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Abstract

:

Geological storage of carbon dioxide (CO2) requires the host rock to have the capacity to permanently store CO2 with minimum post-storage monitoring. Mineral carbonation in geological formations is one of the most promising approaches to CO2 storage as the captured CO2 is converted into stable carbonated minerals (e.g., calcite and magnesite). In this study, we investigated the geochemical and mineralogical characteristics of Segamat basalt in the Central Belt of Malaysia and evaluated its potential for mineral carbonation by using laboratory analyses of X–ray fluorescence (XRF), X–ray diffraction analysis (XRD) and petrographic study. The XRF results showed that Segamat basalt samples contain a number of elements such as Fe (21.81–23.80 wt.%), Ca (15.40–20.83 wt.%), and Mg (3.43–5.36 wt.%) that can react with CO2 to form stable carbonated minerals. The XRD and petrographic results indicated that Segamat basalt contains the reactive mineral groups of pyroxene and olivine, which are suitable for the mineral carbonation process. The results of this study could help to identify the spatial distribution of elements and minerals in the Segamat basalt and to assess its mineral carbonation potential for geological storage in Malaysia.
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1. Introduction


The atmospheric concentration of carbon dioxide (CO2), as well as other greenhouse gases (GHGs), has become a central issue for researchers due to its significant effect on global warming [1,2,3,4]. The objective of a carbon capture storage (CCS) approach is to help decrease the amount of carbon dioxide (CO2) that is emitted globally from industrial areas through the capture of the produced CO2. CCS is considered to be one of the safest ways of achieving this, and storing CO2 in geological formations, such as in depleted oil and gas reservoirs is one of the proposed solutions in CCS strategies [1,5,6]. These reservoirs used to contain hydrocarbon at high pressure for a certain geological period, which proves that they have the potential to be used for the storage of CO2 [7]. However, there are some challenges associated with the CCS technique. The most critical issue is the possibility of CO2 leakage. Understanding the geochemical characterization of the geological formation is crucial to ensure the permanency of the CO2 storage in the mineral interaction of the host rock with the injected CO2 [8,9].



Mineral carbonation has been proposed as an alternative mechanism to mitigate the CO2 concentration in the Earth’s atmosphere through its sequestration as stable carbonate minerals [10,11,12,13,14]. Mineral carbonation is commonly associated with common elements such as calcium (Ca), magnesium (Mg), and iron (Fe) contained in natural minerals and rocks because their characteristics allow them to react to CO2 and to form carbonated products [15]. It is a process whereby CO2 is chemically reacted with Ca-, Mg-, or Fe-containing minerals to form carbonated minerals, which do not require any long-term liability or monitoring commitments [10,16]. Additionally, the mineral carbonation process can be applied to reuse various products, which positively influences the environmental impact and reduces the process cost [2,4,17,18].



Basalts are rich in Ca, Mg, and Fe cations that are readily liberated by reaction with CO2–rich water [19]. Therefore, in situ mineral carbonation is likely to be more active in basalts [19,20,21]. Silicate minerals (i.e., olivine and pyroxene) and glasses are rapidly dissolved in the accelerated in situ mineral carbonation of basalts [22,23]. This process leads to the release of divalent cations, which tend to react with CO2 in precipitating the carbonated minerals rather than forming other secondary minerals such as clays, oxides, and zeolites [22]. To date, there has been little discussion regarding the geochemical and mineralogical characterization of basalts for assessing their potential in the process of CO2 sequestration by mineral carbonation [22,24]. In this study, samples from a Tertiary extrusive igneous body, Segamat basalt were characterized to evaluate its geochemical and mineralogical properties and to estimate its potential as a host rock for CO2 storage through the in situ mineral carbonation process. Besides, Segamat basalt could be used as a source for the ex situ mineral carbonation process in the Malay Peninsula by determining whether Segamat basalt contains the required ingredients, i.e., the presence of Ca, Mg, or Fe-bearing minerals for the CO2 mineral carbonation process to occur or not.




2. Geological Setting


The Malay Peninsula forms an integral part of the SE Asian continental core of Sundaland [25,26]. It comprises two tectonic blocks: the Sibumasu Terrane in the west and the Sukhothai Arc in the east of the Malaya Block [27]. As shown in Figure 1, the Malay Peninsula is characterized by three north–south trending longitudinal belts, including the Western Belt, Central Belt, and Eastern Belt [27,28].



Flows of alkaline basaltic lava has occurred twice in the Malay Peninsula. These have been reported around Kuantan and in the neighborhood of Pekan Jabi in Segamat [29,30,31]. These volcanic rocks are named after the localities as Kuantan basalt and Segamat basalt. The Segamat volcanism includes both lava and shallow intrusive rocks (Figure 1), and individual lava flows vary from 18 m to 42 m in thickness [29,31]. Segamat basalt was formed as post-orogenic flows within the Central Belt of the Malay Peninsula during the Cenozoic Era (Figure 1). It erupted in the Early Tertiary period and has been dated as Palaeocene (62 ± 3 Ma) by K–Ar dating [32], during a time in which the Malay Peninsula was considered as a tectonically stable block [33]. The main area of Segamat basalt outcrops is located in the State of Johor, Malaysia (Figure 1).



Field Occurrence of Segamat Basalt


Segamat basalt presents as dark green to black colored outcrops (Figure 2a) and in the field, it is mainly characterized by its fine-grained porphyritic texture. Segamat basalt contains very fine groundmass with visible phenocrysts of light-green colored minerals (Figure 2b). Olivine and pyroxene occur as the greenish phenocrysts in the groundmass rock specimen. These greenish phenocrysts have undergone a relatively slow rate of cooling at the near surface before reaching the surface. The early-formed phenocrysts represent basic-ultrabasic olivine/pyroxene minerals. The dominant fine groundmass indicates that there was a second phase of relatively fast cooling during the extrusion of the magma to the surface and the atmosphere.



As shown in Figure 2a, the presence of calcite veins has been documented in the Segamat basalt outcrops. The calcite veins have sharp and straight edges with minimal irregularity on the contact surfaces with the host rock. The genesis of the calcite veins in Segamat basalt is associated with its hydrothermal origin [35].





3. Materials and Methods


Sample Preparation and Experimental Analysis


The following analyses were conducted to obtain an overview of the characteristics of the Segamat basalt samples. Sampling was carried out to characterize the host rock of the Segamat basalt with regard to its geochemical and mineralogical properties. Standardizing the grain size is essential in order to prevent biased results regarding the elements in these grain, and reducing the grain size enhances the precision of the analyses [36,37]. Therefore, the samples of Segamat basalt were crushed and prepared in a powder form with a grain size of <63 µm, which was determined by a MASTERSIZER–2000 from Malvern Instruments. The samples were studied by a microscope (Zeiss Axioskop–40, Oberkochen, Germany) to study the petrography of the Segamat basalt samples. To this aim, thin sections were prepared by slabbing and polishing the samples before they were glued onto the glass. Then, thin sections were examined under a plane-polarized light (PPL) and cross-polarized light (XPL) microscope (Zeiss Axioskop–40, Oberkochen, Germany), equipped with a Jenoptik ProgRes CF Scan microscope camera at the Southeast Asia Carbonate Research Laboratory, Universiti Teknologi PETRONAS. The PPL and XPL were used to identify the minerals and determine the textural components of the samples, respectively.



The powdered rock samples were analyzed to determine the major elemental composition of the Segamat basalt by using X–ray fluorescence (XRF) S8 TIGER Series 2 from Bruker HighSense Technology. The samples were ground to a grain size of <63 µm and were then combined with a cellulose wax mixture to produce homogeneous samples. Interaction between the atoms of the sample and radiation from the XRF instrument made the analysis of the chemical composition possible. Subsequently, the Segamat basalt sample was ionized by radiation of short wavelength and high-energy. A tightly-held inner electron was forced out when enough radiation was consumed. Then, an outer electron was replaced by an inner one. After that, the energy was released because the binding energy of the inner electron was decreased in comparison to the outer one. Moreover, because the amount of energy emitted was less than the initial incident X–rays, it is labeled as “fluorescent radiation”. A transition between definite electron orbitals in a specific element was characterized by the energy of the emitted photon, which suggested that XRF analysis could be applied to identify the concentration of the elements in the Segamat basalt sample.



X-ray diffraction (XRD) analysis was also applied to identify the mineral phases in the Segamat basalt samples. Thus, 1 g of each sample with a grain size of <63 µm was dried in an oven (at 45 °C) for 24 h and then introduced into the XRD instrument. The scan speed was set at 1°/min from 5° to 50° under 40 kV/40 mǺ X-ray tube. The XRD patterns were attained from a Rigaku Geiger flex D–MAX/A diffractometer with the Cu–Kα radiation along with a wavelength of 1.54 Ǻ [4].



Field-emission scanning electron microscopy (FESEM, SU8030 Hitachi) was applied to assess the morphology of the grains and identify the surface roughness. The FESEM was linked with an energy-dispersive X-ray (EDX) spectroscopy to find the elemental composition of the sample at a specific surface location [38]. The FESEM analysis was performed at 2.2 nm (1 kV) and a 1 nm (15 kV) probe current. The Segamat basalt samples with a grain size of <63 µm were coated with gold and sputtered in the environment with an inert argon for the FESEM analysis. The samples were also qualitatively analyzed in terms of their chemical and crystalline phases by using the FESEM in combination with the EDX technology.





4. Results and Discussion


4.1. Geochemical Analysis


Table 1 and Table 2 provide an overview of the significant elements found in the four samples of Segamat basalt by XRF analysis. As shown in Table 1, the Segamat basalt samples consist mainly of SiO2 (41.78–44.58 wt.%), Fe2O3 (13.73–16.28 wt.%), CaO (11.20–15.74 wt.%), Al2O3 (11.70–13.10 wt.%), MgO (4.14–6.54 wt.%), and K2O (4.21–5.59 wt.%). Table 2 presents the elemental analysis of the Segamat basalt samples. The Si content ranges between 30.05 and 33.30 wt.%. The samples contain Fe (21.81–23.80 wt.%), Ca (15.40–20.83 wt.%), Al (9.07–10.40 wt.%), K (1.11–2.06 wt.%), Mg (3.43–5.36 wt.%), and Ti (1.93–2.11 wt.%). As shown in the previous literature, the feedstock is rich in Ca, Mg, and Fe and is suitable for mineral carbonation process [4,7,11]. What is notable about these results is that Segamat basalt has a high percentage of reactants, and thus it has remarkable potential for the process of CO2 mineral carbonation.




4.2. Mineralogical Analysis


Figure 3 presents a comparison between the PPL and XPL studies of the Segamat basalt samples. Carbonate and feldspar minerals were identified as phenocrysts as shown in Figure 3a,b. Figure 3c,d also depict carbonate and olivine minerals as phenocrysts. Figure 3e,f show the presence of orthopyroxene as a large phenocryst. Other phenocrysts include olivine, chlorite, and carbonate with a wide distribution of feldspar. Figure 3g,f show that the minerals of olivine, orthopyroxene, and feldspar appear as phenocrysts. Figure 3 shows that the texture of Segamat basalt is porphyritic, it contains fine groundmass and shows phenocrysts as the minerals identified above. The porphyritic texture that is shown under microscope is similar to that observed in the sample shown in Figure 2b. The average porosity of the samples is 16%, based on the study of more than 75 thin sections of the Segamat basalt.



Figure 4, Figure 5, Figure 6 and Figure 7 present the mineralogical identification of Segamat basalt samples using XRD spectrum peaks. In accordance with previously reported data [24], the main crystalline phase of Segamat basalt is an olivine group including fayalite (Fe2SiO4) at the 2θ position of 31.6° and 35.9°, and forsterite (Mg2SiO4) at the 2θ position of 32.0°, 35.4° and 36.4°. Other crystalline phases are the pyroxene, chlorite, alkali feldspar, plagioclase, and zeolite group. The pyroxene group includes enstatite (Mg2Si2O6) and augite ((Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6), which mainly occur at the 2θ position of 28.3° and 35.6°, respectively. From the chlorite group, sudoite (Mg2Al3(Si3Al)O10)(OH)8) appears at the 2θ position of 6.2°, 19.6°, 12.4°, 25.2°, and 44.8°. The peaks of 20.9°, 24.1°, 27.4°, and 30.7° refer to microcline (KAlSi3O8) while 21.09°, 23.6° and 27.0° donate orthoclase (KAlSi3O8). Both microcline and orthoclase are categorized as alkali feldspars. Also, the plagioclase group presents as anorthite (Ca(Al2Si2O8)) at the 2θ position of 22.0°, 23.7°, 28.1°, and 30.6°. The peaks of 15.78° and 25.97° donate analcime (Na(AlSi2O6)·H2O) as the zeolite group. A shown in Table 1 and Table 2, the XRF results strongly support the mineralogical identification of oxides and elements that are considered to have potential in the process of CO2 mineral carbonation.



The XRD results from the thin sections were consistent with the XPL results, which clearly showed the texture of the Segamat basalt including orthopyroxene, olivine, and augite (see Figure 3). Aside from that, other phenocrysts such as calcite, feldspar, and chlorite minerals were identified in the thin sections, and this was also supported by the XRD analysis (see Figure 4, Figure 5, Figure 6 and Figure 7).




4.3. Segamat Basalt Potential for CO2 Mineral Carbonation


To determine whether the selected samples are suitable for the process of mineral carbonation, it is essential to understand their geochemical and mineralogical characteristics. Several reports have shown that only a few basaltic types are suitable to serve as host rocks in the CO2 mineral carbonation process [21,39,40]. The results of this study indicated that the Segamat basalt samples have the proper geochemical and mineralogical properties for applying the CO2 mineral carbonation process. These properties involve an appropriate content of Fe-, Mg-, and Ca-bearing minerals. The EDX spectrum (Figure 8) shows that the Segamat basalt samples are mainly composed of C, O, Na, Mg, Al, Si, K, Ca, Ti and Fe. Also, Figure 9 indicates that Ca, C, and O were the main elements detected by the EDX analysis. Additionally, the FESEM images show micro-pores ranging from 0.1–1.5 µm in diameter (Figure 9).



Based on the XRF results (see Table 2), Segamat basalt, as an ultramafic rock, is very suitable for the process of mineral carbonation because it contains a considerable amount of oxides such as CaO (11.20–15.74 wt.%) and MgO (4.14–6.54 wt.%) that can potentially be carbonated. These oxides are favored by divalent reactants to form another carbonate mineral (i.e., calcite and magnesite). Equations (1) and (2) show the reactions of these oxides with CO2. The products of these two potential reactants would be calcite (CaCO3) and magnesite (MgCO3).


  CaO +   CO  2  →   CaCO  3   



(1)






  MgO +   CO  2  →   MgCO  3   



(2)







Moreover, mineral carbonation requires the dissolution of reactive minerals during CO2–rich water interaction with the feedstock. It has been reported that the presence of water can increase the amount of carbonated minerals during the interaction of basalt samples with the injected CO2 [41]. In this regard, the XRD analysis (see Figure 4, Figure 5, Figure 6 and Figure 7) provides more precise results for identifying the minerals in the samples. It shows that Segamat basalt contains the pyroxene group (enstatite (MgSiO3) and augite ((Ca,Na)(Mg,Fe,Al)(Si,Al)2O6)), and the olivine group (fayalite (Fe2SiO4) and forsterite (Mg2SiO4)), which enhance the mineral carbonation process in the feedstock (see Figure 4). At first, carbon dioxide is dissolved in water causing it to become acidic. When these reactive minerals react with the carbonated water, the dissolution process occurs and the cations of Ca, Mg, and Fe are released into the water. Later, these leached out cations precipitate into stable carbonated minerals like calcite (CaCO3), magnesite (MgCO3), and siderite (FeCO3) when combined with the dissociated carbonic acid (Equations (3) and (4)).


    CO  2  +  H 2  O →  H 2    CO  3   



(3)






     (  Ca , Mg , Fe  )    2 +   +  H 2    CO  3  →  (  Ca , Mg , Fe  )    CO  3  + 2  H +   



(4)







As discussed above, the identification of pyroxene and olivine minerals in Segamat basalt is crucial because these minerals are the prerequisite for further reaction with CO2 and water, which allows the process of mineral carbonation to occur [19]. Forsterite (Mg2SiO4) and anorthite (Ca(Al2Si2O8)) minerals in basalts act as the potential source minerals for CO2 sequestration. According to Oelkers et al. [19], 5.86 tons of forsterite and 23.1 tons of anorthite are required to sequester 1 ton of carbon dioxide. This means that olivine and pyroxene are more reactive than plagioclases for the process of mineral carbonation. Also, the existence of carbonated minerals such as calcite in the Segamat basalt proves that this feedstock has a natural potential for the process of mineral carbonation during geological time. There is no record in previous studies of the presence of calcite as phenocrysts in Segamat basalt.



Furthermore, the outcrops of Segamat basalt present a potential site for sequestering carbon dioxide. The Segamat basalts are located in Johor Province, Malaysia, with a strong source of CO2 emissions in this area. The CCS approaches are applicable through the H2O–CO2 interaction to sequestrate CO2 in the Segamat basalt. As can be seen in the FESEM images (see Figure 8 and Figure 9), the CO2 mineral carbonation process is increased since pore-space is highly available in the Segamat basalt samples. On the other hand, the Segamat basalts have been formed in the Paleogene period and are relatively less-altered by volcanic exposure, thus they are more feasible in the process of CO2 mineral carbonation [41]. Furthermore, Koukouzas et al. [41], have calculated the CO2 storage capacity (SCCO2) using Equation (5).


  S  C    CO  2     (  ton  )  =  ∑   (  V × φ × ρ × ε  )   



(5)







The outcrop volume (V) of the Segamat basalt is 52 km3 with an area of about 200 km2 and a depth of 260 m. A potential plot with a volume of 0.0042 km3 (length 400 m, width 250 m, depth 42 m) was used to estimate the CO2 storage of the Segamat basalt outcrop. Also, the average porosity ( φ ) of the Segamat basalt samples is 16%. Studies in [42] and [43] have shown that the specific gravity of the carbon dioxide is 400 kg/m3 at a pressure of 10 MPa and temperature of 50 °C. The CO2 storage ratio ( ε ) is 5% [44]. Therefore, the Segamat basalt provides a site that could sequester 91,520 tons of carbon dioxide.





5. Conclusions


This study was undertaken in order to characterize samples of the Paleogene Segamat basalt in the Central Belt, Malaysia, to assess their potential in the process of CO2 mineral carbonation. The findings from the petrographic and mineralogical studies indicate that Segamat basalt contains silicate minerals that are well favored in the process of CO2 mineral carbonation. These are enstatite, augite, fayalite, and forsterite, which can form carbonate minerals (i.e., calcite, magnesite, and siderite) during reaction with CO2. The results also show that the Segamat basalt samples have the necessary, appropriate physicochemical characteristics to be considered as potential sites for implementing the CO2 mineral carbonation approach. Based on these characterizations, Segamat basalt might be considered as having the potential for mineral carbonation either for CO2 storage purposes or ex situ mineral carbonation feedstock. Therefore, the Segamat basalt could be used in further studies to better understand the process of mineral carbonation in basalts.
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Figure 1. Geological map of Segamat basalt modified from Ng et al. [34]. 
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Figure 2. Calcite veins (a) and mafic phenocrysts (b) from the Segamat basalt outcrop. 
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Figure 3. Petrography of Segamat basalt samples under PPL (a,c,e,g) and XPL (b,d,f,h) using 4× magnification. Cal, Fsp, Ol, Chl, Aug, and Opx represent calcite, feldspar, olivine, chlorite, augite, and orthopyroxene, respectively. 
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Figure 4. XRD analysis of sample 1 from Segamat basalt (Chl:chlorite, Sud: sudoite, *Feldspar: common feldspar group peak, Anl: analcime, Afs: alkali feldspar, Mc: microcline, An: anorthite, Fo: forsterite, Or: orthoclase, Rt: rutile, Aug: augite, Hyp: hypersthene, Cal: calcite, En: enstatite, Fa: fayalite). 
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Figure 5. XRD analysis sample 2 of the Segamat basalt (Chl: chlorite, Sud: sudoite, *Feldspar: common feldspar group peak, Anl: analcime, Afs: alkali feldspar, Mc: microcline, An: anorthite, Fo: forsterite, Or: orthoclase, Rt: rutile, Aug: augite, Hyp: hypersthene, Cal: calcite, En: enstatite, Fa: fayalite). 
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Figure 6. XRD analysis of sample 3 of the Segamat Basalt (Chl: chlorite, Sud: sudoite, *Feldspar: common feldspar group peak, Anl: analcime, Afs: alkali feldspar, Mc: microcline, An: anorthite, Fo: forsterite, Or: orthoclase, Rt: rutile, Aug: augite, Hyp: hypersthene, Cal: calcite, En: enstatite, Fa: fayalite). 
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Figure 7. XRD analysis of sample 4 of the Segamat basalt (Chl: chlorite, Sud: sudoite, *Feldspar: common feldspar group peak, Anl: analcime, Afs: alkali feldspar, Mc: microcline, An: anorthite, Fo: forsterite, Or=: orthoclase, Rt: rutile, Aug: augite, Hyp: hypersthene, Cal: calcite, En: enstatite, Fa: fayalite). 
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Figure 8. (A) FESEM image and (B) EDX spectrum of Segamat basalt sample. Element weight percentage (wt.%): C (0.91 wt.%), O (53.45 wt.%), Na (1.44 wt.%), Mg (4.76 wt.%), Al (5.01 wt.%), Si (22.11 wt.%), K (2.62 wt.%), Ca (6.25 wt.%), Ti (0.71 wt.%), and Fe (2.74 wt.%). 
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Figure 9. (A) FESEM image and (B) EDX spectrum of Segamat basalt sample. Elemental analysis by the EDX shows that C (7.99 wt.%), O (45.51 wt.%), and Ca (46.50 wt.%) are the main elements. 
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Table 1. Oxide composition of Segamat basalt from the XRF analysis.
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	Elements
	Weight % in Sample 1
	Weight % in Sample 2
	Weight % in Sample 3
	Weight % in Sample 4





	SiO2
	43.90
	41.78
	44.58
	41.95



	Fe2O3
	13.73
	16.28
	14.86
	16.07



	Al2O3
	13.10
	11.70
	12.60
	12.30



	CaO
	11.20
	13.71
	14.19
	15.74



	MgO
	6.54
	5.46
	4.14
	4.80



	K2O
	5.23
	5.95
	4.30
	4.21



	P2O5
	2.85
	1.47
	1.37
	1.52



	TiO2
	1.43
	1.69
	1.75
	1.60



	Na2O
	0.62
	0.92
	1.30
	0.90



	MnO
	0.28
	0.35
	0.29
	0.31



	SO3
	0.24
	–
	0.07
	0.06



	BaO
	0.24
	0.33
	0.17
	0.19



	Cl
	0.20
	0.08
	0.07
	0.07



	CuO
	0.16
	0.04
	0.04
	0.04



	ZnO
	0.10
	0.05
	0.05
	0.05



	Cr2O3
	0.06
	0.07
	0.06
	0.05



	SrO
	0.06
	0.08
	0.08
	0.10



	ZrO2
	–
	0.03
	0.09
	0.02



	Rb2O
	0.03
	0.03
	0.02
	0.02



	NiO
	–
	0.02
	0.02
	0.02
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Table 2. Elemental composition of Segamat basalt from the XRF analysis.
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	Elements
	Weight % in Sample 1
	Weight % in Sample 2
	Weight % in Sample 3
	Weight % in Sample 4





	Si
	33.30
	30.32
	32.88
	30.05



	Fe
	21.81
	23.49
	22.40
	23.80



	Ca
	15.40
	18.19
	19.10
	20.83



	Al
	10.40
	9.07
	9.59
	9.57



	K
	8.11
	8.68
	6.48
	6.27



	Mg
	5.36
	4.55
	3.43
	3.97



	P
	2.06
	1.12
	1.11
	1.11



	Ti
	1.83
	2.00
	2.11
	1.93



	Na
	–
	0.64
	1.40
	0.79



	Mn
	0.46
	0.52
	0.50
	0.47



	Ba
	0.36
	0.63
	0.16
	0.36



	Cu
	0.31
	0.06
	0.07
	0.08



	Zn
	0.20
	0.10
	0.09
	0.10



	Sr
	0.14
	0.15
	0.16
	0.20



	Cr
	0.11
	0.09
	–
	0.08



	Rb
	0.06
	0.07
	0.05
	0.05



	Ni
	0.05
	0.04
	0.04
	0.03



	Zr
	–
	0.16
	0.15
	0.14



	Cl
	–
	0.11
	0.13
	0.15
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