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Abstract: The composition of clinopyroxenes is indicative for chemical and physical properties
of mantle substrates. In this study, we present the results of Raman spectroscopy examination of
clinopyroxene inclusions in natural diamonds (n = 51) and clinopyroxenes from mantle xenoliths of
peridotites and eclogites from kimberlites (n = 28). The chemical composition of studied clinopyroxenes
shows wide variations indicating their origin in different mantle lithologies. All clinopyroxenes
have intense Raman modes corresponding to metal-oxygen translation (~300–500 cm−1), stretching
vibrations of bridging O-Si-Obr (ν11~670 cm−1), and nonbridging atoms O-Si-Onbr (ν16~1000 cm−1).
The peak position of the stretching vibration mode (ν11) for the studied clinopyroxenes varies in
a wide range (23 cm−1) and generally correlates with their chemical composition and reflects the
diopside-jadeite heterovalent isomorphism. These correlations may be used for rough estimation of
these compounds using the non-destructive Raman spectroscopy technique.
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1. Introduction

Mineral inclusions in natural diamonds carry important information about the chemical physical
conditions of the Earth’s mantle. The sources of mineral inclusions in diamonds can be divided into
three common parageneses: peridotite, eclogite, and rare websterite types. The major inclusions of
the peridotite associations are olivine (forsterite), orthopyroxene (enstatite), garnet (Cr-rich pyrope),
Cr-spinel (chromite), clinopyroxene (Cr-diopside), and Fe-Ni-sulfides; eclogite associations are usually
represented by garnet (pyrope-almandine-grossular), clinopyroxene (omphacite), quartz (coesite),
and Fe-sulfides [1]. Websteritic inclusions are generally presented by clinopyroxene and orthopyroxene,
which associate with garnet and olivine in some rare cases.

Clinopyroxenes of different parageneses are considerably diverse in their chemical composition.
Peridotite clinopyroxenes are represented by Cr-diopside with Na2O < 6 wt.%, Cr2O3 0.6–2.4 wt.%,
and Mg#~0.92–0.94. Eclogite clinopyroxene (omphacite) has a jadeite component (NaAl[Si2O6])
varying from 10% to 60% and Cr2O3 < 0.4% and Mg# < 80% [2]. Peridotite and eclogite clinopyroxene
inclusions can be distinguished by the borderline of the Cr# (Cr/(Cr + Al)) molar ratio ranging
from 0.07 to 0.10 (Figure 1a). Taylor and Neal (1989) subdivided eclogites by clinopyroxenes jadeite
components into three groups: (1) group A eclogites (high-pressure igneous cumulates formed as dikes
within the upper mantle) with low-jadeite clinopyroxenes; (2) group B eclogites with moderate-jadeite
clinopyroxenes (metamorphic products of a subducted oceanic crustal protolith); and (3) group
C eclogites (a relic of the Earth’s primary differentiation shortly after accretion) with high-jadeite
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clinopyroxenes (Figure 1b) [3]. Websterite clinopyroxenes cannot be determined with certainty, and they
are considered to be transitional in composition between clinopyroxenes of peridotite and eclogite.
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Figure 1. The discrimination of clinopyroxenes of different paragenesis: (a) Mg# vs. Cr# of
clinopyroxenes—lherzolitic, websteritic, and eclogitic compositional fields and the transition from
peridotite to eclogite clinopyroxenes at Cr# 0.07–0.10 (gray vertical stripe) are taken from [2]; (b) Na2O
vs. MgO contents in clinopyroxenes (A, B, C are the groups of eclogites are shown according to [3]).
1—peridotite clinopyroxene inclusions in diamonds, 2—clinopyroxenes from peridotites, 3—eclogite
clinopyroxene inclusions in diamonds, 4—clinopyroxenes from eclogites; 5—single clinopyroxene
inclusion in diamond with transitional composition [2].

The analysis of the chemical composition of inclusions traditionally involves the partial destruction
of the samples, e.g., study of the chemical composition of inclusions in diamonds by EPMA (electron
probe microanalysis) requires specific sample preparation, such as polishing or crushing of the
host. Therefore, the methods of study of mineral inclusions using non-destructive methods are
becoming more demanded [4–9]. Raman spectroscopy is an alternative high-resolution non-invasive
non-destructive technique, which provides information about specific vibrations in solid materials
reflecting the chemical and structural features of minerals, including those presented as inclusions
in natural diamonds. In this study, we present new data on the Raman spectroscopic characteristics
of clinopyroxenes inclusions in natural diamonds and clinopyroxenes from the series of peridotite
and eclogite xenoliths from kimberlite. These data are used to define the correlations between Raman
features of mantle clinopyroxenes and their chemical composition.

2. Materials and Methods

In total, 51 natural diamonds were selected from different occurrences of Yakutian diamondiferous
province (Internatsional’naya (n = 9), Yubileynaya (n = 4), Udachnaya (n = 4), Mir (n = 1),
Komsomolskaya (n = 1), Nyurbinskaya (n = 2) kimberlite pipes, Ebelyakh river deposits (n = 30)).
The studied diamonds were represented by both octahedral and rounded dodecahedral crystals with
the inclusions of peridotite or eclogite parageneses (Figure 2). The sample preparation includes
polishing of a diamond parallel to the (110) plane in order to recover the inclusions to the surface
for further analysis of chemical composition by EMPA. Some inclusions were examined by Raman
spectroscopy before and after the polishing and several fully extracted inclusions from diamond were
studied to avoid the ambiguity as clinopyroxene inclusions may be affected by the residual strain of a
diamond host [10,11]. In total, 28 clinopyroxene grains were also selected from peridotite (n = 8) and
eclogite (n = 20) xenoliths from Udachnaya kimberlite pipe. The characterization of the clinopyroxenes
from these samples is provided in [12,13].
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E-cpx—eclogite clinopyroxene, P-cpx—peridotite clinopyroxene, Ol—olivine.

The chemical composition of the clinopyroxenes was determined on a JEOL JXA-8100 electron
probe microanalyzer (EPMA), equipped with five wavelength-dispersive spectrometers and an
energy-dispersive (EDX) spectrometer at an accelerating voltage of 20 kV and probe current of 100 nA.
The beam diameter was 1–3 µm. The ZAF correction routine were applied. Natural standards were
used: BD (diopside), O-145 (pyrope), Ud-92 (Cr-pyrope)—Lavrent’ev et al. (2015) [14]. The chemical
composition of some clinopyroxene inclusion was taken from the published data (MT, HI—[15];
NBI—[16]; Ud10—[17]).

Raman spectra were collected using a Horiba Jobin Yvon LabRAM HR800 Raman microspectrometer
with a multichannel air-cooled (−70 ◦C) CCD detection system and a 532-nm Nd:YAG laser, equipped
with an Olympus BX41 microscope (×50). Spectra were recorded in back-scattering geometry in the range
100–1200 cm−1, through 7–10-s exposure and 10–15 acquisitions. The width of slit was 100 µm and the
power of the laser was 10 mW. The spectra were calibrated using known emission lines of the Ne-lamp,
also the Si-band at 520.6 cm−1 was used for monitoring of the frequencies of the Raman spectra. Additionally,
the spectra were obtained at different crystallographic orientations via rotation (for each 15◦) because some
modes can change their intensity and disappear or are overlapped [18]. The spectroscopic software OPUS
8.2. (Bruker Optik GmbH, Ettlingen, Germany) was used for manipulation with spectra: the peak position
was obtained by a regression least-squares curve fitting calculation using a Gaussian–Lorentzian mixed
peak shape and baseline correction. This procedure yields a precision for peak of ±0.5 cm–1.

3. Results

Most of the studied inclusions are presented by clinopyroxenes, which correspond to either
peridotite (n = 16) or eclogite (n = 34) parageneses and single inclusion (Cr# 0.08 and Mg# 0.89)
falls into the field of compositions transitional between these two principal parageneses (Figure 1a,b).
The inclusions of peridotite clinopyroxene are Cr-rich diopside (Cr2O3 0.31–5.74 wt.%, CaO 12.81–22.9 wt.%,
MgO 12.25–18.3 wt.%) with relatively low FeO 1.81–3.45 wt.%, Al2O3 0.31–5.41 wt.%, and Na2O
0.28–5.09 wt.%. They have relatively high Mg# 0.87–0.94 and Cr# 0.17–0.64. The inclusions of eclogite
clinopyroxenes are omphacites (Na2O 3.12–8.12 wt.%, Al2O3 4.46–17.9 wt.%, CaO 9.81–17.2 wt.%, MgO
5.65–15.1 wt.%, FeO 2.22–11.4 wt.%). These clinopyroxenes have low Cr2O3 < 0.3 wt.% and wide variation
of Mg# from 0.57 to 0.87. Most studied clinopyroxene inclusions fall into the range of clinopyroxenes
of groups B and C eclogites and rare inclusions correspond to clinopyroxenes of group A eclogites
(Figure 1b) [3].

The clinopyroxenes from peridotites have a limited variation of composition (MgO 16.2–20 wt.%,
FeO 1.92–4.62 wt.%, CaO 17–20.7 wt.%, Na2O 2.01–7.01 wt.%, Al2O3 0.82–2.71 wt.%, Cr2O3 0.80–1.21 wt.%)
with high Mg# 0.87–0.94 and Cr# 0.17–0.45. The clinopyroxenes from eclogites show wider compositional
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variations (MgO 6.98–15.6 wt.%, FeO 1.41–7.16 wt.%, CaO 10.6–20.3 wt.%, Na2O 2.25–7.24 wt.%, Al2O3

3.37–15.3 wt.%) with lower Cr2O3 content (<0.3 wt.%) and Mg# 0.72–0.91. Most of these clinopyroxenes
from eclogites belong to group B (n = 14), four samples belong to group A and two belong to group
C. All clinopyroxenes display positive sufficient correlations between CaO and MgO (r = 0.80) and
between Na2O and Al2O3 (r = 0.94), and negative correlations between CaO and Na2O (r = −0.92) and
between MgO and Al2O3 (r = −0.95). These correlations correspond to diopside-jadeite isomorphism in
clinopyroxene (Table 1).

Table 1. The correlation coefficients for linear dependences between major elements and stretching
vibration mode (ν11) in clinopyroxenes (the bold are significant at α = 10−4).

SiO2 TiO2 Al2O3 Cr2O3 FeO MgO CaO Na2O ν11

SiO2 1
TiO2 −0.06 1

Al2O3 0.27 0.48 1
Cr2O3 −0.11 −0.32 −0.51 1
FeO −0.40 0.36 0.33 −0.49 1
MgO −0.09 −0.51 −0.95 0.42 −0.45 1
CaO −0.23 −0.47 −0.86 0.35 −0.52 0.80 1

Na2O 0.19 0.50 0.94 −0.37 0.42 −0.94 −0.92 1
ν11 0.27 0.42 0.97 −0.48 0.36 −0.92 −0.88 0.95 1

The structure of clinopyroxene is known to consist of SiO4-tetrahedra chains parallel to [001] linked
by cation layers of M1O6-octahedron and M2O8-coordinated polyhedral. The factor group analysis of
the clinopyroxene structure (C2/c) defines 30 Raman active modes (14Ag + 16Bg) [19–23]. The Raman
spectra of the studied clinopyroxenes generally exhibit several intense modes near ~300–500, 670,
and 1000 cm−1 assigned to metal-oxygen translation, stretching vibrations of bridging O-Si-Obr (ν11),
and non-bridging atoms O-Si-Onbr (ν16), respectively (Figure 3). Raman modes in the metal-oxygen
translation range overlap and it is difficult to separate each peak by fitting. The O-Si-Onbr mode
(ν16) of clinopyroxenes shows the peak position shifting from 1010 to 1025 cm−1, which depends
on the composition. The intensities of this mode depend on the crystal orientation, and the Raman
shift (up to 7 cm−1) in different crystallographic orientations of single inclusion is possible. The peak
positions of the stretching O-Si-Obr mode vary in the range up to 23 cm−1 for the clinopyroxenes of
different compositions (665.6–675.5 cm−1 for peridotite clinopyroxene inclusions and 673.8–688.2 cm−1

for eclogite clinopyroxene inclusions; 666.8–670.9 cm−1 for clinopyroxenes from peridotites and
671.5–687.2 cm−1 for clinopyroxenes from eclogites). This mode has only slight variations (always
<0.7 cm−1) in the different crystallographic orientations of the studied clinopyroxenes. The peak
position frequencies of the stretching O-Si-Obr mode for the studied clinopyroxene from the same
inclusions in diamonds before and after polishing have discrepancies less than 0.79 cm−1 (Appendix A,
Figure A1). Thus, the stretching O-Si-Obr mode may be precisely fitted and seems to be most suitable
for estimation of the possible dependencies with composition.
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Figure 3. Raman spectra of clinopyroxenes of different parageneses: (a) Eclogite clinopyroxenes
(1, 4, 5—inclusions in diamonds from Ebelyakh river deposits; 2,3,6,7—inclusions in diamonds from
Internatsional’naya pipe); (b) peridotite clinopyroxenes (1—inclusion in diamond from Udachnaya
pipe; 2–5—inclusions in diamonds from Internatsional’naya pipe; 6,7—clinopyroxenes from Udachnaya
pipe). ν11—stretching bridging vibration mode O-Si-Obr, ν16—stretching non-bridging vibration mode
O-Si-Onbr.

4. Discussion

The elements can continuously substitute each other in the structure of clinopyroxene
(e.g., diopside CaMg[Si2O6]—omphacite Na0.5Ca0.5Mg0.5Al0.5[Si2O6]—jadeite NaAl[Si2O6] join in
eclogite clinopyroxenes and diopside CaMg[Si2O6]—cosmochlor NaCr[Si2O6] joins in peridotite
clinopyroxenes) [24]. Isostructural substitutions of the cations influence the lengths and angles of
bonds, which changes the energy of Si-O vibrations and, consequently, the wavenumbers of Raman
peak positions. In clinopyroxenes, heterovalent isomorphism Na+Al3+—Ca2+Mg2+ affects Raman
shifts close to linear [18]. These Raman shifts may be calibrated with the chemical composition of
clinopyroxenes obtained by other techniques. It makes it possible to use the Raman technique for
quantitative estimation of the contents of the major chemical compounds of this mineral.

We compared the peak position frequencies of the stretching O-Si-Obr mode (ν11) with the chemical
composition of the studied clinopyroxenes. Large variations in the composition, accompanied by wide
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Raman shifts of the ν11 mode, allowed determination of adequate linear dependences and the regression
parameters of these correlations. The correlation coefficients for all observed linear dependences for α
(the level of significance or the probability of a type I error) = 10−4 are summarized in Table 1. Several
linear dependences between the Raman shift of the ν11 mode and content of some major elements were
found. The most prominent are positive correlations with Na2O (r = 0.95) and Al2O3 (r = 0.97) contents and
negative correlations with CaO (r =−0.88) and MgO (r =−0.92) contents. We did not observe any significant
dependences with content of Cr2O3 and FeO. It may be caused by the fact that Fe and Cr atoms of different
valence can occupy different structural positions (M2O8 or M1O6) [25,26].

The observed dependences can be described as Deming regression equations as functions on
Raman shift (significant at α = 0.05):

CaO = −0.61 (± 0.1) × ν11 + 427.4 (± 61.9) (1)

MgO = −0.71 (± 0.08) × ν11 + 493.9 (± 59.1) (2)

Na2O = 0.37 (± 0.04) × ν11 − 251.3 (± 32.5) (3)

Al2O3 = 0.81 (± 0.05) × ν11 − 545.2 (± 37.2) (4)

where Na2O, Al2O3, CaO, MgO in wt.%; ν11—frequency of the peak position of the O-Si-Obr Raman
mode. The observed correlations and calculated regression lines are shown in Figure 4.

Figure 4. The correlation of the Raman shift of the frequency position of O-Si-Obr mode (ν11) in
clinopyroxenes with contents of CaO (a), MgO (b), Na2O (c), and Al2O3 (d) determined from EPMA:
1—peridotite clinopyroxene inclusions in diamonds, 2—clinopyroxenes from peridotites, 3—eclogite
clinopyroxene inclusions in diamonds, 4—clinopyroxenes from eclogites; 5—single clinopyroxene
inclusion in diamond with transitional composition [2]. The equations of Deming regression lines (1–4)
are shown.

The data calculated from the regression equations and EPMA data yield sufficiently good
convergence (Figure 5). Hereby, the equations of regression lines (1–4) can be used for a quantitative
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assessment of the chemical composition of mantle clinopyroxenes using only Raman spectroscopy
technique. The discrepancies between Raman calculated data and EPMA data are <5.0 wt.% for
CaO (mean 1.1 wt.%), <4.2 wt.% for MgO (mean 0.6 wt.%), <2.5 wt.% for Na2O (mean 0.4 wt.%),
and <2.5 wt.% for Al2O3 (mean 0.5 wt.%). Some high discrepancies may occur because Cr2O3 and FeO
were not considered in the calculations of the regression lines. It is known that strain pressure can also
affect the Raman shifts of peak positions for anisotropic crystals [27]. However, the completely extracted
and in situ inclusions of clinopyroxenes and clinopyroxenes from eclogites and peridotites give similar
regression lines. It may suggest that the Raman shift of v11 stretching mode for clinopyroxene inclusions
in diamonds depends on the composition rather than residual internal pressure.
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Figure 5. The convergence of CaO (a), MgO (b), Na2O (c), and Al2O3 (d) contents in clinopyroxenes
determined by EPMA and calculated from Raman spectroscopy by using the parameters of the
regression equations: 1—peridotite clinopyroxene inclusions in diamonds, 2—clinopyroxenes from
peridotites, 3—eclogite clinopyroxene inclusions in diamonds, 4—clinopyroxenes from eclogites;
5—clinopyroxene inclusion in diamond with transitional composition [2]). The dashed line shows ideal
convergence (EPMA = Raman).

The previously published data reveal that peridotite and eclogite clinopyroxenes can be
discriminated by the Cr# [1,2]. The lack of sufficient correlations of the stretching mode ν11 with the
Cr and Fe contents do not allow assessment of these components using solely Raman data. It makes it
difficult to discriminate the clinopyroxenes of different parageneses. Despite this, the clinopyroxenes
of peridotite paragenesis and eclogite parageneses can roughly be separated by the peak position of
the stretching ν11 mode. We calculated two separate distributions by the peak position of ν11 mode for
peridotite and eclogite clinopyroxenes (Figure 6). These distributions are characterized by different
parameters of the mean value and standard deviation (µ = 670.2, σ = 2.3 for peridotite clinopyroxenes
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and µ = 678.9, σ = 4.0 for eclogite clinopyroxenes), assuming that these distributions are normal.
The Raman spectra of peridotite clinopyroxene has the stretching ν11 mode with a peak position
frequency lower than 672 cm−1 with a probability of 85% (α= 0.15). Similarly, the clinopyroxene is likely
to belong to eclogite (with probability of 85%, α = 0.15) if the peak position of the stretching ν11 mode
is higher than 675 cm−1. The uncertainty range takes place between 672 and 675 cm−1. This extended
uncertainty range is due to the existence of Na2O rich with peridotite clinopyroxenes (4.19–5.09 wt.%),
which significantly overlap the range of eclogite clinopyroxenes and have the upshifted peak position
of ν11 Raman mode. Some eclogite clinopyroxenes with relatively low Na2O ~2.25 wt.% and elevated
Cr2O3 ~0.27 wt.% also fall into the uncertainty range.
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Figure 6. Raman shift of stretching mode ν11 vs. Cr# of clinopyroxenes: 1—peridotite clinopyroxene
inclusions in diamonds, 2—clinopyroxenes from peridotites, 3—eclogite clinopyroxene inclusions in
diamonds, 4—clinopyroxenes from eclogites; 5—clinopyroxene inclusion in diamond with transitional
composition [2]. The transition from peridotite to eclogite clinopyroxenes occurs at the range
672–675 cm−1 of the peak position ofν11 mode; PDF—probability density function of normal distribution
with parameters µ (mean) and σ (standard deviation) for clinopyroxenes of peridotite (P-cpx) and
eclogite (E-cpx) parageneses, α—the level of significance for boundary lines of uncertainty area.
The transition from peridotite to eclogite clinopyroxenes at Cr# 0.07–0.10 is taken from [2].

5. Conclusions

Raman spectroscopy is a non-destructive technique for the identification of structural and chemical
properties of minerals, and in particular is appropriate to study inclusions in natural diamonds. The new
dataset of the Raman spectroscopic features of clinopyroxene inclusions in natural diamonds of different
paragenesis (peridotite and eclogite) and clinopyroxenes from xenoliths peridotites and eclogites in
kimberlite were obtained in this study. The wide variations of the peak position in a wide range for the
ν11 mode of stretching vibrations of Si-O-Sibr were found. These variations correlate well with the
chemical composition of the studied clinopyroxenes. The correlations, described as linear regression
lines, generally reflect heterovalent jadeite-diopside isomorphism and can potentially be applied to
evaluate the chemical composition of mantle clinopyroxenes using only the Raman spectroscopy
technique. The peak position of the stretching Si-O-Sibr Raman mode (v11) can be satisfactorily used to
separate clinopyroxenes of different parageneses. The clinopyroxenes with the peak position of v11

mode lower than 672 cm−1 are likely to belong to peridotites; and the clinopyroxenes with the peak
position of v11 mode higher than 675 cm−1 are likely to belong to eclogites.
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