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Abstract: The Yemi breccia developed and is distributed within the Paleozoic carbonate rock (Maggol
Formation) in the central part of the Taebaeksan Basin, South Korea. Explanation for the genesis of the
Yemi breccia has been controversial. We investigated the petrological and mineralogical properties of
the breccia and the matrix materials at 60 outcrops. The Yemi breccia is divided into crackle, mosaic,
and chaotic breccias based on morphology. In addition, these are divided into blackish, reddish, grayish,
and white to pinkish matrix breccias according to the materials of the matrix. Quartz, calcite, pyrite,
hematite (after pyrite), and minor epidote, chlorite, and opaque materials mainly comprise the matrix
materials. The pyrite grains from the Yemi breccia can be divided into two types based on the mineral
texture: diagenetic and hydrothermal. We analyzed the chemistry of pyrite and hematite (after pyrite)
from the Yemi breccia with an electron probe X-ray microanalyzer (EPMA). Invisible gold was detected
within the pyrite grains by EPMA and disseminated micron-sized isolated gold particles were discovered
by backscattered electron (BSE) images. The texture of Au-bearing pyrite and gold particles in the Yemi
breccia is especially well matched with pyrite and gold from the Shuiyindong Carlin-type hydrothermal
gold deposits, China. Therefore, we suggest an important role of hydrothermal fluid in karstification
within the Paleozoic carbonate rock.

Keywords: Yemi breccia; matrix materials; pyrite; invisible gold; isolated gold particles; hydrothermal
fluid; karstification

1. Introduction

The carbonate Yemi breccia developed in the Taebaeksan Basin in the northeastern part of the
southern Korean Peninsula (Figure 1). It is distributed within an area that extends approximately
10 km north-to-south and 3 km east-to-west in the Yemi area (Figure 2). The genesis of the breccia
has been reported variously as intraformational brecciation or intrusion of argillaceous materials in
the cracks made by deformation; synsedimentation breccia related fault activities; syngenetic fault
breccia during formation of a sediment basin; solution collapse breccia formed by dissolution of
pre-existing evaporites; or diagenesis based on the occurrence of clasts, matrix mineralogy, fossils,
and sedimentary structures [1–5]. On the other hand, it is reported that some breccias can be formed by
the introduction of hydrothermal fluid along bedding or strata boundaries in carbonate rocks [6–14].
Breccias may have hydrothermal and hydraulic fracturing origin [15,16], formed by processes similar to
typical karstification [6]. Their morphology is very similar to typical karst breccias formed by meteoric
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water [17,18]. However, previous studies did not consider the theory that brecciation originated by
hydrothermal fluid. Previous studies have reported the genesis of this breccia, but it is still controversial.
Here we investigated the morphology and mineralogy of the infilled matrix of the breccia to clarify the
genesis. In particular, we discovered invisible gold in pyrite and isolated gold particles in the Yemi
breccia. As a result, we suggest that hydrothermal fluid acted in the development of the Yemi breccia
within carbonate rock.

Figure 1. Location of Yemi area and its geological setting. (a) Simplified map showing tectonic provinces
of East Asia, including the Korean Peninsula, modified from Chough et al. 2000 [19]. (b) Geological map
showing stratigraphic units of Taebaeksan Basin (modified from [20]). Bold rectangle (Yemi area) shows
the study area.
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Figure 2. Geologic map of study area modified from Korea Institute of Geoscience and Mineral
Resources (KIGAM) (1962) [5,21]. Study area shows tectonic imbrication, formations that are repeated
by thrust faults, anticlines, and synclines.

2. Geological Setting

2.1. Regional Geology

Three major Precambrian massifs comprise the Korean Peninsula: the Nangrim, Gyeonggi,
and Yeongnam massifs (Figure 1). The Gyeonggi and Yeongnam massifs are separated by the Okcheon Belt,
which comprises the weakly metamorphosed Paleozoic Taebaeksan Basin and the Okcheon Metamorphic
Belt (OMB). The Taebaeksan Basin includes early Paleozoic marine sedimentary rocks (Joseon Supergroup)
and late Paleozoic nonmarine sedimentary rocks (Pyeongan Supergroup), which were folded during the
Triassic and Jurassic periods [19]. The Joseon Supergroup is mostly composed of carbonate rock formed
mainly in shallow marine and tidal environments, reflecting sea-level changes [19]. The Pyeongsan
Supergroup formed mainly in shallow marine, deltaic, and fluvial environments [19]. The Late Triassic to
Early Jurassic Daedong Group is composed of conglomerate, sandstone, and shale, which unconformably
overlie the Pyeongsan and Joseon Supergroups [22]. Most of the sedimentary rocks in the Taebaeksan
Basin are folded, including many well-developed high-angle faults. Cluzel et al. [23,24] insisted that the
NS-trending folds and thrust faults were formed by the Songrim Orogeny and the EW-trending folds
and faults were developed by the Daebo Event [25]. As a result of these two events, the major geologic
structures in the Taebaeksan Basin are commonly NNE- to NE-striking thrusts and associated folds
(Figure 1b). Westward-dipping thrust faults dominate in the western part of the basin (Yeongwol area),
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while oblique-slip faults and synclines with minor thrusts dominate in the eastern part (Taebaek and
Jeongsun areas).

2.2. Local Geology

The Joseon and Pyeongsan Supergroups, and the Bansong Formation mainly comprise the study area.
The Joseon Supergroup includes the Hwajeol, Donjeom, Dumugol, Maggol, Jikunsan, and Duwibong
Formations, and the Pyeongsan Supergroup contains the Hongjeom, Sadong, Gobangsan, and Nokam
Formations (Figure 2). These units have strikes similar to NE-trending thrusts [26]. The Hwajeol
Formation is distributed in the southeastern part of the study area and strikes N 30–60◦ E. The lower
part of the Hwajeol Formation is dominated by greenish-gray sandy shale, dark gray sandy slate,
greenish-gray slate, dark gray sandy shale, and dark gray fine-grained sandstone, while the upper part
shows alternating beds of pinkish-gray limestone and greenish-gray slate [27]. The Dongjeom Formation
conformably overlies the Hwajeol Formation. It consists of dark gray and brown medium-grained
quartzite and dark brown laminated silicic limestone in the lower part, and dark quartzite in the
upper part. This unit strikes N 70–80◦ W and dips 35–45◦ NE on average. The Dumugol Formation
overlies the Dongjeom quartzite conformably, and consists of greenish-gray slate, greenish-brown
slate, brown-green limestone, pinkish-gray limestone, dark gray tabular limestone, and calcareous
shale [22]. The Maggol Formation conformably overlies the Dumugol formation and consists of calcic
sandstone, dolomite, interbedded calcic conglomerate, and oolitic limestone. It is divided into a lower
limestone part and an upper part of alternating dolomite and limestone. The stratigraphic section and
the position of the Yemi breccia are reported by Ryu [5].

The carbonate breccia called the Yemi breccia is now known to be a facies of the upper Maggol
Formation. It was identified as a separate formation in 1962 [21], but was shown to belong to the
upper part of the Maggol Formation by geological, petrological, and paleontological studies [4,5,27].
However, the origin of the Yemi breccia remains controversial. The Jikunsan Formation conformably
overlies the Maggol Formation. A shale formation named the Gosung Shale was reported in the study
area [21], but Kim (1969) [27] compared it with the Jikunsan Formation based on biostratigraphical
data and argued that the two were the same. The formation consists of black shale and bluish-gray
limestone, with the lower part dominated by calcareous rocks and the upper part dominated by
siliceous rocks [28]. The Dwibong Formation conformably overlies the lower Jikunsan Formation. It is
composed of massive pinkish-gray biogenic clastic limestone and calcareous shale [28]. The Hongjeom
and Nokam Formations included in the Pyeongsan Supergroup are composed of shale, limestone,
and sandstone [29], and are distributed in the southeast of the study area. The Bansong Formation
is widely distributed in the study area; its eastern boundary unconformably overlies the Nokam
Formation, but the western boundary is truncated by thrust faults. The Bansong Formation is
dominated by conglomerate and sandstone with interbedded shale. The linear structures oriented
along the NE-SW direction in the study area include bedding, faults, folds, and thrusts, and generally
dip to the NW. Several thrust faults developed parallel to the NE-SW direction. These faults are thought
to have developed during the Jurassic Daebo Event, after deposition of the Bansong Formation [26].

3. Methods

3.1. Sampling and Carbonate Staining

More than 150 samples were collected during field work for this study. Approximately 60 breccia
samples were selected for mineralogical and geochemical studies. Most samples were collected from
carbonate units. All collected samples were cut to make slab samples and studied under a stereoscopic
microscope. Representative samples were used to make thin sections based on these observations.
Thin sections were studied under a petrographic microscope and characterized to determine the genesis
of the Yemi breccia, using features such as mineral composition, textures, and mineral relationships.
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Samples were stained to distinguish between calcite and dolomite. Alizarin red S stains calcite
a red color, while dolomite does not stain; the results depend on the proportion of calcite in the sample
and other factors. The Alizarin red S solution was prepared as follows:

Alizarin red S = 0.1 g Alizarin red S + 100 g 2% HCl)
(solution) (solid) (liquid)

(1)

and, 37% hydrochloric acid was diluted with distilled water to make 2% hydrochloric acid:

100 g 2% HCl = 5.4 mg 37% HCl + 94.6 mg distilled water (2)

All slab samples were stained with Alizarin red S solution in this study. Rocks with irregular
surfaces were polished and then stained.

3.2. Electron Probe Microanalysis

Six polished thin sections were selected for electron microprobe analysis to determine their pyrite
and hematite geochemistry and gold content. Pyrite and hematite in representative polished thin
sections were classified into several types based on morphology, relative minerals, and host rock.
The equipment used was a Shimadzu EPMA-1600 electron microprobe analyzer (Shimadzu Corporation,
Kyoto, Japan) at Gyeongsang National University to analyze pyrite, hematite, and gold particles.
The analysis conditions were acceleration voltage 15 keV, beam current 20 nA, and spot size 1 µm.
The elements analyzed were iron, zinc, copper, oxygen, gold, silver, antimony, sulfur, arsenic, cobalt,
and lead. Most ore minerals could be identified on backscattered electron (BSE) images, and others
required the use of energy-dispersive x-ray spectroscopy (EDS) with the EPMA. In-house standards
were used for the analysis the minimum detection limits of the elements are ≤0.01 wt%.

4. Results

4.1. Morphological Features of the Yemi Breccia

The Yemi breccia is widely distributed along a north–south axis near the center of the study area
(Figure 2). The Yemi breccia within the Maggol Formation is controlled by bedding planes, and some
of it is unrelated to stratigraphy. Most of the breccia observed at the outcrops appears to have poor
continuity. Its width, extension, and distribution direction of outcrops vary due to the influence of
folds and thrusts. We observed the outcrop of Yemi breccia at 60 points. The Yemi breccia shows
three distinct morphologies: crackle, mosaic, and chaotic breccia. This morphological classification,
based on textural criteria, generally follows the work of Laznicka (1988) [30]. The Yemi breccia
generally occurs as lenticular bodies interbedded with limestone or calcareous silt rocks, showing only
one morphological type, although some outcrops show more than one morphology with a gradual
transition from one to the other. Figure 3a,b shows a typical crackle breccia, as well as the features that
are controlled by the types of host rocks. Field relationships demonstrate that the brecciation developed
within the sedimentary layer; calcareous strata are intensively brecciated, while the interbedded silty
rocks are not brecciated, and this pattern is common in the study area. Figure 3c shows the features of
mosaic and chaotic breccia and a well-preserved sedimentary lamination of the host rock. Some of the
breccia has monogenic clasts (Figure 4). Other parts of the breccia, however, have polygenic clasts,
including limestone and shale, and dolomitic limestone and shale (Figure 4a,e). These fragments have
various shapes, apparently related to the clast mineralogy or the geological environment. Monogenic
clast breccias are common throughout the study area. Polygenic clast breccias, however, are generally
observed only near the boundary with the overlying Gosung Shale (Jikunsan Formation) (Figure 2).
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Figure 3. Typical outcrop morphologies of Yemi breccia. (a) Stratified breccia with crackle texture.
(b) Crackle to mosaic texture breccia. (c) Mosaic to chaotic texture, with matrix sedimentary layers
clearly preserved in fragment. (d) Contact of reddish and blackish matrix breccia. Note that the matrix
part protrudes more than the clast. It is because of the more weathering-resistant minerals such as
hematite in the matrix compared to the more soluble carbonate clasts. (e) Mosaic texture breccia with
protruding black matrix. (f) Mosaic texture breccia composed of white to pinkish materials such as
quartz, calcite, and hematite after pyrite.

The Yemi breccia shows various colors because of the matrix materials; it is divided into blackish,
reddish, grayish and white to pinkish bodies (Table 1). Blackish matrix breccia (BMB) commonly occurs in
bodies that are several meters long (Figure 3e), and their clast size is a few centimeters (1–10 cm; Figure 4a).
A commonly observed weathering result is that the matrix protrudes more than the clasts at outcrops
(Figure 3d,e). Some parts of blackish matrix breccia change to a yellowish color (Figure 3d). The breccia in
Figure 4a has a black matrix and deformed limestone clast, with recrystallized pinkish calcite in the clast.
Figure 5a shows the matrix composed of quartz, calcite, pyrite, and an unknown material, presumed to
be an insoluble substance or organic material. It has a blackish color because of finely crystalline
pyrite and perhaps other unidentified materials. Some parts of the matrix were replaced by quartz
(Figure 5e). Quartz, calcite, and pyrite veins are also observed in the BMB (Figure 5f), which developed
in Goseong shale. Reddish matrix breccia (RMB) occurs over several meters (3–8 m), and its clast
size is a few centimeters (Figure 4d) at the outcrops, similar in occurrence to the BMB. A pattern of
differential weathering between the matrix and clasts, comparable to that described above, and is just
the result of higher solubility of carbonate minerals in the clasts (Figure 3d,e). RMB generally shows
a mosaic texture when observed in the field. Clasts are composed of limestone, dolomite, and shale,
and reaction rims are clearly present in limestone fragments (Figure 4b). The RMB matrix mainly
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consists of quartz, calcite, minor dolomite, sericite, pyrite, hematite, limonite, and dark unidentified
materials, presumed to be insoluble residue or organic material (Figure 5b). In some outcrops, BMB and
RMB show a vertical relationship (Figure 3d). In the yellowish part of BMB (Figure 3d), pyrite has
been oxidized to goethite or iron oxi-hydroxides (Figure 6), but RMB has hematite (altered pyrite),
suggesting that the two breccias formed in different environments. While BMB is dominated by pyrite,
RMB is dominated by hematite (Figure 5b). Grayish matrix breccia (GMB) is exposed in outcrops
several meters across (Figure 3b), and the outcrops seem to resemble massive or laminated limestone.
Boundaries between matrix and clasts are unclear in some samples (Figure 4d). The grayish matrix
breccia consists mainly of calcite and dolomite, and minor quartz and pyrite (Figure 5c). GMB also has
insoluble residues or organic materials, similar to that observed in BMB and RMB.

Figure 4. Photographs of slab samples, classified based on matrix materials and colors. (a) Polygenic
blackish matrix breccia. (b) Reddish matrix breccia showing an alteration halo at the clast margin.
(c) Gray matrix breccia composed of recrystallized calcite and undulating organic materials. (d) Pinkish
matrix breccia; carbonate clasts have an oxidized rim. (e) Gray matrix breccia with angular polygenic
clasts. (f) Rare sulfide matrix breccia, mostly composed of sulfide minerals such as pyrite, chalcopyrite,
and pyrrhotite.
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Table 1. Classification of Yemi breccia according to matrix color.

Classes Minerals Remarks

Blackish qz + cal + py + org (+ ep + chl) Disseminated pyrite,
insoluble matter

Reddish qz + cal + hem (+ org) Disseminated hematite,
alteration halo

Gray cal + org + py (+ qz) Disseminated pyrite,
crystalline calcite

White to pinkish cal + py + qz Crystalline calcite,
oxidized rim

Abbreviations: qz, quartz; cal, calcite; py, pyrite; org, organic material; ep, epidote; chl, chlorite; hem, hematite.

Figure 5. Microphotographs of Yemi breccia. Stained calcite grains have a reddish color. (a) Blackish
matrix breccia (BMB), composed of quartz, calcite, pyrite, and organic and unknown material.
(b) Reddish matrix breccia, composed of quartz, calcite, hematite, and organic and unknown material.
(c) Gray matrix breccia, composed of quartz, calcite, dolomite, and pyrite. (d) White to pinkish matrix
breccia, composed mainly of calcite replaced by fine-grained quartz, calcite, and pyrite. (e) BMB in
which calcite is dissolved and replaced by quartz. (f) BMB in which quartz + calcite + epidote + pyrite
veins occur in shale. Abbreviations: qz, quartz; cal, calcite; dol, dolomite; uk, unknown; py, pyrite; org,
organic material; epi, epidote.
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Figure 6. Microphotographs of pyrite and hematite in Yemi breccia. (a) Euhedral and disseminated
pyrite. (b) Irregular pyrite grains. Note overgrowth and replacement textures. (c) Pyrite observed
with pyrrhotite and chalcopyrite. (d) Margin of pyrite altered to hematite. (e) Euhedral pyrite partly
replaced by hematite. (f) Pyrite completely replaced by hematite. Abbreviations: py, pyrite; hem,
hematite; ccp, chalcopyrite; po, pyrrhotite.

White to pinkish matrix breccia (WPMB) is common in the study area, and outcrops generally
span several meters (Figure 3f). These breccia bodies are noncontiguous and are scattered in the study
area. Yellowish clast boundaries indicate oxidation of the disseminated pyrite formed along the clast
boundaries (Figure 4d). WPMB is composed of calcite, dolomite, quartz, and pyrite. Coarse-grained
calcite is replaced by fine grained quartz, pyrite, and calcite (Figure 5d).

4.2. Occurrence of Metallic Minerals (Mainly Pyrite and Hematite) in Yemi Breccia

The pyrite and hematite in the Yemi breccia show different morphologies and textures (Figure 6
and Table 2). Rare euhedral to subhedral pyrite grains (>20 µm) are disseminated in the carbonate
clasts of Yemi breccia (Figure 6a) and may have formed during the diagenesis of carbonate rock.
In some parts of the Yemi breccia matrix, euhedral to anhedral pyrite of various size are observed
(Figure 6b). Some are coarser (50–200 µm) than others. Coarse-grained pyrite show overgrowth zoning
and a change to hematite at the margin of the grain (Figure 6b,d,e and Figure 7d). Some pyrite grains
are observed with other sulfides, such as pyrrhotite and chalcopyrite (Figure 6c). Pyrite grains are
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replaced by pyrrhotite, and finally precipitated chalcopyrite. Some pyrite was completely changed to
hematite (Figure 6f).

Table 2. Characteristics of metallic minerals in Yemi breccia.

Mineral Size Morphology Remarks

Type 1 Pyrite <20 µm Euhedral Disseminated

Type 2
Pyrite

Pyrrhotite
Chalcopyrite

20–300 µm
>200 µm
>200 µm

Euhedral to
anhedral,
irregular

Disseminated,
replacement,
overgrowth

Type 3 Hematite 10–200 µm
Euhedral to

anhedral,
pseudomorph

Disseminated,
replacement,
overgrowth,

overgrowth/replacement

Figure 7. Gold detected within pyrite and hematite. (a–c) Backscattered electron (BSE) images of pyrite
and gold grains from Yemi breccia. (d–f) Gold particles are observed within pyrite and hematite grains,
and isolated at outer parts of pyrite and hematite.
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4.3. Occurrence of Gold in Yemi Breccia

In the Yemi breccia, we discovered invisible gold, classified into three types. The first type of
gold is invisible under optical and electron microscopes, but confirmed by EPMA analysis of pyrite
(Figure 7a,b) and hematite (after pyrite; Figure 7c) grains. The gold content of the pyrite (0.01–1.54 wt%)
and hematite (0.07 wt%) ranges from 0.01 to 1.54 wt% (Table 3). These properties are similar to the
general characteristics of invisible gold from Carlin-type gold deposits ([31,32] and references therein).
The second type of gold is distributed within pyrite and hematite (after pyrite). It is not visible
under optical microscopy, but can be confirmed in BSE images from electron microscopy (Figure 7d–f).
The particles are irregular, with an average diameter of 0.1 to 5 µm; most of these gold particles are
smaller than the beam size (about 1 µm); the gold content is 1.5–12 wt%. Some bright areas in the BSE
image are gold particles that occur in zoned pyrite (Figure 7d). The third type of gold is observed at
the outer part of pyrite and hematite grains (Figure 7b,e,f). These gold particles range in size from
0.1 to 20 µm. Properties of the second (distributed in pyrite and hematite) and third (isolated grains)
types of gold match well with gold from China’s Shuiyindong Carlin-type gold deposits [33,34].

Table 3. Result of EPMA (wt%) of the pyrite, hematite, and gold particles

No. Spot Fe Zn Cu O Au Ag Sb S Co Pb Total

1 Pyrite 47.45 <0.01 0.04 3.02 0.68 0.02 <0.01 49.20 0.12 <0.01 100.55
2 Pyrite 45.37 <0.01 0.02 0.45 0.37 0.01 <0.01 53.02 <0.01 <0.01 99.24
3 Pyrite 45.4 <0.01 <0.01 0.26 0.01 <0.01 <0.01 53.3 0.13 0.25 99.32
4 Pyrite 33.1 <0.01 0.06 0.66 0.15 <0.01 0.06 43.9 0.34 14.43 93.08
5 Pyrite 30.89 <0.01 0.04 1.75 1.54 <0.01 <0.01 31.93 <0.01 <0.01 66.61
6 Pyrite 35.67 0.01 0.03 1.61 0.08 0.02 <0.01 36.14 <0.01 <0.01 73.80
7 Pyrite 40.15 <0.01 0.04 2.46 0.03 0.01 <0.01 49.49 <0.01 <0.01 92.37
8 Hematite 68.7 <0.01 <0.01 37.8 0.07 <0.01 <0.01 0.01 0.10 0.09 106.77
9 Au-particle 0.54 <0.01 0.08 25.21 7.00 <0.01 0.06 0.01 0.05 0.01 32.96
10 Au-particle 0.50 <0.01 0.02 23.7 8.64 <0.01 <0.01 0.03 <0.01 0.05 32.92
11 Au-particle 2.05 0.09 0.06 23.41 2.16 <0.01 <0.01 0.41 <0.01 <0.01 28.17

5. Discussion and Conclusions

The Yemi breccia has been studied since it was first discovered in 1962, and many researchers have
suggested hypotheses for its genesis. Kim and Kwon (1970) [1] suggested intraformational brecciation or
intrusion of argillaceous materials into cracks made by deformation; Reed and Um (1975) [2] suggested
synsedimentation breccia-related fault activities; Cluzel (1992) [3] suggested syngenetic fault breccia
within an actively forming sediment basin; Woo (1997) [4] suggested solution collapse breccia formed
by dissolution; Ryu (2002) [5] suggested debris flow. Based on the differences in genetic mechanisms,
carbonate breccia is traditionally summarized into four categories [35]: (1) sedimentary breccia, such as
broken debris flow and storm deposition [36–44]; (2) nondepositional breccia, mainly related to karst
collapse [45–48]; (3) tectonic breccia, formed by strong tectonic fracturing [49,50]; and (4) diagenetic
breccia, formed by pressure dissolution and recrystallization during burial diagenesis [35]. In addition,
a nontraditional type of karst, such as hydraulic fracturing [15,16], and hydrothermal karst related to
mineralization has been described and summarized [11].

The Yemi breccia, observed at 60 points, can be divided into crackle, mosaic, and chaotic breccias
according to the morphology. These breccias are common in karst-collapse and hydraulic fracturing
areas [15,16]. The term ‘karst’ includes underground solution cavities, collapsed breccias, and related
topographical features consequent to the dissolution of soluble rocks. Although carbonate dissolution
is generally caused by groundwater, it is also caused by hydrothermal fluids; the bodies of rock that
result are called ‘hydrothermal karst’ [6,7,11,51] and show the same morphologies as karst produced by
shallow meteoric water. The brecciation which developed within the sedimentary layer demonstrate
that calcareous strata are intensively brecciated, while the interbedded silty rocks are not brecciated
(Figure 3a,b). It means the insoluble silty strata have not been affected by hydrothermal fluid. The matrix
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of the Yemi breccia is composed of mainly quartz, calcite, pyrite, hematite (after pyrite), and insoluble
materials showing irregular shape (Table 1). It is different from traditional carbonate breccia and
nontraditional hydraulic fractured breccia. Some clasts in the breccia have an alteration halo (Figure 2b).
These features are not observed in sedimentary, nondepositional, tectonic, hydraulic fracturing,
or diagenetic breccia, but are similar to hydrothermal karst [6,7,52]. The pyrite from the Yemi breccia
shows overgrowth and replacement textures (Figure 6). The pyrite that occurred by overgrowth was
also replaced by hematite. This means the hydrothermal fluid which precipitated pyrite was introduced
more than once. In the Yemi breccia, invisible gold was discovered (Figure 7). This phenomenon is
reported in hydrothermal Carlin-type gold deposits [31–34,53,54]. In particular, gold within pyrite and
hematite (after pyrite) and isolated gold particles (Figure 7) have been reported in the Shuiyindong
deposit [33,34], which is a Carlin-type hydrothermal gold deposit. The evolution model of breccia
developed by hydrothermal fluid in limestone and related gold mineralization has been reported [8]
in the Carlin-type Conrad zone, Yukon.

In conclusion, the Yemi breccia, developed within the Maggol Formation in the Taebaeksan
Basin, has distinct features that can be observed in nontraditional hydrothermal karst. Furthermore,
the presence of invisible gold within the breccia is a distinct feature of Carlin-type hydrothermal gold
deposits. Thus, we suggest the important role of hydrothermal fluid in karstification within the carbonate
Maggol Formation.
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