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Abstract: Complex physical–chemical interactions between clay particles including the van der Waals
force control the macroscopic behaviors of clay. The calculation of van der Waals force is essential
in the discrete element method (DEM) that has been widely used to enhance the understanding of
the behavior of clay. Due to its high computational efficiency, a plate-wall model developed in the
literature was adopted to obtain the van der Waals force between the neighboring clay particles
approximately in the published DEM simulations. However, different choices of the ideal wall result
in different magnitudes as well as directions of total van der Waals forces. To investigate the effect,
a new rigorous plate-plate model was put forward and solved using an optimized Cotes integration
method. Based on the comparison between the calculated results based on plate-wall and plate-plate
model, the above effect was analyzed for the cases of face-face, edge-edge and edge-face contact types.
Then, necessary advice for the reasonable use of the ideal-wall model was given accordingly.
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1. Introduction

van der Waals forces act between all atoms and molecules [1] and play a role in many important
phenomena such as the aggregate stability of soil [2], adsorption behavior of clay [3,4], and macroscopic
deformation of clay [5]. The well-known DLVO theory (Deryaguin-Landau-Verwey-Overbeek)
considering the contribution of van der Waals force has been used extensively to predict the stability
of colloidal suspensions including clay-water systems [6]. In fact, there exists a tight link between
the macro mechanical behaviors of clays and the interactive forces between the clay particles [5,6].
Exploiting these links is necessary for the deep understanding of the mechanism of macro behaviors of
clay. At the nanoscale, molecular dynamics simulations have been adopted successfully to exploit
the physical properties of clay-water system [7–9]. In these simulations, van der Waals interactions
between atoms are usually taken into account by means of the model of force field, e.g., CLAYFF model
(CLAY Force Field) [8]. Based on molecular dynamics, it has been shown that the parameter related to
van der Waals energy has profound influence on the macroscopic behaviors such as capillary forces
on clay particle [7]. However, due to the limited computational resources, most of the molecular
simulations of clay-water focused on idealized infinite clay lamellae [9]. To simulate multi-aggregate
systems of clay, a proper meso-scale interaction potential of the clay aggregation, which is the essential
part of coarse-graining upscaling method, has been developed based on full atomistic simulations [10].
The other coarse-graining strategy by which each clay particle is composed of hundreds of spherical
sub-particles physically representing a great deal of atoms has also been proposed to simulate the
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macroscopic clay behavior [11]. In the field of soil mechanics, discrete element method (DEM) which
simulates the macroscopic behavior of soil by considering the inter-particle forces quantitatively has
been used to reveal the abovementioned links for nearly four decades [12]. DEM simulations of clays
have also been developed to achieve a quantitative multiscale interpretation of macro mechanical
behavior of clays [13,14]. In such simulations, it is essential to calculate DLVO forces including van
der Waals as well as electrostatic forces accurately and efficiently. Although DLVO theory fails to
predict short range repulsion which results from hydration force [1,6], it was satisfactorily used in
DEM simulations of clays to reproduce the typical mechanical behavior of clayey soil, in which both
electrostatic and van der Waals forces were treated as constants once the distance between neighboring
clay particles become small enough [13,15]. It is well known that both van der Waals and electrostatic
forces decrease with the increasing inter-particle distance [1,6], yet the relative magnitude of these two
forces depends on many factors such as the relative orientation of the interacting particles, ion valence,
concentration of the pore electrolyte and so on [13,14,16]. The calculation of van der Waals forces
between two finite clay particles is the concern of this study.

Based on the well-known London theory for attractive energy between two-unit molecules,
the theories for attractive energy between two macro-bodies have been developed significantly
by Hamaker, de Boer, Casimir and Polder, and Lifshitz [1,6,17]. Following these classical theories,
Anandarajah and Chen put forward a combined theory that was referred to as Hamaker-de Boer-Lifshitz
theory in order to account for the retardation effect in a condensed system as well as the effect of
geometry of macro-bodies [17]. To calculate the van der Waals forces between neighboring clay particles
reasonably and efficiently, the geometry of the clay particle has been assumed to be a cubic plate.
Furthermore, the calculation of van der Waals forces between two arbitrary plates as shown in Figure 1,
in which two rectangular Cartesian coordinate systems O1TSW and O2XYZ moving with plate1 and
plate2, respectively, are defined, was simplified into that between a finite plate and an infinite plate
which is referenced to as a wall as shown in Figure 2. According to the ideal plate-wall model shown
in Figure 2 where Z-axes and W-axes are assumed to be parallel to each other, a close-form formula for
van der Waals force was obtained [17], which has been used widely in the later DEM simulations of
clays [13–15,18,19] due to the high efficiency of close form solution.
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The analytical formula of the van der Waals forces for the above ideal plate-wall model is [17]

Fpw = Aw1
6π sin 2α

8∑
i=1

(−1)i
[

4
cXi
−

1
X2

i

]
−

12(Xi+c)2

c4 In Xi+c
Xi

X1 = d, X2 = d + d2, X3 = d + d2 + L1 sinα, X4 = d + L1 sinα,
X5 = d + d2 + d1 cosα, X6 = d + L1 sinα,
X7 = d + L1 sinα+ d1 cosα, X8 = d + d2 + L1 sinα+ d1 cosα
X7 = d + L1 sinα+ d1 cosα, X8 = d + d2 + L1 sinα+ d1 cosα

(1)

where A is the Hamaker constant 1.59 × 10−20 J, c is a constant dependent on the characteristic length
of interaction (49.363 nm is taken throughout the present study following [17]), w1, d1 and L1 are
the width, thickness, and length of plate1, respectively, d2 is the thickness of the wall (i.e., plate2 in
Figure 2), and d and α are the minimum distance and angle between plate1 and the wall, respectively.
It was also shown that the force Fpw in Equation (1) is in the direction of Y-axes, i.e., perpendicular to
the selected wall shown in Figure 2 [17]. Anandarajah and Chen further gave the similar formulas of
the coordinates of action of Fpw on plate1, which are not presented here for space reasons.

Chen adopted a rigorous method of adding van der Waals forces between all the pairs of molecules
over these two plates [16]. By this method, an expression of a multi integral instead of analytical
formula like Equation (1) was obtained. To simplify the calculation, Chen assumed that Z-axes and
W-axes shown in Figure 3 were parallel to each other. As a result, the relative inclination between these
two plates can be determined by one angle α. The expression of van der Waals force acting on plate2 in
Figure 3 are

Fi =
A
π2

∫
V2

∫
V1

Fo cos βidV1dV2, i = X, Y, Z
Fo = c 6c+7r

r7(c+r)2
cos βX

cos βY
cos βZ

 = 1
r


t cosα− s sinα+ lx − x

t sinα+ s cosα+ D + d2 − y
w + lz − z


r =

√
(t cosα− s sinα+ lx − x)2 + (t sinα+ s cosα+ D + d2 − y)2 + (w + lz − z)2

(2)

where V1, V2 denote the volume of plate1 and plate2, r is the distance between an arbitrary molecule
A(x,y,z) in plate2 and B(t,s,w) in plate1, βi denotes the direction of the vector AB with respect to O2XYZ
coordinate system, D is the minimum distance between the two plates as shown in Figure 3, d2 is the
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thickness of plate2, and lx and lz are the coordinates of O1 in the O2XYZ system. The expressions of
the locations of total force on the two plates C1 and C2 as shown in Figure 3 were also obtained [16],
which are not present here for space reasons.
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The calculation related to Equation (2) is too time consuming [16] to be used in practical
DEM simulation. To reduce computation effort, Chen put forward an approximation method of
superposition [16]. However, the method of superposition involves the solutions of nine equations,
among which there is a nonlinear one. The reason why the abovementioned analytical solution based
on the ideal plate-wall model instead of the approximation method is widely used in DEM simulations
is most likely its simplicity.

However, there is a dilemma of how to choose a proper ideal wall in the two plates shown in
Figure 1. It seems that either of the two plates can be chosen as the ideal wall. Nevertheless, it can
be deduced that different choices result in different magnitudes as well as directions of total van der
Waals forces between neighboring clay particles. Therefore, the present study aims to give reasonable
advice for the proper use of the ideal plate-wall model by comparing its solutions and those of a more
rigorous plate-plate model.

The remainder of this paper is organized as follows. Firstly, the integral expression of a rigorous
plate-plate model in which two plates are arbitrarily located in three-dimensional space is given and
its numerical solution is verified. Then, the effects of choice of the ideal wall in two plates on the
calculated van der Waals force are investigated systematically for various contact types including
face-face, face-edge contact, and so on. Finally, according to the corresponding analysis, necessary
advice for the reasonable use of the ideal-wall model is given.

2. New Rigorous Plate-Plate Model and Its Numerical Solution

2.1. Van der Waals Force for the New Rigorous Plate-Plate Model

For the model of two arbitrarily located plates as shown in Figure 3, the coordinates of any
molecule B(xB, yB, zB) in plate1 with respect to the O2XYZ system are related to the counterpart
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B(t,s,w) in the O1TSW system by a rotational matrix instead of only one angle α as described in Chen’s
plate-plate model. 

xB

yB

zB

 = R12


t
s
w

+ PO2
O1

R12 =


rxt rxs rxw

ryt rys ryw

rzt rzs rzw


(3)

in which PO2
O1

is the coordinates of O1 with respect to O2XYZ system, R12 is the rotational matrix, and the
element of R12, rij denotes the directional cosine between i axes and j axes. Accordingly, the distance
between an arbitrary point A(x,y,z) in plate2 and B(t,s,w) in plate1 is

r =

√√√√√ (
trxt + srxs + wrxw + PO2

O1
x − x

)2
+

(
tryt + srys + wryw + PO2

O1
y − y

)2

+
(
trzt + srzs + wrzw + PO2

O1
z − z

)2 (4)

and the direction of the vector AB with respect to O2XYZ coordinate system is


cos βX

cos βY
cos βZ

 = 1
r


trxt + srxs + wrxw + PO2

O1
x − x

tryt + srys + wryw + PO2
O1

y − y

trzt + srzs + wrzw + PO2
O1

z − z

 (5)

The expression of van der Waals force acting on plate2 in the present model can be obtained by
substituting Equations (4) and (5) into Equation (2). As can be seen, Chen’s plate-plate model can be
regarded as a special case of the present plate-plate model.

2.2. Numerical Solution of van der Waals Force of the New Model

It can be noticed that multiple integral is involved in the numerical solution of Equation (2).
Due to the highly nonlinear integrand which is a function of Equations (4) and (5), a reasonable
numerical procedure has to be elected to obtain the accurate solutions. It should be noted that Monte
Carlo [20] and quasi-Monte Carlo [21] methods have been adopted by the author to address this
problem. However, plenty of calculations indicated that the integral values are sensitive to the selection
of random sample points, and the solutions are often unable to converge with the increasing number
of sample points. An optimized Cotes integral method [22] is elected on a trial and error basis.

According to the used integral method [22], the numerical precision of multiple integrals
over a six-dimensional cubic domain D6 = [a1, b1] × [a2, b2] × [a3, b3] × [a4, b4] × [a5, b5] × [a6, b6] can
be guaranteed by continuous division of the integral interval in the following way: the interval
[ai,bi] is divided into 4mi equal subintervals, then each subinterval can be divided into five equal
parts repeatedly until the desired precision has been reached. The corresponding numerical integral
formula is

I =
∫ ∫ ∫ ∫ ∫ ∫

f (x1, x2, x3, x4, x5, x6)dx1dx2dx3dx4dx5dx6 ≈ Cr

=
(

2
45

)6 6∏
i=1

hri

5r−1
·4m1∑

i1=0

5r−1
·4m2∑

i2=0

5r−1
·4m3∑

i3=0

5r−1
·4m4∑

i4=0

5r−1
·4m5∑

i5=0

5r−1
·4m6∑

i6=0
Bi1Bi2Bi3Bi4Bi5Bi6

× f (x1, x2, x3, x4, x5, x6)

(6)
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in which
hri =

bi−ai
5r−1·4mi

Bi j =



7, i = 0, 5r−1
· 4mi,

32, i = 1, 5, 9, . . . , 5r−1
· 4mi − 3,

12, i = 2, 6, 10, . . . , 5r−1
· 4mi − 2,

32, i = 3, 7, 11, . . . , 5r−1
· 4mi − 1,

14, i = 4, 8, 12, . . . , 5r−1
· 4mi − 4.

j = 1, 2 . . . , 6
(7)

2.3. Verification of the Obtained Numerical Solution

An example of the present model is taken to verify the numerical solution. In this example, the two
plates have the same length and width of 0.1 µm and the same thickness of 0.01 µm, they are parallel
to each other, and the distance between them is 0.001 µm. The example can equally be described in
terms of necessary quantities introduced previously, d1 = d2 = 0.01, D = 0.001, l1 = l2= w1 = w2 = 0.1,
lx = lz = 0, α = 0 (the unit µm is omitted for brevity).

This example is solved numerically in both frameworks of Chen’s model and the present model
using the abovementioned Cotes integral method. The integral intervals along the length and width of
the both plates are divided into 4m subintervals, and those along the thickness of the both plates are
divided into 0.4m subintervals. Nine values of m ranging from 5 to 35 are taken. At the same time,
the example is also solved using the ideal plate-wall formula Equation (1). We used Fppy and Fpwy to
denote the calculated force based on the plate-plate and plate-wall model, respectively. All the forces
are along the Y-axes since the two plates are parallel to each other.

Figure 4 presents the numerical results. It can be seen that the solutions based on Chen’s plate-plate
model and those on the present model are exactly the same since the former is a special case of the
latter, and the integral converges when the number of division m exceeds 27.5. The converged ratio of
Fppy to Fpwy is about 0.3, which means that the ideal plate-wall model overestimates the total van der
Waals force between neighboring clay particles.
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The possible reason for the overestimation is that the ideal plate-wall model treats one of the two
finite plates as an infinite plate. To verify the speculation, more calculations in which the size of plate1
is fixed and that of plated2 increases gradually while the two plates are parallel to each other with
the line linking the centers of the two plates along the normal of the plate were carried out. Table 1
presents the calculated results. It can be seen that the calculated force based on the present model
increased with the increasing size of plate2. The ratio of Fppy to Fpwy is about 0.93 when the area of
plate2 is 106 times that of plate1.
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Table 1. Comparison of van der Waals force calculated based on plate-wall model and the present model.

α = 0, d1 = d2 = 0.01, D = 0.001, l1 = w1 = 0.1, l2 = w2
l2/l1 Fpwy/10−9N Fppy/10−9N Fppy/Fpwy

1(lx = lz = 0, m = 27.5)

8.10

2.84 0.35
2(lx = lz = 0.05, m = 27.5) 3.49 0.43
3(lx = lz = 0.1, m = 27.5) 3.87 0.48

10(lx = lz = 0.45, m = 27.5) 4.58 0.57
100(lx = lz = 4.95, m = 27.5) 5.91 0.73

1000(lx = lz= 0, m = 49.95, m = 37.5) 7.56 0.93

3. Effect of the Choice of Ideal Wall

Three basic contact types are shown schematically in Figure 5, among which two plates are
parallel to each other in the face-face type. The effect of the choice of the ideal wall will be investigated
separately in this section.
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3.1. Face-Face Type

For this type, we only focus on the effect of the choice of ideal wall on the magnitude of the
calculated van der Waals force since the force is always along the direction perpendicular to the face,
i.e., Y-axis shown in Figure 6 in which two specific cases of face-face type are illustrated. All the
endpoints of particle1 are projected on the particle2 in case (a), while only part of them are projected on
the partilce2 in case (b). The geometric parameters related the two plates are: l1 = w1 = 0.1, l2 = w2 = 0.2,
d1 = d2= 0.01. lx and lz are shown in Figure 6. The distance between the two plates, D, increases from
1 nm to 10 nm.
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Figure 6. Two specific cases of face-face contact

Figure 7 presents the calculated ratios of Fpwy to Fppy of the two specific cases shown in Figure 6.
For each case, two different choices of the ideal wall were made. It can be seen that the calculated Fpwy

corresponding to the choice of treating plate1 as the ideal wall is larger than that of plate2 as the ideal
wall, and the ratio of Fpwy to Fppy corresponding to case (a) is larger than that to case (b). The reason
why the calculated Fpwy corresponding to plate1 being the wall is much larger is that plate2 has a
larger area. Therefore, it seems like the choice of the ideal wall has a remarkable effect on the calculated
force depending on the geometric configuration of the two plates.
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Figure 7. Comparison of the calculated forces with different choices of the ideal wall.

To reduce the overestimation of the ideal plate-wall model as much as possible, it is reasonable
to choose the plate with a smaller area as the ideal wall. For the specific cases shown in Figure 6,
or two-dimensional cases, the following procedure is put forward. After choosing one plate i as the
ideal wall, the other plate j of the two plates is projected on the chosen plate. Then the projected length
and width are regarded as the new counterparts of the plate j. The new sizes are denoted by the
variables with an apostrophe shown in Figures 8 and 9 that present the projection for the two specific
cases, as plate1 and plate2 are chosen as the ideal wall, respectively.
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It can be seen from Figure 10 that the calculated forces are relatively small and the same no matter
which plate is chosen as the ideal wall. Therefore, for the specific three-dimensional cases in which
the projection of one plate on the other plate is a rectangle or two-dimensional case, the proposed
projection procedure can eliminate the adverse effect of the choice of the ideal wall.
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3.2. Edge-Edge Type

Figure 11 illustrates two specific cases of edge-edge type. The geometric parameters related to the
two plates are the same as those shown in face-face type: l1 = w1 = 0.1, l2 = w2 = 0.2, d1 = d2 = 0.01.
Two specific cases of relative positions of the two plates are shown in Figure 11 where various distance
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between plates is along Y direction in case (a) and X direction in case (b). According to the previous
observation, the calculated force for these cases will be small since the corresponding projection area
is small.
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Figure 12 presents the ratios of the plate-plate solutions of the two specific cases of edge-edge
type, Fee, to that of case (a) of face-face type shown in Figure 6, Fff, while keeping the same distance
between two plates. It can be seen that the van der Waals forces in the case of the edge-edge type
are much smaller than those of face-face type under the same conditions of plate size and distance
between plates. So, it seems that van der Waals force for the case of edge-edge type can be ignored in
DEM simulations. Therefore, the effect of the choice of the ideal wall will not be analyzed further.
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Figure 12. Comparison of the calculated force of edge-edge and face-face type.

3.3. Edge-Face Type

3.3.1. Magnitude of the Calculated Forces

Figure 13 illustrates two specific cases of edge-face type in which the W-axes is parallel to the
Z-axes and the projection area is a rectangle. The geometric parameters related the two plates are:
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l1 = w1 = 0.1, l2 = w2 = 0.2, d1 = d2 = 0.01 in case (a); l1 = 0.2, w1 = 0.1, l2 = w2 = 0.2, d1 = d2= 0.01
in case (b).
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Observations on the aspect of the effect of ideal wall choice are similar as those in the case of
face-face type. Therefore, for the two specific cases shown in Figure 13, the abovementioned projection
procedure has been performed before calculating the relevant plate-wall solutions as illustrated in
Figures 14 and 15.
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Figure 14. Schematic diagram of the projection step treating plate1 as the wall.

It can be seen form Figure 16 that unlike the results of the face-face type, the calculated forces are
different for the different choice of the ideal wall even after the abovementioned projection procedure
has been performed. For the case (a) shown in Figure 13, the calculated force corresponding to plate2
being the wall is larger than that to plate1 being the wall, and the difference between the calculated
forces corresponding to the different choices for α = 30◦ is smaller than that for α = 45◦. However,
for the case (b) shown in Figure 13, the calculated force corresponding to plate2 being the wall is smaller
than that to plate1 being the wall, while the difference between the calculated forces corresponding
to the different choices for α = 30◦ is smaller than that for α = 45◦. The above differences reflect the
effect of the new length and distance after projection as shown in Figures 14 and 15. Comparing the
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above observations to the geometric parameters shown in Figures 14 and 15, it can be concluded that
the change in the distance instead of length due to the different choice of ideal wall has the critical
influence on the calculated forces.
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Therefore, to reduce the overestimation of the ideal plate-wall model as much as possible,
a reasonable choice of the ideal wall means a smaller distance between the two plates for the case of
edge-face contact type.
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3.3.2. Direction and Location of the Calculated Forces

The case (a) shown in Figure 13 has been chosen to investigate the difference in the direction and
location of the calculated forces based on the ideal plate-wall and plate-plate wall model. As illustrated
in the last subsection, for the studied case, choosing plate1 as the wall led to a smaller calculated force.
Therefore, the calculations based on the ideal plate-wall model treat plate1 as the ideal wall while the
distance between the two plates is kept 0.001 µm, and the angle α increases from 15◦ to 75◦.

According to the ideal plate-wall model [17], the direction of the total van der Waals force is
perpendicular to the ideal wall. For the studied case, the direction is just along the S-axes shown in
Figure 13a. To show the direction of the calculated force based on the plate-plate model, the coordinate
components of the force based on plate-plate model are presented in Table 2. The last column is the
direction of the calculated force based on the plate-wall model, with plate1 being the wall.

Table 2. Comparison of the directions of Van der Waals forces based on plate-plate and plate-wall model.

α Fppx/10−9N Fppy/10−9N Fppz/10−9N Fppx/Fppy Fpwx/Fpwy

15◦ −4.02 × 10−3 2.86 × 10−2 5.85 × 10−5 −0.141 −0.268
30◦ −2.78 × 10−3 1.37 × 10−2 2.58 × 10−5 −0.203 −0.577
45◦ −2.32 × 10−3 9.60 × 10−3 1.75 × 10−5 −0.241 −1.0
60◦ −2.33 × 10−3 8.15 × 10−3 1.54 × 10−5 −0.286 −1.732
75◦ −2.80 × 10−3 7.86 × 10−3 1.62 × 10−5 −0.357 −3.732

When plate2 is treated as the wall, the direction of the calculated force is just along the Y-axes,
shown in Figure 13a. It can be seen from Table 2 that the direction corresponding to plate-plate model
is somewhere in between the direction corresponding to plate-wall model, with plate1 being a wall and
plate2 being a wall. In addition, it can be seen that the difference in the directions between plate-plate
and plate-wall model changes nonlinearly with the increasing angle between two plates. However,
comparing with the traditional plate-wall model widely used in DEM [13–15,17–19], it would be
reasonable if the direction of the total van der Waals force is taken as the average of the directions
corresponding to plate-wall model with plate1 being a wall and plate2 being a wall.

Table 3 shows the difference between the location of the calculated force based on the plate-plate
model and that of the plate-wall model. Plate2 in Figure 13a is treated as the wall and the location is the
acting point of the calculated force on the plate2. We use Xpp and Xpw to denote the X-coordinate of the
acting point based on the plate-plate and plate-wall model, respectively. The other variables in Table 3
denote the relevant quantity in a similar way. It can be seen that the difference in the X-coordinate
between the plate-plate and plate-wall model is most significant, the Z-coordinate is smallest, and
the Y-coordinate is in between. This difference in the X-coordinate increases nonlinearly with the
increasing angle between two particles. However, the projection length and the calculated van der
Waals force becomes small with the increasing angle between two particles. Therefore, the influence of
the above difference in the location of calculated force on the calculated moment will not be as large as
the difference itself shown in Table 3.

Table 3. Comparison of the locations of Van der Waals forces based on plate-plate and plate-wall model.

α Xpw/Xpp Ypw/Ypp Zpw/Zpp

15◦ 0.845424352 0.987905290 1.000105178
30◦ 1.067378334 0.989210020 1.000041638
45◦ 1.715227995 0.966569502 1.000008018
60◦ 3.244969855 0.879831892 1.00000768
75◦ 7.722029849 0.696792073 1.000036639
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4. Conclusions

Review on the literature related to the calculation of van der Waals force between two clay particles
shows that the ideal plate-wall model has been widely used in clay DEM simulations. This study
developed a plate-plate model without any assumption about the relative location of the two plates,
and an optimized Cotes integration method has been used to calculate the van der Waals force
numerically. Through the comparison of the calculated results based on the plate-wall model and the
plate-plate model, the effect of the choice of the ideal wall has been investigated.

The calculated results show that for the face-face contact type, it is reasonable to choose the plate
with a smaller area as the ideal wall in general. For the three-dimensional cases which can be simplified
into two-dimensional cases, the projection procedure is advised before using the plate-wall model.
This procedure chooses one plate i as the ideal wall, the other plate j of the two plates is projected on
the chosen plate. Then the projected length and width are treated as the new counterparts of the plate j.
The aim of the above is to reduce the overestimation of the ideal plate-wall model as much as possible.

The van der Waals forces in the case of edge-edge type are much smaller than those of face-face
type. It seems reasonable that van der Waals force for the case of edge-edge type can be ignored in
DEM simulations.

In additional, for the edge-face contact type, a reasonable choice of the ideal wall is to choose one
plate as the ideal wall so that there is a smaller distance between the two plates. It is reasonable that
the direction of the total van der Waals force is taken as the average of the directions corresponding to
the plate-wall model, with plate1 being a wall and plate2 being a wall. The difference in the location of
the calculated force based on the plate-wall model and plate-plate model increases nonlinearly with
the increasing angle between clay particles. It has limited effect on the calculated moment.
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