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Abstract: Mineral prospectivity mapping (MPM) needs robust predictive techniques so that the
target zones of mineral deposits can be accurately delineated at a specific location. Although an
individual machine learning algorithm has been successfully applied, it remains a challenge because
of the complicated non-linear relations between prospecting factors and deposits. Ensemble learning
methods were efficiently applied for their excellent generalization, but their potential has not been
fully explored in MPM. In this study, three well-known machine learning models, namely random
forest (RF), support vector machine (SVM), and the maximum entropy model (MaxEnt), were fused
into ensembles (i.e., RF–SVM, RF–MaxEnt, SVM–MaxEnt, RF–SVM–MaxEnt) to produce a final
prediction. The paper aims to investigate the potential application of stacking ensemble learning
methods (SELM) for MPM. In this study, 69 hydrothermal gold deposits were split into two parts:
70% for the training model and 30% for testing the model. Then, 11 mineral prospecting factors were
selected as a spatial dataset constructed for MPM. Finally, the models’ performance was assessed
using the receiver operating characteristic (ROC) curves and five statistical metrics. Compared with
other single methods, the SELM framework showed an improved predictive performance in the
model evaluation. Therefore, this finding suggests that the SELM framework is promising and should
be selected as an alternative technique for MPM.

Keywords: stacking ensemble learning method; random forest; support vector machine;
maximum entropy model; mineral prospectivity mapping; Beishan region, China

1. Introduction

The demand for mineral resources has grown significantly in recent years [1], mainly due to rapid
industrial development in developing countries, such as China, India, and Brazil [2]. The prediction
of mineral prospectivity is a multivariable decision-making tool used to draw and rank zones that
have the highest potential for mineral exploration in unexplored regions [3]. Mineral predictive
modelling is a vital but challenging step for the mapping of undiscovered prospective deposits in
mineral prospectivity mapping (MPM). Therefore, effective modelling techniques of mineral resource
exploration are increasingly critical for contributing to sustainable economic growth on the national
level. As such, mapping new mineral prospectivity has become imperative, and predictive modelling
provides a scientific means for delineating the intricate spatial patterns of features that are closely
related to mineralisation [4].
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Over the last several decades, various data-driven modelling techniques have led to optimisation
and improvements in the practical application of MPM [5–7]. Statistical methods have achieved great
popularity, such as weights of evidence [8], fuzzy weights of evidence [9], and Bayesian networks [10],
because these models have the advantages of lucid expression and simplicity of interpretation [11,12].
In the past decade, machine learning algorithms have been efficiently applied for MPM, such as decision
trees [13], artificial neural networks [1], support vector machine (SVM) [14], logistical regression [15],
maximum entropy (MaxEnt) [16], and random forest (RF) [17], etc. Previous studies have shown that
machine learning techniques have better predictive performance than traditional statistical techniques [1,18].
Furthermore, machine learning algorithms have a better advantage of handling non-linear relationships
between known deposits and spatial layers well [19] than previously used techniques.

Furthermore, they are potent methods for managing large numbers of evidential features and are
widely used in geographic information science (GIS)-based MPM to generate reliable mapping [20].
More recently, deep learning, i.e., a new method of representation learning, has allowed multiple
processing layers to learn multiple levels of representation of the input and has generated state-of-the-art
results in many fields [21]. Big data analytics and a deep autoencoder network [15] and convolutional
neural network [22] are used to learn and mine spatial patterns from a large number of inputs for
MPM. However, it should be noted that some innovative and robust methods have been recommended
for MPM, but no model proves to be superior to other methods in all situations [12].

Ensemble learning methods are proven machine learning techniques that integrate various base
learners [23] to achieve more accurate predictions [24]. At present, state-of-the-art ensemble methods
can be grouped into three categories: bagging, boosting, and stacking [25]. These base learners are
homogeneous in bagging and boosting ensembles, while they can be homogeneous or heterogeneous in
stacking ensembles. Moreover, they are constructed by sequential or parallel base learners. Unlike the other
two frameworks, stacking combines several types of base learning classifiers to improve generalisation
performance [24]. Heterogeneous ensemble learning methods can obtain the advantages of different
models, and they are more robust than homogeneous ensemble learning.

Moreover, the difficulty in model selection for MPM can also be avoided to a certain extent,
as heterogeneous stacking ensemble learning methods (SELM) can gain heterogeneity by fusing any
types of base model [26]. However, few scholars have paid attention to the exploration of the stacking
ensemble to integrate multiple heterogeneous types of classifiers in MPM. This research fills this gap by
evaluating and validating a novel ensemble learning method for mineral potential modelling. MaxEnt
and RF models had been used effectively to predict the gold prospectivity in the Hezuo–Meiwu
district, west Qinling orogen, China [27] and an SVM model had been used successfully to predict
copper potential mapping in Kerman region, Iran [20]. Furthermore, the Beishan region is a prepared
case study area that provides rich geological data to train spatial models. Therefore, these three
heterogeneous ensemble techniques (RF, SVM, and MaxEnt) were selected to improve the predictive
performance in the case of the Beishan region, west China. There are three main contributions of this
work: First, we aimed to investigate the potential application of ensembles of RF, SVM, and MaxEnt
algorithms (i.e., RF–SVM, RF–MaxEnt, SVM–MaxEnt, and RF–SVM–MaxEnt) for predictions of mineral
prospectivity in the Beishan region, west China. Second, analysis of the importance of the features’
given contributions can provide specific insight into the final prediction results to some extent.

2. Study Area and Data Preparation

2.1. Study Area

The Beishan region, China, is located in the north-eastern part of the Tarim Basin, in the west-central
part of the Palaeozoic Tianshan–Yinshan–Great Hinggan metallogenic belt, adjacent to the Middle
Tianshan Massif. It is a typical intersection of multiple geological unit structures (Figure 1a) in the previous
research work [28–31]. Proterozoic, Palaeozoic, and Mesozoic strata are the ore-controlling stratum.
The Beishan region comprised a Precambrian crystalline basement and overlying sedimentary rocks of
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Palaeozoic–Mesozoic age. These intrusions formed from the Precambrian to the Permian and are separated
by well-developed fault-related hosts and grabens [32]. The late Palaeozoic tectonic history in the region
is closely related to the subduction and subsequent trapping of the southern Tianshan oceanic plate under
the Junggar and Tarim plates during the Middle Ordovician through the Silurian [33]. The Beishan region
can be divided into three tectonic units, bound by the Liuyuan–Daqishan and Hongshishan–Heiyingshan
faults, which were affected by multiple stages of magma intrusion during the Carboniferous and Permian.
Furthermore, the structure of this study area is involved, along with large-scale strong tectonic, magmatic,
and metamorphic effects, which provide heat and channels for the activation, transfer, and enrichment
of metal elements, and form abundant gold (Au) resources [33]. The Beishan region, one of the most
significant potential Chinese gold production zones, has had more than 200 tons of gold discovered as
of yet [28,29]. There is still excellent gold potential undiscovered in this study area, due to the cover of
surface vegetation and complexity of the convergent zone in this region [30].

Figure 1. (a) Geotectonic geological background map of the study area; (b) Geological map of Beishan
region showing the locations of significant Au deposits.

There is widespread volcanic and magmatic activity in this area, accompanied by severe tectonic
movements. Most Au deposits are closely related to Hercynian or Indosinian intrusive rocks [29].
The magmatic activity was mainly concentrated in the Hercynian–Yanshan Period. Movement during the
Variscan period was the most prominent in magmatic activity. Along with the migration of magmatic
hydrothermal fluid to the structurally weak area, hydrothermal fluid came into contact with the formation
to extract significant amounts of elements that are beneficial for mineralisation. Metal elements precipitated
at the structural collapse site and formed a series of precious metal mineral resources such as Au, Ag, Pb,
and Zn [32].

Overall, the Beishan region has experienced complicated tectonic movements and magmatic
activity during its geological evolution and has excellent ore-forming geological conditions. Dozens of
Au deposits have been discovered in this area, with the majority clustered in five ore fields: Jinwozi,
Shijinpo–Huaniushan, Saozishan–Langwashan, Xiaoxigong, and Liushashan deposits (ranging from
west to east and top to bottom) (Figure 1b). The majority of the mineralisation originates from the
Carboniferous–Permian (C-P) periods. The outbreak of Au mineralisation occurred during the late
Hercynian–Indosinian–Yanshan period in this area [34]. According to observations, the Au occurrences
are spatially associated with intrusions. For example, economic ores are generally located in areas that
have extensive C-P intrusions [33].
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2.2. Data Preparation

2.2.1. Spatial Datasets

Spatial data of evidential maps included interpreted rock type faults and Au deposit outcrops
collected from the previous research [31]. Geochemical data were acquired from the China Geological
Survey Development and Research Center. There were a total of 12,445 stream samples with a sampling
grid density of 1 sample per 4 km2. A total of 11 elements were used for modelling (i.e., Ag, As, Au, Bi,
Cu, Cr, Hg, Pb, Sb, Sn, and Sr) and were extracted by aqua regia digestion and measured by inductively
coupled plasma–mass spectrometry (ICP-MS).

2.2.2. Targets

The binary variable, corresponding to mineral deposit outcrops, was indicated by deposit and
non-deposit locations and was labelled as 1 and 0, respectively. A total of 69 known Au occurrences
and 69 non-occurrences were taken as training sets, and the latter were selected given the following
criteria [14]:

(1) Selection of non-deposit locations was randomly spatially distributed.
(2) Non-deposits were distal from any known Au deposits to avoid similar multivariate spatial data

characteristics to known mineralisation areas.
(3) An equal number of non-deposits and deposits were used to balance the number of positive and

negative examples, and achieve the optimal model [35].

2.2.3. Predictor Maps

(1) Intrusive Rock Contact Zone

The contact zone of a rock mass may have a barrier effect, which may indicate the spatial location
of Au mineralisation in the Beishan region. Some of the discovered Au occurrences are in the contact
zones of intrusive rocks [29]. Therefore, information regarding the proximity to intrusions in terms of
the Euclidean distance from the intrusive rocks was extracted (Figure 2a).

(2) Fault System

Fault density is an ore-controlling variable that may reflect the quantitative characterisation
of areas with differential stress changes, or areas of prolonged tectonic activity. High-density fault
zones are favoured channels for ore-forming fluid migration and provide possible trapping spaces for
mineral precipitation from mineralised fluids. We extracted the faults close to the east–west trending
faults/fractures and generated a Euclidean distance map (Figure 2b). Figure 2c shows the linear density
map and fault intersection density map. Additionally, a high density of faults is noted on the map of
faults based on kernel density (Figure 2d).

(3) Geochemical Data

A. Local singularity analysis (LSA)
LSA, first proposed by Cheng [36], has been demonstrated to be a useful technique for revealing

deep, weak mineralisation in geochemical data that are obscured in the geochemical background.
Au, As, Hg, Sb, and Cu were selected in the present study as indicators for the singularity analyses
as these metal elements are generally regarded as being related to Au mineralisation. GeoDAS is a
graphical Microsoft Windows-based application used to calculate the local singularity indices [37],
which is useful to indicate the dispersion and concentration of related geochemical elements and is
inversely proportional to the magnitude of the singularity indices. Geochemical element singularity
indices maps are shown in Figure 3a–e.
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Figure 2. Predictor maps of geologic influencing factors. (a) Distance to intrusions; (b) proximity to
faults; (c) fault kernel density; and (d) faults intersections.
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Figure 3. Maps of geochemical element singularity indices. (a) Au; (b) As; (c) Hg, (d) Cu; and (e) Sb.

B. Principal component analysis (PCA)
PCA was employed to extract multi-element geochemical associations that may reflect the

signature of the ore-forming processes (Figure 4). From a big data perspective, compared with variables
extracted based on mineral systems, principal components (PCs) of these geochemical elements may
reveal a correlation with the mineralisation process to a certain extent. Additionally, due to the
influence of data closure (i.e., all components sum to a constant), a centred log-ratio transformation
method was used to open the closed geochemical data [38].
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Figure 4. Geochemical images of robust principal component analysis. (a) PC1; (b) PC2.

3. Methodology

Figure 5 shows the four necessary primary steps for generating the final prediction maps of
mineral prospectivity that were implemented in this study: (1) Preparing a dataset for ensemble spatial
modelling; (2) using a relevant coefficient such as Spearman for correlation analysis of features; (3) using
RF, SVM, and MaxEnt models and their ensembles for spatial modelling in the MPM; and (4) evaluating
models using receiver operator characteristic (ROC) curves and five statistical metrics.

3.1. Random Forest

RF is an aggregated predictor with some hierarchical constraints that are used from a root node to a
terminal node of each tree to predict the feature represented by the datasets. RF uses a bagging method
to randomly select all training subsets, in which every subset forms a decision tree (DT). The diversity
of DTs increases by the bagging method to avoid correlations of different DTs [39]. The bagging method
randomly resamples the original dataset with a replacement to produce multiple training subsets.
As a result, while not utilised in the construction of RF models, approximately one-third of the total
instances are employed to validate the prediction accuracy [3]. Therefore, RF can provide a relatively
unbiased estimation of the generalisation error without using any other data subset. During the
splitting process, DTs search through the optimal split, which can be measured by the maximum
reduction in impurity. There are many approximations for impurity measurements, with the most
common measure being the Gini index, shown by the following equation (Equation (1)):

IGtY(xi)
= 1−

m∑
j=1

f
(
tY(xi)

, j
)2

(1)
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where f
(
tY(xi)

, j
)

is the probability of samples for which the value xi belongs to the leaf j and is the
node t(x); Y is the search value of the splitting process; m denotes the number of trees. The DT which
splits the criteria selection is based on the lowest Gini impurity index (IG).

Figure 5. Flowchart of this study. RF—random forest; SVM—support vector machine; MaxEnt—maximum
entropy model; LR—logistic regression.

The final result of RF modelling is determined by the average of all DT predictions, as shown in
Equation (2) [40]:

f K
r f (x) =

1
K

K∑
k=1

T(x) (2)

where f K
r f (x) represents the result of the RF regression predictor; x denotes the input vector; K denotes

the number of regression trees ranging from 1 to k; T(x) denotes the result of the DT prediction.

3.2. Support Vector Machine

The SVM algorithm, commonly used for solving problems in regressions, comprises a heuristic
algorithm based on statistical methods [41]. In complicated non-linear cases, the SVM method converts
input training instances into a higher-dimensional space, where regression calculations can be linearly
separated. After the most optimal classifier is determined, the new dataset with unknown category
information can be predicted by the trained SVM model, based on the characteristics of the training
dataset [42].

The choice of a kernel function and its parameters for an SVM is crucial for achieving reliable
results. The objective function is as follows:

F(x) = sgn(ωx + b) (3)

where sgn is a sign function, which is defined as:

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(4)
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Moreover, ω and b are the two parameters that were used to separate the hyperplane decision
function, which was obtained by determining the optimisation function as follows:

τ(w) =
1
2
||w ||2 (5)

subject to:
yi((wxi) + b) ≥ 1, i = 1, . . . . . . , l (6)

The key to solve this optimisation problem is the saddle point of the Lagrange function:

L(w, b,α) =
1
2
||w||2 −

l∑
i=1

αi(yi((xiw) + b) − 1) (7)

∂
∂b

L(w, b,α) = 0,
∂
∂w

L(w, b,α) = 0 (8)

where αi is a Lagrange multiplier. The Lagrange function is minimised for ω and b and is maximised
concerning αi > 0.

The sigmoid kernel function is as follows:

K
(
xi, x j

)
= tanh

(
λxix j + r

)
, λ > 0 (9)

where the parameter λ serves as an inner product coefficient in the hyperbolic tangent function, and γ
is used for kernels of polynomial and sigmoid types. Further details of the reasoning behind the
mathematical formula of SVM algorithms have been provided by the previous research [14].

3.3. Maximum Entropy Model

The MaxEnt model originated from the statistical learning theory [43], which was later developed
to solve the problem of the geographical distribution of species [44]. It can be interpreted from
the perspective of machine learning [45], and its applicability to MPM has previously been
demonstrated [46]. The principle of maximum entropy could be used to quantify the spatial relationship
between known deposits and ore-controlling variables, which perform numerous iterations based on the
most critical features until the overall accuracy converges and reaches the optimum [47]. Some function
types (such as linear, quadratic, and threshold) can be used to fit highly complex response functions
to characterise the distribution trend of current data through integration quantitatively. Detailed
reasoning behind the mathematical formula is provided in a previous study [46].

The MaxEnt model has the following merits:

(1) It is possible to integrate both discrete and continuous variables, and the output result provides a
minimum deviation estimate of the target distribution [43];

(2) It requires only presence data, along with evidential maps for the study area [44];
(3) It can apply regularisation parameters to reduce the risk of data overfitting (which determines

the error bounds around the mean of the observed data) and optimise the function to fit the data
distribution trends [46].

3.4. Ensemble Learning Method Framework

Recently, modelling has received widespread attention because of its ability to solve high-dimension
problems and improve the predictive performance of individual algorithms [48]. Bagging and boosting
were the most representative homogeneous ensemble methods when they were initially proposed [49],
whereas stacking became a standard technique for the heterogeneous ensemble method.

Unlike the other two types of ensemble learning methods, SELM uses a meta-learning technique
to combine different types of algorithms. The structure of the SELM framework consists of two levels.
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The first level is similar to a highly complex non-linear variable converter, and then, the instances have
new features after this conversion; therefore, the second level does not require complex classifiers.
Logistic regression (LR) was recommended by previous researchers [24]. The process of the stacking
method is as follows:

(1) The base algorithms are trained by using k-fold cross-validation (usually k = 5 or 10) on the
same datasets.

(2) The three base models with remarkable performances are selected to provide predictions, and the
k-fold cross-validation is also used.

(3) The mean value of the three base learners’ k-fold cross-validation results are regarded as the
new representations.

(4) A senior model can be trained given the new representations.

3.5. Model Evaluation Metrics

The MPM’s performance was comprehensively assessed by an ROC curve and five statistical
metrics. A confusion matrix can accurately explain the resulting predictive models. Based on the
confusion matrix, the five statistical metrics were computed to evaluate the performances of the
different models. The formulas are as follows [23,50]:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F−measure =
2TP

2TP + FP + FN
(13)

Kappa index =

TP + TN − [(TP + FN)(TP + FP)
+(FP + TN)(FN + TN)]/(TP + FP + FN + TN)

(TP + FP + FN + TN) − [(TP + FN)(TP + FP)
+(FP + TN)(FN + TN)]/(TP + FP + FN + TN)

(14)

In Equations (10)–(14), the true-positive (TP) sample is a deposited sample that is correctly
classified as a “deposit”; a false-negative (FN) sample is a deposited sample that is incorrectly taken as
a “non-deposit”; a true-negative (TN) sample is a non-deposit sample that is incorrectly classified as
a “deposit”. The ROC curve is generated by illustrating the true-positive rate (TPR) on the y-axis to
the false-positive rate (FPR) on the x-axis. The closer the ROC curve becomes to the upper left corner,
the better the model performs [51].

4. Experiments and Results

4.1. Experiments

Model stacking is divided into two steps. In the first step, the predictions of three base learners
are taken as new features for building a senior model. Furthermore, the robustness of the new
representations as training sets is ensured by using five-fold cross-validation. In the second step, LR is
usually selected as the meta-model to construct the model and obtain a final prediction. The training
process of the SELM is shown in Figure 6.
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Figure 6. The training process of stacking ensemble learning method framework.

4.1.1. Data Processing

Preparation of the input datasets (including features and targets) is the first step of MPM.
The integration of multi-source datasets was implemented by using ESRI’s ArcGIS 10.5 software.
The SELM framework, including model training and evaluation, was implemented under the framework
of the scikit-learn package and in Python 3.6 of Pycharm, which provides rich resources of machine
learning algorithm packages. Furthermore, every evidence raster layer was created with a cell size
of 500 m. This grid cell size was determined depending on the spatial distribution pattern of known
gold deposits and related faults and intrusions that ensure only one deposit exists in any given grid
unit [52].

The known occurrences were randomly divided for spatial modelling in this study area, given a
general sampling strategy [1,27], i.e., 70% of occurrences (97) for training and the remaining 30%
of occurrences (41) for testing. Predictors are regarded as critical conditions for mineral potential
prediction. We extract eleven evidential maps which are related to geological and geochemical
information as datasets, based on the controlling features of Au mineralisation described in Section 2.

4.1.2. Training Base Models

The given algorithms’ parameter combinations of the ensemble learning method framework were
traversed by using grid search, and the optimal parameter combination was determined through 10-fold
cross-validation in the scikit-learn package. Model training is an important step to produce accurate
predictions. The first step is to identify the optimal parameters. Empirical knowledge may be useful in
this research; however, a trial-and-error procedure is required to gain the optimal configuration of the
parameters. Ten-fold cross-validation was used to evaluate the predictions. The training dataset was
randomly divided into 10 equal subsets, 9 of which were used to train the model, and the remaining
set was used as the validation dataset. This procedure was undertaken 10 times with various subsets
that served as the validation dataset in turns [53].

After training the prediction models, spatial models were constructed in the form of probability
grids in the ArcGIS environment. Each grid cell in the map was assigned a prospecting index,
which represents the probability of the existence of deposit output by the corresponding method.

4.1.3. Constructing Mineral Prospectivity Maps

For better visualisation and understanding of the overall spatial pattern of the distribution of Au
deposits, the probability was reclassified into four levels: low, moderate, high, and very high by using
the concentration–area (C-A) fractal method. Then, mineral prospectivity maps by different methods
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were obtained, as shown in Figure 7; Figure 8 shows the percentages of different levels in different
methods and their ensembles.

Figure 7. Mineral prospectivity maps by different methods: (a) RF; (b) SVM; (c) MaxEnt; (d) RF–SVM;
(e) RF–MaxEnt; (f) SVM–MaxEnt; (g) RF–SVM–MaxEnt.
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Figure 8. Percentages of different mineral prospectivity prediction classes.

According to observations, the spatial distribution maps of mineral prospectivity generated
by different techniques and their ensembles in the framework share some similar rules to some
extent. For example, relatively high mineralisation potential areas are mainly distributed in the
north and east of the study area, while other regions have relatively low probability potential.
Moreover, the historically known deposits are mostly located in very high and high potential areas.
Among them, RF–SVM–MaxEnt occupied 13.17% of the very high potential in this study area,
while high, moderate, and low potential areas accounted for 16.96%, 29.94%, and 39.73% of the study
area, respectively. Furthermore, compared with a single model, the spatial distribution of potential Au
deposits based on the SELM framework is more aligned with known deposits.

4.2. Comparison of Prediction Results

Mineral prospectivity modelling has no scientific significance if the validity of the results is not
calculated [54]. Assessing the data’s fit and the predictive ability of the methods for the training
data is the first stage of validation. Subsequently, validation is performed through the testing data,
i.e., to evaluate the prediction rate of the model built with the training data. Statistical metrics were
developed for quantifying the overall performance of individual models and their ensembles [55].
Performances of the different methods using the test dataset are presented in Table 1.

The ensemble learning methods of RF–SVM–MaxEnt showed better performance than the
base classifiers, and it achieved the highest overall accuracy value of 0.928, followed by RF (0.910),
RF and SVM (0.901), SVM and MaxEnt (0.859), SVM (0.856), RF and MaxEnt (0.829), and MaxEnt
(0.823), respectively.

Table 1. Prediction accuracy of different methods on the validation.

Methods
Performance

Accuracy Recall Precision F-measure Kappa

RF 0.910 0.870 0.940 0.904 0.819
SVM 0.856 0.944 0.800 0.864 0.713

MaxEnt 0.823 0.926 0.702 0.730 0.798
RF–SVM 0.901 0.926 0.877 0.901 0.802

RF–MaxEnt 0.829 0.870 0.797 0.832 0.708
SVM–MaxEnt 0.859 0.907 0.817 0.860 0.723

RF–SVM–MaxEnt 0.928 0.907 0.942 0.925 0.856
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5. Discussion

5.1. Prediction Performance of Different Methods

Mineralisation is a relatively complex process. To date, a few scholars have explored new techniques
for accurate prediction [19,22,56]. Because of the high complexity of metallogenic prediction and the
uncertainty of multiple variables in the modelling process, the prediction methods are limited to some
extent. Moreover, the predictive performance of potential zones could be evaluated by an ROC curve.
Specifically, the ROC curve is obtained by drawing all the sensitivity combinations and false-negative
(1-specificity) ratios on the y-axis and x-axis, respectively, which may be gained by varying the decision
threshold. Sensitivity is the proportion of positive cases of deposits that are correctly predicted, while
1-specificity refers to the proportion of occurrences that are not mispredicted [57]. Given the area under
the curve (AUC), the ROC drawing could be quantitatively summarised, which ensures the accuracy of
the model for the prediction of mineral prospectivity. Furthermore, the AUC value ranges from 0 to 1; the
higher the value, the higher the prediction rate, while a value close to 0.5 indicates that the predictive
ability is not better than a random guess [58].

Based on the experimental results, RF–SVM–MaxEnt achieved the best performance, followed by
SVM, SVM–MaxEnt, RF–MaxEnt, RF–SVM, RF, and MaxEnt. The graph of the ROC curves and AUC
are shown in Figure 9. And it can be observed that RF–SVM–MaxEnt had the highest AUC value
of 0.985, followed by RF–SVM (0.977), RF (0.965), SVM (0.965), SVM–MaxEnt (0.963), and MaxEnt
(0.900). These results show that MPM has a much larger AUC value in the ensembles, indicating that
heterogeneous SELM will help to reduce the uncertainty of multiple variables to some extent in mineral
potential modelling.

In this article, the SELM framework is applied to integrate three heterogeneous machine learning
methods (RF, SVM, MaxEnt) through a meta-learner logistic regression (LR). Subsequently, this study
compared the base models and ensembles (RF–SVM, RF–MaxEnt, RF–SVM–MaxEnt) in MPM.
Specifically, the predictive performance of RF and SVM is better than MaxEnt in this study area.
Moreover, this finding is in accordance with previous research [27,50]. Furthermore, RF–SVM–MaxEnt
is superior to any base model and other ensembles according to the experimental results. This may
be explained by the fact that if the base model mistakenly learns a particular region in the feature
space and this results in a misclassification, the meta-learner may classify it correctly at the second
layer when provided with other learners in the SELM framework [24]. Furthermore, conventional
heterogeneous algorithms give more potential and possibility for spatial modelling, which may be
effectively used for the prediction of MPM. In this article, SELM can be taken as a promising technique
for MPM, due to it showing improved predictive performance against their components. Generally,
several base models by the ensemble can obtain better performance [59]. However, the availability
requires to be further investigated for mineral potential modelling. Furthermore, SELM achieved better
predictive performance than other base models in a recent study [24,26]. In this previous relevant
research, the merits of SELM have been further proved.

5.2. Importance of Variables

The feature importance measures (including influencing geologic features, geochemical singularity
indices, and PCs) can be quantified based on the contribution of each feature to the final prediction by
the different base models (Figure 10); therefore, heterogeneous modelling results may be interpreted to
some extent.

In the RF modelling process, the relative importance of the variables showed that advanced
spatial analytical techniques are potent methods for capturing and extracting ore-forming information,
such as Hg, As, and Au singularity indices [36], followed by proximity to intrusions, fault kernel
density, and Cu singularity indices. Other features did not contribute significantly as influencing
factors in the MPM modelling. It is worth pointing out that Hg singularity indices impose a significant
influence on predictive models, and that such influence was even more significant than the influences
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exerted by proximity to intrusions and regional structures, which are well-recognised ore-controlling
factors. In the SVM modelling process, proximity to intrusions made the most significant contribution
to the final predictive model, followed by PC1, faults kernel density, and Au, Hg, and Cu singularity
indices. Other features did not contribute significantly as influencing factors in the MPM modelling.
Ore-forming materials of intrusions played a vital role in the formation of Au ores and should be
regarded as an essential exploration criterion. The evidential layer with the highest contribution to the
MaxEnt model was the Au singularity indices, and the other features made almost the same significant
contribution to the final prediction to MPM. Feature importance measures indicated that heterogeneous
SELM might take full advantage of all ore-controlling features from multiple dimensions to reduce
the uncertainty of multiple variables as soon as possible in mineral potential modelling. Above all,
the importance of factors can provide insights into the different models of Au mineralisation to some
extent in this study area.

Figure 9. ROC curves and AUC analysis by different predictive models.

Figure 10. Feature importance measures (FIMs) of mineralisation influencing factors using
different models.
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5.3. Reliability from a Geological Perspective

From a geological perspective, the primary outcrops comprise the Precambrian crystalline bedrock
and overlying sedimentary lithologies of the Palaeozoic–Mesozoic. These intrusions were formed from
the Precambrian–Permian and were separated by well-developed fault-related hosts and grabens [32].
Meanwhile, these tectonic units were affected by multi-stage magma intrusion during the Carboniferous
and Permian. The fault structure is well developed, including EW-, NNE-, and NNW-NE-trending
basement faults. The structure in the study area is relatively complicated, with large-scale strong
tectonic, magmatic, and metamorphic effects, which provides heat and favourable channels for the
activation, transfer, and enrichment of metal elements, and finally, forms abundant Au resources [33].
In this research, the MPM gained by the SELM framework has adequate adaptability and practicability,
and the zones with very high and high metallogenic probability account for less than one-third of
the study area, which is primarily distributed in the zones which are close to the intrusions from
Precambrian to Permian. Furthermore, most deposits in the predictive zones are located along two
deep-seated faults of Hongshishan–Heiyingshan and Liuyuan–Daqishan.

Based on the previous study [29], there is a strong spatial correlation between gold deposits and
intrusive bodies. Furthermore, most of these deposits are located along two deep-seated faults of
Hongshishan–Heiyingshan and Liuyuan–Daqishan [60–62]. Therefore, the previous research proved
our final prediction result. It may be explained that the ore-forming materials from the Precambrian
metamorphic rocks and late Palaeozoic volcanic rocks may be transferred along with the favourable
structures when they went up [34,61,62]. Additionally, some gold deposits may be formed because
of the remobilisation effect of several deep-seated faults, which causes the emplacement of granitoid.
Therefore, it is believed that there are still substantial gold potentials in the Beishan region, due to
Hercynian magmatism related to the formation of gold deposits being quite intense.

6. Conclusions

We propose a SELM framework to explore the potential of ensemble learning to improve predictive
performance for MPM. According to the experimental results, we can draw the following conclusions:

Prospective areas showed by MPM were aligned with known Au deposits in the spatial pattern,
and the RF–SVM–MaxEnt ensemble learning method is remarkably higher than the base classifiers
in the potential application of MPM. Therefore, the SELM framework is a promising technique to
improve generalisation accuracy in mineral potential modelling.

There are some limitations in this research, and further work is required to be implemented in
the future. Firstly, more reliable data, such as remote sensing data and geophysical data, should be
considered and applied for mineral potential modelling in the next work. Secondly, each base model
can be enhanced. Deep learning techniques may outperform the other machine learning methods in
mineral potential modelling. Our research will need to focus on exploring more novel effective deep
learning and ensemble learning techniques in the application of MPM.

Lastly, more detailed geological surveys and explorations are essential in future work. Specifically,
engineering geology and 3D modelling techniques should be taken into account. Furthermore, for the
very high potential zones, engineering measures are recommended, such as drilling, geophysical
techniques, and constructing underground 3D geological models for further accurate targeting.
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