ions 0.98 0.00 0.00 0.01 1.00
sd 0.32 0.29 0.03 0.18 0.02 0.07

Pentlandite n = 9 32.87 n.d. 31.75 1.39 n.d. 0.01 0.68 0.02 n.d. 33.27 99.98 17 ions 4.54 4.17 0.18 0.00 0.10 0.00 8.00
sd 3.48 2.79 1.13 0.02 0.16 0.02 0.05

Heazlewoodite n = 5 5.68 n.d. 64.77 1.57 n.d. n.d. 0.45 0.02 n.d. 27.45 99.94 5 ions 0.24 2.63 0.06 0.02 0.00 2.04
sd 0.70 2.20 1.27 0.29 0.02 1.02

n—number of analyses; sd—standard deviation; n.d.—not detected.
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Schreibersite (20–100 µm) and carlsbergite (1–10 µm) elongated crystals are sometimes oriented in
one or more directions within large kamacite grains (Figure 2). In addition to the above assemblages,
the presence of rounded sulfide globules (mainly daubréelite + troilite, up to 100 µm), plessite isolations
(taenite + kamacite + tetrataenite) and mono- or polymineralic inclusions are very common in kamacite
(Figures 3–7). Sulfide globules with a “layered structure” (alternating layers of troilite and daubréelite
as a possible result of solid decay of initial high-temperature Fe-Cr-sulfide) are more widespread than
those without layering. Namely, in such associations two new minerals (uakitite, grokhovskyite),
Fe-rich kalininite (first finding in meteorites), copper and sphalerite were identified in this meteorite
(Figure 3).

5. Morphology, Optical and Physical Properties of Uakitite

At present, uakitite is observed only in small troilite–daubréelite (±schreibersite) globules with
“layered structure” hosted by kamacite and in large troilite–daubréelite nodules (Figures 1 and 4–8).
It forms isometric (cubic) crystals (in daubréelite) or rounded grains (in schreibersite). The size of
uakitite grains is commonly less than 5 µm (Figures 4–8); the largest detected crystal is 5 × 5 µm
(Figures 4 and 5). Twinning was not observed. Uakitite from sulfide globules is associated with
sulfides (daubréelite, troilite, grokhovskyite), schreibersite and magnetite. In large sulfide nodules, it
is confined to their outer margins (Figure 7). In general, both globules and nodules exhibit varying
degrees of partial resorption due to alteration processes. Carlsbergite CrN is a more abundant nitride
in the Uakit meteorite, but it was not found yet in any assemblages with uakitite. In addition to
polymineralic inclusions (Figure 3), carlsbergite also occurs in troilite–daubréelite globules without
“layered structure”, where its micron-sized crystals may decorate the boundary between globule
and host kamacite [49]. The phase relationships in the sulfide associations indicate that uakitite is
one of the early minerals (Figures 5 and 6) and crystallized under temperature higher than that for
troilite–daubréelite solid decay (>1000 ◦C).

We were unable to obtain physical and optical properties of uakitite due to the very small sizes of
the grains. So, in most cases, we have to refer to data for synthetic VN. It has a yellow color, white
streak and metallic luster. The mineral is transparent, non-fluorescent and brittle. No cleavage and
parting are observed. The hardness for synthetic VN is ≈ 9–10 (Mohs), microhardness: VHN load:
0.5–0.98 mN; range: 6.0–11.8 GPa [33,46,47]. The density (6.128 g/cm3) for uakitite was calculated from
unit-cell dimensions and results of EDS analyses. Under reflected light, uakitite is light gray with a
pinky tint and does not show any internal reflections. Optical property data (transmitted light) for
synthetic VN (at 0.5876 µm) are: refractive index n = 2.3031, Ng = 1.4501, reflectance R = 0.43817 [31].
Uakitite is not soluble in H2O and weakly concentrated in HCl, HNO3 and H2SO4. On BSE images, it
resembles magnetite and daubréelite.

Figure 4. Uakitite in troilite+daubréelite±schreibersite globules in Fe-Ni-metal (kamacite), Uakit
meteorite (IIAB), images in reflected light. Symbols: VN-1–VN-3—uakitite; Dbr—daubréelite;
Tro—troilite; Sch—schreibersite; Mgt—magnetite; Gt—goethite; Kmc—kamacite.
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Figure 5. Uakitite in troilite–daubréelite ± schreibersite globules in Fe-Ni-metal (kamacite),
Uakit meteorite (IIAB), BSE images. Symbols: VN-1–VN-4—uakitite (see also Figure 4);
Dbr—daubréelite; Tro—troilite; Sch—schreibersite; Mgt—magnetite; Kmc—kamacite, Pn—pentlandite;
Hz—heazlewoodite; Gro—grokhovkyite CuCrS2.
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Figure 6. Uakitite in resorbed troilite–daubréelite–schreibersite globules from fissures filled with
magnetite, Uakit meteorite (IIAB), BSE images. Symbols: VN-5, VN-6—uakitite; Dbr—daubréelite;
Tro—troilite; Sch—schreibersite; Mgt—magnetite; Kmc—kamacite.

6. Chemical Composition of Uakitite

The presence of elevated Cr and Fe and absence of Ti are characteristic features of uakitite.
Its empirical formula (n = 54) based on two ions is V0.91Cr0.07Fe0.02N1.00 (Table 2). In general, the variations
in all components are negligible for individual uakitite grains. It is supported by elemental maps for
some grains (Figure 8). The ideal formula for uakitite is VN, which requires V 78.43, N 21.57 and total
100.00 wt. % (Table 2). Uakitite is structurally related to carlsbergite CrN and osbornite TiN [1,3,7–10,18].
The essential impurity of chromium incorporates in uakitite according to the scheme V3+

→ Cr3+, up to
7 mol. % of the carlsbergite end-member (Table 2, Figure 9). The isomorphic scheme for insignificant
Fe (1.2–2.1 wt. %) is unclear. Two variants are possible: V3+

→ Fe3+ and 2V3+
→ V4+ + Fe2+ (Figure 9).

In contrast to uakitite, the concentration of V in carlsbergite is less than 0.2 wt. %; Fe is up to 4.5 wt. %;
Ti was not detected (Table 2, Figure 9). In general, conditions for accumulation of V as VN are not yet
clear. Bulk compositions of the Uakit meteorite and kamacite (ICP-MS and LA-ICP-MS) indicate very
low vanadium concentrations of 0.04–0.52 ppm [25].
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Figure 7. Uakitite in a large troilite–daubréelite nodule, Uakit meteorite (IIAB), BSE images.
Symbols: VN-7, VN-8—uakitite; Dbr—daubréelite; Tro—troilite; Sch—schreibersite; Mgt—magnetite;
Kmc—kamacite; Pn—pentlandite; Hz—heazlewoodite; Coh—cohenite; Ttn—tetrataenite; Sid—siderite.
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Figure 8. Elemental maps for troilite–daubréelite globules with uakitite. Symbols: VN-3,
VN-6—uakitite (see Figures 5 and 6); Mgt—magnetite; Dbr+Tro—daubréelite+troilite; Kmc—kamacite;
Sch—schreibersite; Pn—pentlandite.

Table 2. Chemical composition (EDS, wt. %) of uakitite in comparison with ideal compositions and
carlsbergite from the Uakit meteorite.

VN (All Grains) VN-1 VN-2 VN-3 VN-6 Ideal-1 Ideal-2 CrN

Mean sd Min Max Mean sd Mean sd Mean sd Mean VN V0.9Cr0.1N Mean sd

n=54 n=34 n = 9 n=10 n= 1 n=47

V 71.33 0.21 70.91 71.90 71.33 0.22 71.24 0.13 71.42 0.24 71.07 78.43 70.48 0.06 0.08
Cr 5.57 0.27 5.02 6.18 5.59 0.31 5.57 0.19 5.53 0.18 5.43 0.00 7.99 76.64 0.73
Fe 1.56 0.22 1.16 2.08 1.54 0.24 1.66 0.17 1.54 0.21 2.08 0.00 0.00 2.18 0.73
N 21.41 0.07 21.22 21.54 21.41 0.07 21.40 0.07 21.44 0.05 21.38 21.57 21.53 21.13 0.08

Sum 99.88 99.87 99.86 99.93 99.96 100.00 100.00 100.01
Formula based on 2 ions
V 0.914 0.914 0.913 0.914 0.911 1.000 0.900 0.001
Cr 0.070 0.070 0.070 0.069 0.068 0.000 0.100 0.975
Fe 0.018 0.018 0.019 0.018 0.024 0.000 0.000 0.026
N 0.998 0.998 0.998 0.998 0.997 1.000 1.000 0.998

VN-1–VN-8—individual uakitite grains (see Figures 5, 6 and 8); CrN—carlsbergite. Ti is below detection limit
(<0.005 wt. %). sd—standard deviation; Ideal-1—VN and Ideal-2—V0.9Cr0.1N.
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7. Crystal Structural Data for Uakitite

It was difficult to obtain single-crystal and X-ray powder diffraction data for uakitite because
of its very small crystal size (<5 µm), and its mineral structure was resolved by EBSD method.
Before considering the structure of uakitite, it is important to consider the data for the V-N system and
the structure of the synthetic VN phase.

7.1. System V-N

Three stable solid phases are known in the system V-N: V, V2N and VN [51–61]. Cubic VN1−x

and hexagonal V2N1−x are dominant solids in a very broad temperature range (Figure 10) according
to [59,60]. Compound VN (or VN1−x or δ-VN) was firstly synthesized in the 1920s [29]. It is cubic
(NaCl-type structure, Fm-3m, a≈ 4.135 Å, Z = 4): at high temperature (near melting point, 2050–2119 ◦C),
its composition is shifted to VN0.7–0.8, whereas at room temperature it is close to stoichiometric VN.
At temperatures below 230 K, it transforms into a tetragonal, noncentrosymmetric low-temperature
modification (P-42m, a = 4.1314(3) Å, c = 4.1198(3) Å at 45 K) [62–64]. The melting point of cubic VN is
increased up to 2800 ◦C at pressure 10 MPa [58].

Figure 10. The phase diagram V-N at 1 atm [59,60].
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7.2. Crystal Structure for Synthetic VN

In general, the crystal structure and properties of well-known synthetic VN (or δ-VN) have been
studied in detail [29,30,40,42,44,51,62,64–82]. It is a cubic NaCl-type structure (Fm-3m, a ≈ 4.135 Å,
Z = 4). The δ-VN is isostructural with other transition metal nitrides (CrN, TiN, ZrN, NbN, etc.).
The crystal structure of synthetic VN is shown in Figure 11.

Figure 11. The crystal structure of synthetic VN [62].

7.3. EBSD Data for Uakitite

Single-crystal X-ray studies could not be carried out because of the small crystal size of uakitite.
Structural data were obtained using the EBSD technique (Figure 12) and fitted to the following
structural model of synthetic VN (space group Fm-3m (225); a = 4.1328(3) Å; V = 70.588(9) Å3; Z = 4) [62].
The EBSD patterns for three uakitite crystals were obtained at working distances of 15–20 mm. Fitting of
the EBSD patterns for a VN model with the cell parameters given below resulted in the parameter
MAD = 0.14–0.37◦ (best-good fit). EBSD studies showed full structural identity between uakitite and
its synthetic analog VN (NaCl-type). Uakitite is structurally related to the osbornite group which also
includes carlsbergite CrN and osbornite TiN [1,3,7–10,18].

7.4. Diffraction Data for Uakitite

Because uakitite occurs only in small concentrations, X-ray powder diffraction data were not
collected. The theoretical powder diffraction pattern was calculated using the structural data of
the synthetic analog [62] and the empirical formula of uakitite (Table 2). Data are given in Table 3.
Calculated structure data for uakitite are presented in Supplementary Materials (Cif file).

Table 3. Calculated powder diffraction data for uakitite.

h k l dcalc, Å Irel

1 1 1 2.386 71.22
2 0 0 2.066 100.00
2 2 0 1.461 61.15
3 1 1 1.246 29.12
2 2 2 1.193 18.92
4 0 0 1.033 8.03
3 3 1 0.948 10.16
4 2 0 0.924 20.55
4 2 2 0.844 14.29
5 1 1 0.795 4.99
3 3 3 0.795 1.66
4 4 0 0.731 4.08

MoKα1 = 0.70932 Å, Bregg–Brentano geometry, fixed slit, no anomalous dispersion, I > 1; data were calculated
using PowderCell 2.4 [83]. The strongest diffraction lines are given in bold.
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Figure 12. Electron backscattered diffraction (EBSD) patterns, the Kikuchi patterns and orientation for
three grains of uakitite (detector distance: 15–20 mm). Symbols: VN-1–VN-3—uakitite (see Figure 5);
Mgt—magnetite; Sch—schreibersite; Pn—pentlandite; Dbr + Tro—daubréelite + troilite; MAD—mean
angular deviation.

8. Discussion and Concluding Remarks

The detailed mineralogical and petrographic studies for the Uakit iron meteorite gave a possibility
to describe the chemical composition and some structural affinities for a new mineral, uakitite VN,
which belongs to the osbornite group. Phase relations indicate that uakitite is one of the early minerals
in the troilite–daubréelite associations. These sulfide associations in the Uakit meteorite seemed form
due to high-temperature (>1000 ◦C) separation of Fe-Cr-rich sulfide liquid from Fe-metal melt. We do
not exclude that crystallization of uakitite was under high temperature (≈ 1000 ◦C) from the sulfide
melt, but was not below 650 ± 50 ◦C according to the system Cr-Fe-S [84]. In general, conditions
for high accumulation of V as VN are not yet clear. Bulk compositions of whole meteorite and
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kamacite (ICP-MS and LA-ICP-MS) indicate very low vanadium concentrations 0.04–0.52 ppm [25].
Probably sulfide-metal liquid immiscibility is the main factor for the partitioning of chalcophile V (and
also Cr) in sulfide melt.

The discovery of uakitite in conjunction with occurrences for other extraterrestrial nitrides
indicates the very interesting regularity in their appearance [1–20]. Carlsbergite, uakitite and roaldite
are characteristic minerals of iron meteorites, whereas osbornite, nierite and sinoite occur solely in
stone meteorites (carbonaceous chondrites, enstatite chondrites and achondrites). Possibly, it is also
related to the chalcophile character of elements.

Some rare and exotic minerals occur as very minute grains (size: <1–20 µm and smaller). It creates
a lot of problems in their identification and detailed description; especially in regards to new mineral
species (composition, unit-cell data and crystal structure). However, modern analytical methods permit
the study of such small objects. In addition to the classic analytical methods, the application of the TEM,
EBSD and other techniques allow for improved studies of micron-sized minerals. In the last decades,
these technologies are successfully used for detailed identification of new minerals in both meteorites
and terrestrial rocks, especially when their synthetic analogs are known (for example [26,48,85–89] and
many other works).

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/2/150/s1,
Cif file: uakitite.
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