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Abstract: The Fangaia mud pool provides a “window” into the hydrothermal system underlying the
degassing Solfatara crater, which is the most active volcanic centre inside the restless Campi Flegrei
caldera, Southern Italy. The present study aimed at unravelling the degassing dynamics of CO2 and
H2S flushing through the pH 1.2 steam-heated Fangaia mud pool, an ideal field laboratory as a proxy
of an active crater lake. Our results from MultiGAS measurements above Fangaia’s surface show
that H2S scrubbing, demonstrated by high CO2/H2S ratios, was most efficient in the portions of the
basin affected by diffusive degassing. Convective bubbling degassing instead was the most effective
mechanism to release gas in quantitative terms, with lower CO2/H2S ratios, similar to the Solfatara
crater fumaroles, the high-T end member of the hydrothermal system. Unsurprisingly, total estimated
CO2 and H2S fluxes from the small Fangaia pool (~184 m2 in June 2017) were at least two orders of
magnitude lower (CO2 flux < 64 t/d, H2S flux < 0.5 t/d) than the total CO2 flux of the Campi Flegrei
caldera (up to 3000 t/d for CO2), too low to affect the gas budget for the caldera, and hence volcano
monitoring routines. Given the role of the rising gas as “sediment stirrer”, the physical and chemical
processes behind gas migration through a mud pool are arguably the creating processes giving origin
to Fangaia. Follow-up studies of this so far unique campaign will help to better understand the fast
dynamics of this peculiar degassing feature.
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1. Introduction

Hot and acidic crater lakes and pools are characterized by evaporation and degassing [1–9].
At pH < 3.8, thermal waters are chemically transparent to CO2, enabling research to trace this deep
magmatic marker inside a degassing crater despite the intervening hydrothermal system. In contrast
to CO2, H2S and SO2 will be partly scrubbed by the hydrothermal system in the “steam-heated”
water phase as a solute S-species (HSO4

−-SO4
2− thiosulphates, polythionates) or deposited as a solid

(elemental S, anhydrite, gypsum, alunites) [10–14].
The Solfatara-Pisciarelli magmatic-hydrothermal system, the most active spot inside the Campi

Flegrei caldera (Figure 1a), is renowned for massive CO2 degassing through fumaroles and diffuse
soil degassing (up to 858 t/d and 3000 t/d of CO2 [15–19]). Despite being in a non-eruptive state,
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recent increases in degassing activity, especially in the dynamic Pisciarelli fumarolic system, have raised
concerns that switched the status of Campi Flegrei into the gear of “hydrothermal unrest” [20–22].
The typical magmatic gas species, SO2, is virtually undetected in any fumarolic gas manifestation, and is
presumably efficiently absorbed in deeper aquifers, or reduced in the more superficial hydrothermal
system [23,24]. Hence, H2S is the only S-species emitted at the surface.
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The Solfatara crater hosts a muddy lake, Fangaia (Figure 1b), characterized by vigorous bubbling 
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surveys revealed that Fangaia is, unsurprisingly, the top of the hydrothermal aquifer underlying the 
Solfatara crater [25]. The Fangaia mud pool is the surface expression of two different sources of water. 
The first one consists of liquid, produced by steam condensation in the fumarolic areas (mainly Bocca 
Grande and Bocca Nuova fumarolic system and Solfatara crypto dome, but also beneath the Fangaia 
itself), and driven towards the Fangaia topographical depression. The second source is meteoric 
water [26] flowing inside Solfatara crater that carries solutes from altered deposits and transports 
them towards the Fangaia basin. The combination of endogenous activity and the presence of altered 
deposits with peculiar features permit to distinguish the Fangaia subsoil from the surrounding ones 
within Solfatara crater [27]. From a geochemical point of view, Fangaia is a SO4-rich (~2000 mg/L) 
and Cl-poor (<30 mg/L), pH ~1.5 steam-heated pool with a temperature between 30 and 47 °C [28].  

In this study we aim at revealing the CO2 and H2S degassing dynamics at Fangaia, based on 
MultiGAS measurements conducted right above the surface of the mud pool and executed on 6 June 
2017. Although from a quantitative perspective, our determination of the CO2 output from Fangaia 
will not massively contribute to the total CO2 output of Campi Flegrei (i.e., through Solfatara and 
Pisciarelli fumaroles and diffuse soil degassing [19,20,22]), instead based on variations in CO2/H2S 
ratios above the Fangaia surface, we will provide insights into the kinetics of gases flushing through 
a hydrothermal system. 

2. Data Sources: Field, Laboratory and Desk Procedures 

We adapted a portable sensor-based gas analyzer (a.k.a. MultiGAS, see [22] for more details on 
the instrument) by connecting a syringe to a silicon tube sustained by a fishing rod held 2–20 cm 
above the surface of the Fangaia mud pool (Figure 2). Gas and steam are pumped through the tube 
into the MultiGAS at a rate of 1.5 L/min. The syringe was held at the same spot for about 20 s to 
permit the gas to reach the gas analyzer. The measurement procedure (approx. 50 min, Figure 3a) is 

Figure 1. Location map of the (a) Solfatara and Pisciarelli magmatic-hydrothermal systems, inside the
Campi Flegrei caldera, Gulf of Pozzuoli, Naples, and (b) Fangaia mud pool inside the Solfatara crater.

The Solfatara crater hosts a muddy lake, Fangaia (Figure 1b), characterized by vigorous
bubbling and evaporation, which serves as a “window” into the underlying hydrothermal system.
Geophysical surveys revealed that Fangaia is, unsurprisingly, the top of the hydrothermal aquifer
underlying the Solfatara crater [25]. The Fangaia mud pool is the surface expression of two different
sources of water. The first one consists of liquid, produced by steam condensation in the fumarolic
areas (mainly Bocca Grande and Bocca Nuova fumarolic system and Solfatara crypto dome, but also
beneath the Fangaia itself), and driven towards the Fangaia topographical depression. The second
source is meteoric water [26] flowing inside Solfatara crater that carries solutes from altered deposits
and transports them towards the Fangaia basin. The combination of endogenous activity and the
presence of altered deposits with peculiar features permit to distinguish the Fangaia subsoil from the
surrounding ones within Solfatara crater [27]. From a geochemical point of view, Fangaia is a SO4-rich
(~2000 mg/L) and Cl-poor (<30 mg/L), pH~1.5 steam-heated pool with a temperature between 30 and
47 ◦C [28].

In this study we aim at revealing the CO2 and H2S degassing dynamics at Fangaia, based on
MultiGAS measurements conducted right above the surface of the mud pool and executed on
6 June 2017. Although from a quantitative perspective, our determination of the CO2 output from
Fangaia will not massively contribute to the total CO2 output of Campi Flegrei (i.e., through Solfatara
and Pisciarelli fumaroles and diffuse soil degassing [19,20,22]), instead based on variations in CO2/H2S
ratios above the Fangaia surface, we will provide insights into the kinetics of gases flushing through a
hydrothermal system.

2. Data Sources: Field, Laboratory and Desk Procedures

We adapted a portable sensor-based gas analyzer (a.k.a. MultiGAS, see [22] for more details on
the instrument) by connecting a syringe to a silicon tube sustained by a fishing rod held 2–20 cm above
the surface of the Fangaia mud pool (Figure 2). Gas and steam are pumped through the tube into
the MultiGAS at a rate of 1.5 L/min. The syringe was held at the same spot for about 20 s to permit
the gas to reach the gas analyzer. The measurement procedure (approx. 50 min, Figure 3a) is filmed
in time-lapse mode with a GoPRO camera (GoPro Inc., San Mateo, CA, USA, https://gopro.com/),
creating a view of the entire area by using a fish-eye lens (Figure 2).

https://gopro.com/
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cm above the Fangaia mud pool (green and grey dots in Figure 4), (b) CO2 versus H2S concentrations 
using RatioCalc software (https://sites.google.com/site/giancarlotamburello/home ) [29]. 

The exact location of the syringe in the image (pixel coordinates) is consequently deduced using 
the open-source graphical software ImageJ v. 1.8.0_172 (https://imagej.nih.gov/ij/download.html) 
and MTRackJ v.1.5.1 (https://imagescience.org/meijering/software/mtrackj/) (Figure 4), and 
converted into metric coordinates with a reference frame established in the field by the clearly visible 
cones (Figure 2, see [22] for further details). Images are extracted from the GoPRO time-lapse 
recording with a frequency of 5 s, and are afterwards synchronized to the frequency of data 
acquisition of the MultiGAS (2 Hz), obtaining a total of 1512 measurements (Figure 3). CO2 
concentrations, corrected for atmospheric background, varied from 320 to 75,800 ppmV, while H2S 
concentrations varied from 9.2 ppmV to a saturation value of 224 ppmV (with 36 or 2.3% of the 
measurement points > 224 ppmV) (Figure 3). The CO2/H2S ratios were calculated using the open-
source RatioCalc software [29] (Figure 3b). All data were processed to compute the concentration 
maps in Figure 5 using Kriging as the interpolation method. 

The maximum concentrations for both CO2 and H2S, measured at <20 cm above the Fangaia 
surface, are below lethal threshold concentrations (8% and 250 ppmV for CO2 and H2S, respectively; 
except for maximum 2.3% of the H2S concentrations > 224 ppmV, [30]). Moreover, gas concentrations 
decrease rapidly with height above the surface and do not present any health risk at breathing height 
for humans. 

During our survey in June 2017, the surface area of Fangaia was ~184 m2. The bathymetry of 
Fangaia was obtained using 61 direct measurements of the lake depth (Figure 6), and elaborated 
graphically as above (Figure 4). An operational error of ± 5 cm is estimated. The estimated volume of 
Fangaia was ~75 ± 9 m3. 

Figure 3. (a) temporal variations of CO2 and H2S concentrations for 1512 point measurements 2–20 cm
above the Fangaia mud pool (green and grey dots in Figure 4), (b) CO2 versus H2S concentrations
using RatioCalc software (https://sites.google.com/site/giancarlotamburello/home) [29].
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Figure 4. Graphical procedure (MTrackJ and ImageJ software) to mathematically transform pixels (a) in
the picture into meters (b), based on the distances between the fluorescent cones measured in the field.
The green (a) and grey (b) dots are the MultiGAS measurement points. The blue-circle marks the area
included in diffuse CO2 flux measurements, the subaerial degassing area in June 2017 (see Figure 7).

The exact location of the syringe in the image (pixel coordinates) is consequently deduced using
the open-source graphical software ImageJ v. 1.8.0_172 (https://imagej.nih.gov/ij/download.html)
and MTRackJ v.1.5.1 (https://imagescience.org/meijering/software/mtrackj/) (Figure 4), and converted
into metric coordinates with a reference frame established in the field by the clearly visible cones
(Figure 2, see [22] for further details). Images are extracted from the GoPRO time-lapse recording
with a frequency of 5 s, and are afterwards synchronized to the frequency of data acquisition
of the MultiGAS (2 Hz), obtaining a total of 1512 measurements (Figure 3). CO2 concentrations,
corrected for atmospheric background, varied from 320 to 75,800 ppmV, while H2S concentrations
varied from 9.2 ppmV to a saturation value of 224 ppmV (with 36 or 2.3% of the measurement
points > 224 ppmV) (Figure 3). The CO2/H2S ratios were calculated using the open-source RatioCalc
software [29] (Figure 3b). All data were processed to compute the concentration maps in Figure 5 using
Kriging as the interpolation method.

The maximum concentrations for both CO2 and H2S, measured at <20 cm above the Fangaia
surface, are below lethal threshold concentrations (8% and 250 ppmV for CO2 and H2S, respectively;
except for maximum 2.3% of the H2S concentrations >224 ppmV, [30]). Moreover, gas concentrations
decrease rapidly with height above the surface and do not present any health risk at breathing height
for humans.

During our survey in June 2017, the surface area of Fangaia was ~184 m2. The bathymetry of
Fangaia was obtained using 61 direct measurements of the lake depth (Figure 6), and elaborated
graphically as above (Figure 4). An operational error of ±5 cm is estimated. The estimated volume of
Fangaia was ~75 ± 9 m3.

https://imagej.nih.gov/ij/download.html
https://imagescience.org/meijering/software/mtrackj/
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mud pool. Blue-purple-red colors coincide with stronger degassing areas. The map of CO2/H2S ratios
(c) shows how the stronger degassing areas have the lowest CO2/H2S ratios. Highest CO2/H2S ratios
are detected near the steep-walled shore of Fangaia’s basin. The blue-circle marks the area included
in diffuse CO2 flux measurements, the subaerial degassing area in June 2017, “m” indicates meters,
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The CO2 flux at the degassing (water-free) shores of Fangaia is directly measured using an 
accumulation chamber [31] equipped with an infrared detector LICOR-LI-820 (manufacturer, city, 
country) (Figure 7). These areas are included in the MultiGAS measurements to obtain CO2 and H2S 
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section of the Fangaia basin. Note the funnel-shaped vent structures. 
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The CO2 flux at the degassing (water-free) shores of Fangaia is directly measured using an
accumulation chamber [31] equipped with an infrared detector LICOR-LI-820 (LI-COR Biosciences,
Lincoln, NE, USA) (Figure 7). These areas are included in the MultiGAS measurements to obtain CO2

and H2S concentrations and ratios over areas unaffected by scrubbing.
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The percentage of suspended solids (i.e., “muddiness”) in the Fangaia water is obtained after
centrifugation (5000 cycles/min), filtering, drying and weighing of the solid phase. Despite the muddy
appearance, the small Fangaia contained only 2.85 wt% of solids, defining it as a proxy of a “miniature
steam-heated lake”.

A water sample was analyzed for its major element composition using ion chromatography
(IC; manufacturer at INGV-OV, Napoli, Italy), after centrifugation and filtering in the lab. The pH
was measured in the lab by a portable pH meter while the temperature was measured in situ.
The steam-heated character (Cl-poor, SO4-rich) is confirmed by the chemical composition: Na+ 17 mg/L,
K+ 20 mg/L, Ca2+ 48 mg/L, Mg2+ 3.9 mg/L, F- 0.46 mg/L, Cl− 12 mg/L, SO4

2− 1720 mg/L, NO3
− 3 mg/L,

with a pH of 1.2 and a T of 32 ◦C, similar to that reported by [28].

3. Discussion

3.1. CO2 and H2S Concentrations and CO2/H2S Ratios

Figure 5a,b shows integrated concentration maps of CO2 and H2S above Fangaia. The highest
absolute concentrations for both species were detected above the bubbling areas near the eastern
shore of Fangaia, suggesting that most efficient degassing for both species occurs via bubbling.
Our expectation of higher CO2 and H2S concentrations above the dark colored areas around the center
degassing vents was not confirmed by the MultiGAS measurements (Figure 5a,b). Instead, the CO2/H2S
map reveals low ratios (100–200) above bubbling degassing areas and generally high ratios above
diffusively degassing areas (>300; Figures 5c and 8). The CO2/H2S ratios above bubbling degassing
vents correspond to the ratios observed in the Bocca Nuova and Bocca Grande fumaroles (155 ± 52,
for 33 analyses [23]), the high temperature end member (142–163 ◦C) representative of the Solfatara
hydrothermal system, discharging 200 m east of Fangaia. The gas released at the bubbling degassing
vents can hence be interpreted as a proxy of the Solfatara fumarole emissions. Remembering that
pH 1.2 water is transparent to CO2, the practically identical CO2/H2S ratios of the high-T fumaroles
and the bubbling degassing vents imply that H2S scrubbing in Fangaia is near-nil through bubble gas
rise. The trend in varying CO2/H2S ratios agrees with a hypothesis of efficient H2S scrubbing along
the water column during slower diffuse, and less efficient scrubbing associated with the relatively
rapid rise of bubbling gas. The highest CO2/H2S ratios (>400) are detected near the southwestern
steep-walled shore of Fangaia (Figures 5c and 8).
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Figure 8. Conceptual model of CO2/H2S ratios for the Fangaia basin on 6 June 2017 and the role of
bubbling versus diffuse degassing. “Fum” indicates the Bocca Nuova and Bocca Grande fumarole
degassing, 200 m off Fangaia; “dry” indicates the degassing area in the dry sector of Fangaia basin,
however with lower absolute gas concentrations with respect to the strongest bubbling areas.

A recent study [9] argued that the oxidation state and chemical composition of the gas-receiving
lake (El Chichón crater lake in their case) is decisive in the degree of H2S scrubbing. The very small
size of Fangaia, the well-located degassing vents, and the shallow nature of the basin enable a clear
differentiation in the response to H2S scrubbing with respect to the inert CO2 along the lake surface.
In other words, Fangaia is not large and deep enough to homogenize the composition of the gas
flushing through the water, as generally is the case at large and deep crater lakes (e.g., Aso, Poás,
Kawah Ijen [3,6–8]). Considering Fangaia as a “window” into the Solfatara hydrothermal aquifer,
variations in CO2 fluxes and CO2/H2S ratios of soil gases can be affected by the spatial and temporal
variations in water saturation levels of the aquifers beneath Solfatara’s crater, as well as by the
structural control.

3.2. CO2 and H2S Fluxes

Three-point flux measurements of diffuse CO2 soil degassing around Fangaia varied from
8400 g m−2 d−1 (above the southwestern shores, outside the basin of Fangaia) to 35,600–79,000 g m−2 d−1

(inside the dried-out basin, near the bubbling degassing vents, shown by the blue ellipses in Figures 4–6).
If we tentatively scale these values to the Fangaia area (~184 m2), we estimate total CO2 emissions
ranging from 6.6 to 14.6 t/d, and an H2S flux ranging from 0.05 to 0.12 t/d, obtained by dividing the
CO2 flux by the CO2/H2S weight ratio of ~100. The latter ratio was measured near the dry sector of the
basin (Figure 5c), where the diffuse gas flux measurements were performed.

We also calculated the gas fluxes by integrating the interpolated gas concentrations from Figure 5a
and b (the integrated column amount, ICA [32]) and multiplying those values by a plume transport
speed. The resulting ICA was 0.75 kg/m for CO2, and 0.0074 kg/m for H2S. The plume transport speed
was estimated considering that the buoyant rise of a hot volcanic gas ranges from 1 to 3 m/s [32,33],
and assuming a rising speed of <1 m/s for the colder gas of the Fangaia. This estimate results in an
upper limit for CO2 and H2S fluxes of <64 t/d and <0.5 t/d, respectively. The discrepancy between
the gas fluxes derived from these two independent methods (i.e., accumulation chamber versus
MultiGAS/ICA), suggests that (1) the diffusive gas flux per unit area inside the Fangaia basin might
be much higher than the flux detected in the dried-out basin, and/or (2) the buoyant speed of the
gas emitted by the Fangaia is much lower than our hypothesized upper limit of 1 m/s. However,
our estimates provide an order of magnitude estimate of the gas flux from the Fangaia mud pool,
that is comparable to the fluxes of the smaller fumaroles of Solfatara and Pisciarelli [15]. This finding
suggests that the degassing of Fangaia does not significantly affect the total CO2 and H2S budget,
routinely measured during the geochemical monitoring of Campi Flegrei.

3.3. Origin and Dynamics of the Fangaia Basin

Heterogeneous degassing and steam condensation processes ongoing inside the mixed
meteoric-hydrothermal aquifer, at the intersection with the Solfatara crater surface, affected by
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fracture-controlled diffuse degassing [19], are probably causes of Fangaia’s existence. The Fangaia
basin was not formed after a (phreatic) eruption, and is hence, by definition, not a crater lake. The many
funnel-shaped degassing vents rework sediments and bring them into suspension, creating a mud pool,
and leads to an extremely dynamic sedimentary regime. The small basin is highly sensitive to direct
rain fall contribution, causing drastic short-term variations in area and volume. E-W and NNE-SSW
lineaments cross-cut the area [19]. These lineations in the location of bubbling sites at Fangaia (Figure 5),
show it to be part of the Solfatara Diffuse Degassing Structure (DDS [19]), and evidence the structural
control on degassing.

Despite the absence of massive CO2 and H2S degassing, and the low probability for phreatic
eruptions, fast changes in the morphology of the mud pool and its surroundings, and fracture
degassing in the area, can lead to the opening of new fractures and fissures. Unfortunately,
such rapid fracturing recently occurred after an anomalous rainfall event flooded Fangaia. Three days
after, on 12 September 2017, three people died of asphyxiation after falling in a newly formed,
poorly ventilated crevasse outside the restricted area of Fangaia. Our June 2017 “snapshot survey”,
three months prior to the accident, can only reveal the dynamic character of the Fangaia area,
but, being first in its kind, could not possibly provide precursory signals in the degassing and
morphological-sedimentary regime prior to the accident.

4. Conclusive Remarks

We describe a creative field-based method to measure CO2 and H2S concentrations using a
MultiGAS immediately above the mud pool Fangaia, in the emblematic Solfatara crater, the most active
spot of the restless Campi Flegrei caldera. The small size of the pool (only 184 m2 in June 2017) and
easy access provided (1) an excellent test site for in-field measurements, and (2) insightful results on
degassing dynamics of hydrothermal gases flushing through shallow acidic water bodies, a “miniature
proxy” to active crater lakes. Diffuse degassing leads to more efficient scrubbing of H2S and hence
higher CO2/H2S ratios, whereas bubbling degassing is an inefficient scrubbing mechanism, as indicated
by low CO2/H2S ratios, to the degree that gasses emitted at the vents are chemically similar to the purest
hydrothermal end member released in the Solfatara crater through the Bocca Nuova and Bocca Grande
fumaroles. Variations in gas species ratios are diagnostic of changes in volcanic activity. Tracking such
variations above the Fangaia bubbling vents can hence become a future monitoring focus.

Contrary to large active crater lakes that seem to show a chemically more homogeneous
diffuse plume degassing without bubbling at the surface, the extremely shallow Fangaia highlights
heterogeneous degassing through both vigorous gas bubbling and diffusion. Basin depth has arguably
a quantitative (gas concentrations and fluxes) and qualitative effect (ratios between gas species)
on degassing.

Despite being imposed on top of the hydrothermal system of the Solfatara crater, Fangaia is
not a crater lake. The basin itself is formed by intense degassing and steam condensation processes
through innumerable funnel-shaped vents, which, in combination with the high sensitivity to rainfall,
leads to continuous remobilization of sediments. Rapid changes in morphology of the already weak
area can lead to fracturing and destabilization of the basin. A follow-up of this pioneering study is
recommended to track possible changes in Fangaia’s dynamics, with a focus on (1) geomorphological
and hydrological changes with time, on a short- (days) and long-term (months–years) basis, using a
water mass balance approach, (2) the relationship between water and gas chemistry, to increase
insights into gas scrubbing, (3) possible formation of secondary minerals due to changes in gas-water
interactions, and (4) quantifying gas flux and tracking the possible migration of degassing vents,
given their physical role of “sediment stirrer”, all with the scope to better understand the evolution of
the system.
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