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Abstract: Here, we describe two new minerals, kishonite (VH2) and oreillyite (Cr2N), found in
xenoliths occurring in pyroclastic ejecta of small Cretaceous basaltic volcanoes exposed on Mount
Carmel, Northern Israel. Kishonite was studied by single-crystal X-ray diffraction and was found
to be cubic, space group Fm3m, with a = 4.2680(10) Å, V = 77.75(3) Å3, and Z = 4. Oreillyite was
studied by both single-crystal X-ray diffraction and transmission electron microscopy and was found
to be trigonal, space group P31m, with a = 4.7853(5) Å, c = 4.4630(6) Å, V = 88.51 Å3, and Z = 3.
The presence of such a mineralization in these xenoliths supports the idea of the presence of reduced
fluids in the sublithospheric mantle influencing the transport of volatile species (e.g., C, H) from the
deep Earth to the surface. The minerals and their names have been approved by the Commission
of New Minerals, Nomenclature and Classification of the International Mineralogical Association
(No. 2020-023 and 2020-030a).

Keywords: kishonite; oreillyite; hydride; nitride; corundum xenolith; reducing conditions;
Mt Carmel; Israel

1. Introduction

The study of the xenoliths occurring in pyroclastic ejecta of small Cretaceous basaltic volcanoes
exposed on Mt Carmel [1–8] has revealed a very peculiar, exotic and ultra-reduced mineral assemblage
reflecting the interaction of deep-seated basaltic magmas with mantle-derived CH4 + H2 at high
fluid/melt ratios. During these ongoing studies, two new minerals, kishonite (VH2) and oreillyite
(Cr2N) have been identified and are described here.

The sample containing kishonite was recovered from bulk alluvial samples in the Kishon Mid
Reach Zone 2. These are part of a xenolith assemblage that includes coarse-grained aggregates of
hibonite + grossite + spinel assemblages that carry inclusions of V0 and V-Al alloys, indicating f O2

down to ≤∆IW − 9 [4].
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The sample containing oreillyite was recovered from the Kishon Mid Reach Zone 1 and consists of
a 1.7 mm crystal of corundum with a hollow centre and raised rims, indicating hopper growth, and it
has an intense purple-red colour [5].

The name kishonite is for the Kishon river, which drains Mt Carmel and enters the sea near
Haifa in Northern Israel (and where the placer gemstone deposits with the studied xenoliths are
located), whereas oreillyite honours Suzanne O’Reilly (born 1946), professor in Geology at Macquarie
University, Sydney, Australia, Director of the ARC National Key Centre for Geochemical Evolution
and Metallogeny of Continents (GEMOC) and Director of the ARC Centre of Excellence for Core to
Crust Fluid Systems (CCFS).

Both new minerals and mineral names have been approved by the Commission on New Minerals,
Nomenclature and Classification of the International Mineralogical Association (No. 2020-023 and
2020-030a for kishonite and oreillyite, respectively). Holotypes are deposited in the collections of the
Museo di Storia Naturale, Università degli Studi di Firenze, Firenze, Italy, catalogue number 3364/I.
Oreillyite is also deposited at the Centre for Microscopy, Characterization and Analysis, The University
of Western Australia, Australia, catalogue number 1174-C_FF.

2. Description and Physical Properties

Kishonite occurs as one subhedral single crystal, 17 × 25 × 38 µm (Figure 1), which is the holotype
material. It is opaque. Colour, luster, streak, hardness, tenacity, cleavage, fracture, density, and optical
properties could not be determined because of the small grain size.
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Figure 1. Images of the rock fragment from Mt Carmel. (a) Back-scattered electron (BSE) image
of the hibonite–grossite–spinel aggregate studied. The red box indicates the region enlarged in (b)
and (c), which reports X-ray compositional maps, and the green box shows the region enlarged in
(d) a BSE image; arrows mark the (V,Al)-alloys and the VH2 fragment (kishonite) that was sampled.
(e) Transmitted-light photo (plane polars) of the same rock sample, showing inclusions of metallic
vanadium in platy hibonite crystals. (f) BSE image of a typical hibonite crystal showing the zonal
distribution of vanadium and (V,Al)-alloys on crystal faces. Crystal orientation is shown by the blue
hexagonal prism.

Calculated density is 4.523 g·cm−3, using the empirical formula and X-ray single-crystal data
(see below). Kishonite is associated with hibonite, grossite, spinel, vanadium, and V-Al alloys. A more
detailed description of the kishonite occurrence is given by Bindi et al. [9].

Oreillyite occurs as one subhedral volume sandwiched between corundum and native chromium
(Figure 2), which is the holotype material.
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Figure 2. Images of sample 1174C. (a) BSE image and transmitted-light photomicrograph showing
colour, and distribution of highest-Cr parts (light areas in BSE). Note ball of chromium (Cr0) on edge of
crystal. (b) 3D oblique view and compositional map of the surface of 1174C before sectioning. Rough
dark green in lower part of the image is the ruby; smooth dark green in the upper part is kahlenbergite
(KAl11O17). Small bright grains along rim of crystal in middle of image are Ni-bearing iron. Bright
pink-purple “mushrooms” are chromium. (c) Phase map and Al map of the contact between the largest
Cr ball, showing higher Cr (lower Al) toward the Cr ball, and the compositional granularity of the
high-Cr zone. (d) TEM-BSE image and element maps of FIB foil across contact between chromium and
Cr-rich corundum, separated by a zone of oreillyite (scale bar indicates 2 µm). Note granularity in the
Cr and Al maps of the corundum, interpreted as the result of spinodal breakdown.

Colour, lustre, streak, hardness, tenacity, cleavage, fracture, density, and optical properties could
not be determined because of the small grain size. Calculated density is 6.64 g·cm−3 using the ideal
formula and the unit-cell volume of the triple ordered cell (Z = 3; see below).

3. Chemical Composition

Quantitative elemental microanalyses of the type grain of kishonite were carried out using
a CAMECA 100× electron microprobe (WDS mode, 15 kV and 10 nA, 1 µm beam size, counting times
20 s for peak and 10 s for background; Gennevilliers, France). Analyses were processed with the
CITZAF correction procedure and gave average values of (in wt.% of elements): V 93.71 and Al 2.61.
Metallic vanadium and aluminium were used as standard [9]. Hydrogen was not measured (given the
rarity of the phase), and the stoichiometry is given on the basis of the high-quality single-crystal X-ray
refinement (see below). The VH2 ideal formula requires V 96.19 and H 3.81.

A preliminary chemical analysis of oreillyite using EDS revealed the presence of Cr only. TEM-EDS
spectra extracted from the maps collected on oreillyite in the FIB foil gave (in wt.% of elements) Cr 86.9
and N 13.1. Electron energy loss spectroscopy (EELS) data (Figure 3) indicate that the valence of Cr is
less than 3 in oreillyite and that the mineral is actually oxygen-free. Chromium in low-Cr and high-Cr
parts of the corundum occurs as Cr3+, whereas in oreillyite, Cr seems to be +1 or +2. The Cr2N ideal
formula requires Cr 88.13 and N 11.87.
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different Cr-minerals.

4. X-ray Crystallography

The small kishonite fragment in Figure 1 was handpicked from the polished section under
a reflected light microscope and mounted on a 5 µm diameter carbon fibre, which was, in turn,
attached to a glass rod. Then, the fragment was tested by single-crystal X-ray diffraction. Single-crystal
X-ray studies were carried out using a Bruker D8 Venture diffractometer equipped with a Photon II
CCD detector (Billerica, MA, USA), with graphite-monochromatized MoKα radiation (λ = 0.71073 Å),
and with 100 s exposure time per frame; the detector-to-sample distance was 7 cm. Kishonite is cubic,
space group Fm3m, with a = 4.2680(10) Å, V = 77.75(3) Å3 and Z = 4 [9].

The kishonite structure was solved by direct methods and then refined using the program
Shelxl-97 [10]. The site occupation factor (s.o.f.) at the V site was allowed to vary (V vs. Al) using
scattering curves for neutral atoms taken from the International Tables for Crystallography [11]. At the
last refinement stage, with anisotropic atomic displacement parameters for V, the residual value
settled at R1 = 0.0134 for 25 unique reflections and four parameters. Atom coordinates and isotropic
displacement parameters are given in Table 1.

Table 1. Atomic coordinates and equivalent isotropic displacement parameters (Å2
× 103) for kishonite.

Ueq is defined as one third of the trace of the orthogonalized Uij tensor.

Site x Y z Ueq s.o.f.

V 0 0 0 10(2) V0.96(7)Al0.04
V0.96(7)Al0.04

H 1/4 1/4 1/4 38(17) 1

s.o.f. = site occupancy factor.

The crystal structure of kishonite is shown in Figure 4. It is a CaF2 structure type with V in cubic
close packing and cubic eight-fold coordination and H occupying the Td interstitial sites. V-H bond
distance of 1.8481(3) Å. The solution of the crystal structure gave the VH2 stoichiometry, with minor
Al substituting for V (i.e., V0.96Al0.04), in excellent agreement with the electron microprobe data.
The results obtained are also in excellent agreement with what has been reported for synthetic VH2 [12].

As concerns oreillyite, we extracted a grain (30 × 38 × 66 µm in size) containing both native
chromium and oreillyite (Figure 5) and tried conventional single-crystal X-ray diffraction experiments
using a Rigaku XtaLAB Synergy (Tokyo, Japan) with a HyPix detector using MoKα radiation.
We collected images with 480 s of exposure in the θ range 8.5–27.3◦. Oreillyite was present as single
crystals, whereas native chromium was present only as a homogeneous polycrystalline material
producing rings that were indexed with the Im3m structure of native Cr (a = 2.889 Å; [13]). Oreillyite
was indexed with a = 2.7628(3), c = 4.4630(6) Å, and V = 29.503(6) Å3, representing the hexagonal
disordered form of CrN2 (space group P63/mmc) [14–18] with lattice parameters a = 2.748 and c = 4.438 Å.
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Figure 5. (left) Incident light image of a corundum grain (about 1.7 mm in size). (right) SEM-BSE
image of a portion of the polished area of the corundum grain (Crn) shown on the left where it is visible
a bright grain (enlarged in the inset) composed of native chromium (brighter region) and oreillyite
(lighter region).

The oreillyite structure was solved by direct methods in the P63/mmc space group. It is a hexagonal
close packing of N with Cr in octahedral coordination. Cr occupies a Wyckoff position 2c and N partially
(nearly 50%) occupies a 2a position with Z = 1. The ordering of N in alternating 2a positions leads to
the trigonal P31m structure first reported by Vallas and Calvert [19], which appears as a consequence
of aging of disordered h.c.p. Cr2N [20]. Electron densities and geometric details are in keeping with
a Cr2N stoichiometry. Atom coordinates and atomic displacement parameters are given in Table 2.
Bond distances are as follows: Cr–N = 1.9466(2) (×6) and Cr–Cr = 2.7430(3) Å, which compares with
values of 1.952 Å and 2.779 Å observed by Cabana et al. [21] for the ordered P31m structure.

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2
× 103) for oreillyite.

Ueq is defined as one third of the trace of the orthogonalized Uij tensor.

Site x Y z Ueq s.o.f.

Cr 1/3 2/3 1/4 12(2) 1
N 0 0 0 15(11) N0.47(9)

s.o.f. = site occupancy factor.

Crystallographic information files for both kishonite and oreillyite are available as
Supplementary Materials.

Calculated X-ray powder diffraction data (Table 3, in Å for CuKα) for both kishonite and oreillyite
are given in Table 3.
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Table 3. Calculated X-ray powder diffraction data for kishonite (left) and oreillyite (right).
Only reflections with Icalc > 2 are reported. The strongest reflections are given in bold.

h k l dcalc Icalc h k l dcalc Icalc
1 1 1 24.641 100 1 0 1 30.501 3
2 0 0 21.340 42 1 1 0 24.055 14
2 2 0 15.090 27 0 0 2 22.387 21
3 1 1 12.869 26 2 −1 1 21.190 45
2 2 2 12.321 7 1 1 1 21.190 55
4 0 0 10.670 3 1 1 2 16.388 9
3 3 1 0.9791 10 2 −1 2 16.388 10
4 2 0 0.9544 10 3 0 0 13.888 16
4 2 2 0.8712 10 1 1 3 12.682 6

2 −1 3 12.682 7
3 0 2 11.802 11
2 2 1 11.616 4
4 −2 1 11.616 5
0 0 4 11.193 2
4 −2 3 0.9365 3
2 2 3 0.9365 3
4 1 1 0.8910 2
3 0 4 0.8715 10

5. Transmission Electron Microscopy (TEM) for Oreillyite

FIB foils from the region of interest (bottom part of Figure 2) were prepared for TEM using
a dual-beam FIB system (FEI Helios G3 CX). High-angle annular dark field scanning transmission
electron microscopy (HAADF-STEM) imaging and element mapping were carried out using an FEI
Titan G2 80–200 TEM/STEM with ChemiSTEM Technology operating at 200 kV at the Centre for
Microscopy, Characterization and Analysis (CMCA), The University of Western Australia, Perth,
Australia. The element maps were obtained by energy dispersive X-ray spectroscopy using the Super-X
detector on the Titan with a probe size ~1 nm and a probe current of ~0.25 nA. Total acquisition times
of 20–30 minutes were used to obtain good signal-to-noise ratios. Electron diffraction was carried out
using a field limiting aperture that selected an area approximately 600 nm in diameter.

Synthetic Cr2N can exhibit an ordered (a = 4.81, c = 4.48 Å; S.G. P31m) or a disordered (a = 2.75,
c = 4.48 Å; S.G. P63/mmc) structure [22]. The X-ray study (see above) did not reveal the presence
of superstructure reflections leading to the trigonal cell (P31m model), which were masked by the
extremely small size of the crystal and the weak nature of these reflections. The TEM study was,
therefore, especially focused to try to elucidate the degree of disorder.

Two selected area electron diffraction (SAED) patterns are shown in Figure 6.
The first (Figure 6a) was matched to the [100] zone axis of the P31m Cr2N structure [21–23].

The spacings for the two nearest spots making up the rectangle are 4.4 Å (corresponding to the spacing
of (001) planes) and 4.1 Å (corresponding to the spacing of (010) planes), in agreement with what
observed for the P31m structure. The other SAED pattern (Figure 6c) was matched to the [210] zone
axis of the P31m Cr2N structure. The spacings for the two nearest spots making up the rectangle are
4.4 Å (corresponding to the spacing of (001) planes) and 2.4 Å nm (corresponding to the spacing of
(−120) planes), again in agreement with that observed for the P31m structure. The calculated diffraction
patterns for the P31m structure down the [100] and [210] zone axes (Figure 6b,d) match the experimental
SAED patterns in Figure 6a,c. As can be seen, the ~4.1 Å spacing we observe (Figure 6b) is only
possible with the geometry observed for the trigonal modification (corresponding to the 010 reflection).
Even if this reflection should be very weak (Icalc < 2) in the P31m structure (see Table 1), its intensity is
enhanced because of dynamic effects in the thick foil.

As additional confirmation, if we take into consideration the α and β sample tilts used to obtain
the SAED patterns in Figure 6b,c (α = 15.88, β = −4.07 and α = −14.43, β = −1.76, respectively) it is
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evident that we tilted approximately 30◦ to get from one zone axis to the other. The calculated angle
between these two axes in the P31m space group is actually 30.0◦.Minerals 2020, 10, x FOR PEER REVIEW 8 of 11 
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Figure 6. Selected area diffraction patterns for oreillyite down the (a) [100] and (c) [210] zone axes with
their equivalent simulated patterns (b,d), respectively. The experimental patterns were obtained from
the same crystal by tilting the sample through an angle of ~30 degrees.

Thus, we conclude that oreillyite exhibits the ε-type P31m ordered structure (Figure 7), although
the single-crystal X-ray experiment was able to detect only the reflections belonging to the hexagonal
substructure. It consists of a hexagonal close-packed (h.c.p.) sublattice of Cr with interstitial N atoms
occupying some of the octahedral interstices with N-Cr distances of 1.959 Å ([22]; to be compared to
1.9466(2) Å obtained in the disordered model obtained by single-crystal X-ray diffraction). The trigonal
cell of the ordered structure can be obtained from the disordered hexagonal one by applying the
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transformation matrix |2 1 0/−1 1 0/0 0 1|. The cell so obtained for oreillyite is: a = 4.7853(5) Å,
c = 4.4630(6) Å, V = 88.51 Å3, and Z = 3. Oreillyite is very hard and stable at high-pressure and
temperature according to first principles calculations by Ma et al. [23], who calculated a bulk modulus
of 289 GPa and a shear modulus of 145 GPa by density functional theory.Minerals 2020, 10, x FOR PEER REVIEW 9 of 11 
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6. Remarks on the Origin of Kishonite and Oreillyite

The coarse (cm-size crystals) V-bearing hibonite + grossite + spinel aggregates containing
kishonite appear to represent a late stage of the evolution of this magma [4]. The grain sizes, magmatic
microstructures, and evidence for an extended sequence of magmatic crystallization [5,7] clearly rule
out more speculative origins such as lightning strikes [24], meteorite impact, or shallow hydrothermal
circulation. Petrographic evidence for the reaction liquid + corundum→ anorthite, and the stability of
grossite suggest that this process operated at or near to the base of the crust (25–30 km depth; [3]),
and at temperatures ranging from 1450–1500 ◦C to a minimum of >1150 ◦C.

Oreillyite was found inside a 1.7 mm crystal of corundum with a hollow centre and raised rims,
indicating hopper growth, and with an intense purple-red colour (Figure 2; [5]). The surface of the
crystal is decorated with balls of native chromium up to 60 microns across, and very small grains
of an Fe-Ni alloy. Corundum is strongly zoned in Cr from central parts with 1–4% Cr2O3, rising to
mean values of ca 23 wt.% Cr2O3 toward both the outer rim and the edge of the central cavity. Single
electron microprobe spots in these zones contain up to 33% Cr2O3, and corundum adjacent to the
chromium balls has mean values >31 wt.% Cr2O3. The most Cr-rich portions of the crystal are finely
granular in BSE imagery, suggesting an intergrowth of higher- and lower-Cr corundum on the scale of
a few microns.

The two ultra-reduced minerals described here imply coexistence with a strongly hydrogen-
dominated fluid [3,4], probably in localized systems isolated from the oxidized lithospheric mantle.
Such fluids can be derived from a metal-saturated sublithospheric mantle, where f O2 is buffered
near IW, and any COH fluid consists almost entirely of CH4 + H2; similar fluids are observed in
sublithospheric diamonds [25,26] and predicted theoretically [27–29]. The existence of such fluids and
their movement through the lithosphere could have major implications for the transport of carbon,
hydrogen, and other volatile species from the deep mantle to the surface.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/12/1118/s1,
CIFs: kishonite and oreillyite.

http://www.mdpi.com/2075-163X/10/12/1118/s1
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