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Abstract: As a product of hydrothermal activity, seafloor polymetallic sulfide deposit has become
the focus of marine mineral exploration due to its great prospects for mineralization potential.
The mineral prospectivity mapping is a multiple process that involves weighting and integrating
evidential layers to further explore the potential target areas, which can be categorized into data-driven
and knowledge-driven methods. This paper describes the application of fuzzy logic and fuzzy
analytic hierarchy process (AHP) models to process the data of the Southwest Indian Ocean Mid-Ridge
seafloor sulfide deposit and delineate prospect areas. Nine spatial evidential layers representing the
controlling factors for the formation and occurrence of polymetallic sulfide deposit were extracted
to establish a prospecting prediction model. Fuzzy logic and fuzzy AHP models combine expert
experience and fuzzy sets to assign weights to each layer and integrate the evidence layers to generate
prospectivity map. Based on prediction-area (P-A) model, the optimal gamma operator (γ) values
were determined to be 0.95 and 0.90 for fuzzy logic and fuzzy AHP to synthesize the evidence layers.
The concentration-area (C-A) fractal method was used to classify different levels of metallogenic
probability by determining corresponding thresholds. Finally, Receiver Operating Characteristic
(ROC) curves were applied to measure the performance of the two prospectivity models. The results
show that the areas under the ROC curve of the fuzzy logic and the fuzzy AHP model are 0.813 and
0.887, respectively, indicating that prediction based on knowledge-driven methods can effectively
predict the metallogenic favorable area in the study area, opening the door for future exploration of
seafloor polymetallic sulfide deposits.

Keywords: mineral prospectivity mapping; fuzzy logic; fuzzy analytical hierarchy process;
seafloor polymetallic sulfide deposit; Southwest Indian Ridge

1. Introduction

With the progress of deep-sea exploration technology and depletion of terrestrial mineral resources,
the exploration for seafloor mineral resources has been paid considerable attention by various
countries [1]. Since the first discovery of seafloor hydrothermal vent at mid-ocean ridges in the late
1970s [2], the seafloor polymetallic sulfides have gradually become a new type of mineral resources
rich in metallic elements of Cu, Fe, Zn, Mn, and Pb [3,4]. Due to its great potential value, it will
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become an important part of exploitable marine mineral resource, and it is also one of the strategic
alternative resources for sustainable development in the 21st century. In July 2011, the International
Seabed Authority (ISA) approved China’s application for a 10,000 km2 region of the seafloor along
the Southwest Indian Ridge (SWIR), and China have granted to exclusive exploration rights and
preferential commercial mining rights in the area [5]. As regulated by the contract, by 2021 China can
only retain exploration and mining rights of 25% of its area. In this regard, application of mineral
prospectivity mapping (MPM) techniques to delineate potential areas that likely contain sulfide
occurrences in this region of interest is urgent.

In the past decades, researches on MPM techniques have mainly focused on the following four
aspects [6–8]: (1) MPM based on probability statistics (e.g., the weights-of-evidence); (2) MPM based
on non-linear theory (e.g., fractal and multifractal); (3) MPM based on 3D modeling technology;
and (4) MPM based on big data and machine learning (e.g., logistic regression, artificial neural
network etc.). Generally, those MPM techniques can be divided into two categories of data-driven
and knowledge-driven according to the types for assigning weights to each evidence layer [9,10].
The data-driven method analyzes and quantifies the spatial correlation between each evidential layer
and the deposit location of common genesis, which is very applicable for well-explored areas [11].
Data-driven methods consist of logistic regression [12], weight of evidence [13], artificial neural
network [14–16], support vector machine [6], random forest [17], and evidence belief function [18].
Incontrast, based on expert knowledge and judgment, the knowledge-driven approach qualitatively
evaluates the relationship between each evidence layer and the deposits sought [13]. Analysts use
expert opinions to evaluate the relative importance of spatial evidence and provide effective support for
decision-making [19]. Common methods include fuzzy logic [20], index overlay [20], boolean logic [13]
and fuzzy analytic hierarchy process (AHP) [19,21]. Comparing this approach to the data-driven
method required a certain number of discovered mineral deposits; the knowledge-driven techniques
are suitable for undeveloped areas where no or very few mineral deposits are known to occur. Due to
a small number of hydrothermal points occurring in the study area, the knowledge-driven methods
were selected for prediction in our research.

In this paper, fuzzy logic and fuzzy AHP were applied to quantitatively predict seafloor sulfide
resources in the Southwest Indian Ridge between 46◦ and 52◦E. The objectives include the demonstration
of two knowledge-driven methods for MPM in seafloor sulfides, generation of seafloor sulfide
prospectivity map for further exploration, and comparison of the performance of the two methods.

2. Geological Background

The Southwest Indian Ridge (SWIR), separating the Antarctic and African Plates, is the ultraslow
spreading ridges with a full spreading rate of 14 km/Ma [22]. The west side of SWIR intersects with
the Mid-Atlantic Ridge (MAR) and America-Antarctic Ridge (AAR) at the Bouvet Triple Junction
(BTJ, 55◦ S, 00◦40′ W), while the east side intersects with the Central Indian Ridge (CIR) and the
Southeast Indian Ridge (SEIR) at the Rodrigues Triple Junction (RTJ, 25◦30′ S, 70◦ E) (Figure 1), with a
total length of about 8000 km [23]. Along-axis topographic and geophysical surveys revealed that
the SWIR may be separated into some subsections, differing in the crustal thickness, obliquity of the
ridge axis, topographic and geomorphological characteristics, mantle composition, and magmatic
activity [1,24–26].
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Figure 1. The study area in the central eastern part of the Southwest Indian Ridge (SWIR), ~900 km 
north of the Crozet hotspot，the red box indicates the range of the study area. 

The study area belongs to the subsection between the Indomed and Gallieni transform faults 
and displays constant and slight overall obliquities, with a water depth varying from ~1500 m to 
~4000 m [27]. The ridge axis in this region is E-NE striking with rugged terrain and well-developed 
central rift. The dominant rock in exposed seafloor is basalt, also including diabase, gabbro, and 
peridotite [25].Previous studies have proved that this region has favorable conditions to generate 
seafloor hydrothermal activity and form sulfide deposits [26].It presents strong negative Bouguer 
gravity anomalies in this region, indicating active crust-mantle exchange to provide a heat source 
[26–28]. Melt inclusion and host glass compositions indicate higher degrees of melting fractions in 
the mantle melting column [29]. The detachment fault has exposed lower crust and mantle 
materials on the seafloor inferred by gravity, magnetic, borehole and seismic geophysical surveys, 
favoring the formation of an oceanic core complex and hydrothermal circulation system [30]. In 
addition, hydrothermal activity in this region is significantly associated with hot spots such as 
Crozet, Conrad, and Marion, indicating the strong ridge–hotspot interactions [23]. More and more 
countries and studies have paid increasing attention to this segment. The polymetallic sulfide 
exploration contract zone of China is also mainly located in this area. Since the Longqi 
hydrothermal field discovered in this region in 2007, some other hydrothermal fields have been 
discovered consecutively by Chinese Dayang cruises, such as Yuhuang, Duanqiao hydrothermal 
fields, etc. [1,28]. 

3. Data Acquisition and Method 

3.1. Data 

The study area is located in the southern hemisphere, with an area of about 350,000 km2. Data 
sets of topographic, geophysical, geological, and other information are used as evidence sources for 
mineralization prediction. Topographic information mainly includes water depth and slope 
conditions. Geophysical information includes gravity and magnetic conditions. Geological 
information includes structure, ocean crust age, and sediment thickness. Other information mainly 
includes the distribution characteristics of seismic points and the size of the spreading rates. The 
datum is derived from the public data of GeoMapApp. Water depth data and seismic point data are 

Figure 1. The study area in the central eastern part of the Southwest Indian Ridge (SWIR), ~900 km
north of the Crozet hotspot, the red box indicates the range of the study area.

The study area belongs to the subsection between the Indomed and Gallieni transform faults and
displays constant and slight overall obliquities, with a water depth varying from ~1500 m to ~4000 m [27].
The ridge axis in this region is E-NE striking with rugged terrain and well-developed central rift.
The dominant rock in exposed seafloor is basalt, also including diabase, gabbro, and peridotite [25].
Previous studies have proved that this region has favorable conditions to generate seafloor hydrothermal
activity and form sulfide deposits [26].It presents strong negative Bouguer gravity anomalies in this
region, indicating active crust-mantle exchange to provide a heat source [26–28]. Melt inclusion and
host glass compositions indicate higher degrees of melting fractions in the mantle melting column [29].
The detachment fault has exposed lower crust and mantle materials on the seafloor inferred by
gravity, magnetic, borehole and seismic geophysical surveys, favoring the formation of an oceanic core
complex and hydrothermal circulation system [30]. In addition, hydrothermal activity in this region
is significantly associated with hot spots such as Crozet, Conrad, and Marion, indicating the strong
ridge–hotspot interactions [23]. More and more countries and studies have paid increasing attention to
this segment. The polymetallic sulfide exploration contract zone of China is also mainly located in this
area. Since the Longqi hydrothermal field discovered in this region in 2007, some other hydrothermal
fields have been discovered consecutively by Chinese Dayang cruises, such as Yuhuang, Duanqiao
hydrothermal fields, etc. [1,28].

3. Data Acquisition and Method

3.1. Data

The study area is located in the southern hemisphere, with an area of about 350,000 km2. Data
sets of topographic, geophysical, geological, and other information are used as evidence sources for
mineralization prediction. Topographic information mainly includes water depth and slope conditions.
Geophysical information includes gravity and magnetic conditions. Geological information includes
structure, ocean crust age, and sediment thickness. Other information mainly includes the distribution
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characteristics of seismic points and the size of the spreading rates. The datum is derived from the
public data of GeoMapApp. Water depth data and seismic point data are from the US Geological
Survey. The former is a 30”resolutions, which are a fusion of multi-beam sounding and satellite
altimetry. The latter selects data with magnitudes greater than 5 from 1950 to 2013. Gravity, magnetic
data and spreading rate data are from the US National Geophysical Data Center, with a resolution
of 2′. The structure is mainly derived from the inference of geophysical information. Ocean crust
age data (resolution 2′) and sediment thickness data (resolution 5′) are from the National Oceanic
and Atmospheric Administration. Hydrothermal point data in the study area mainly come from the
hydrothermal vent database and published research results [1]. A spatial database was constructed
using ArcGIS in accordance with Chinese database standards and specifications using geographic
coordinate system GCS_WGS_1984.

3.2. Fuzzy Logic

In 1965, American mathematician L. Zadeh first proposed the fuzzy set theory, marking the
birth of fuzzy mathematics [31].In order to establish a mathematical model of fuzzy objects, L. Zadeh
generalized the concept of ordinary sets that only take two values of 0 and 1 as the concept of fuzzy sets
that take infinitely many values in the interval [0,1], and used the concept of “membership” to accurately
characterize the relationship between elements and fuzzy sets. The value of fuzzy membership can
also be assigned through the fuzzification process [32]. After assigning fuzzy membership values to
each category of dataset, the data set must be combined with one or more fuzzy factors to generate a
map of mineral potential.

If X is a collection of all evidence layers Xi (i = 1, 2, 3,... n), each evidence layer has r levels and
is defined as (j = 1, 2, 3,..., r), then the n fuzzy sets Ai (i = 1,2,3,..., n) of the evidence layer X can be
defined as

Ai j =
{(

xi j,µA
)
/xi j ∈ Xi

}
, (0 ≤ µA ≤ 1) (1)

where µA is a membership function. When 0.5 < µA <1, xij is favorable for mineralization. When
µA = 0.5, whether xij is favorable for mineralization cannot be judged. When 0 < µA < 0.5, xij is not
favorable for mineralization. There are various forms of membership functions [33], and we uses the
s-shaped membership function, which can be expressed as

µA =
1

1 + e−a(xi j−b)
(2)

In this formula, xij calculated by xij = wi × wj represents the j-th level of the i-th evidence layer, a
and b are determined by the shape of the function. Here, the value of a and b are assigned 0.1 and
50, respectively.

A fuzzy set operator is used to synthesize Ai to generate a comprehensive fuzzy set F. Fuzzy
AND, fuzzy OR, fuzzy algebraic sum, fuzzy algebraic product, and fuzzy gamma are the common
fuzzy operators [34]. F is the final score for each category of the evidence, which can be expressed as

F =
n∑

i=1

Ai (3)

3.3. Fuzzy AHP

The concept of analytic hierarchy process was originally proposed by Satty in the mid-1970s, and is
a well-known technique in the multiple criteria decision-making techniques [35,36]. The technology can
address complex problems by converting them into simple forms [37,38]. In this paper, a fuzzy AHP
method using triangular fuzzy number processing is used to establish a mineral potential prediction
model. Seven steps involved in applying fuzzy AHP for MPM are summarized as follows [39,40]:
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(1) Construction of a hierarchy. In the first step, the complex decision-making problem is
reduced to a hierarchical structure of interrelated decision-making elements. Based on expert opinions,
the evaluation system for mineral prediction is divided into three levels: the target level, the criterion
level, and the plan level.

(2) Preparation of evidential layers. Map layers are converted into rasters in the GIS environment.
(3) Construction of pairwise comparison matrix. Pairwise comparisons can be obtained by asking

experts about the association between the criterion and the target.
(4) Checking for consistency ratio (CR).
If the pairwise comparison matrix A = (aij) m × m satisfies aij = aikakj, I, j, k = 1,.., m, then A is

considered to be completely consistent, otherwise it is considered to be inconsistent. A can be tested
by the consistency ratio (CR) defined below. If CR ≤ 0.1, A is considered to be consistent; otherwise,
the pairwise comparison matrix must be modified to satisfy the condition.

CR =
(λmax)/(n− 1)

RI
(4)

where λmax is the maximum eigenvalue of the matrix, and RI is the average random consistency
index. The consistency of the pairwise comparison judgments can not only measure the consistency of
decision makers but also evaluates the quality of the model.

(5) Construction of fuzzy evaluation matrix.
The fuzzy comprehensiveness value of the i-th target is defined as

Si =
M∑

j=1

M j
gi
⊗

 n∑
i=1

m∑
j=1

M j
gi


−1

(5)

Among them, M j
gi (j = 1,2,..., m) is a triangular fuzzy number. If M1 = (l1, m1, µ1) and

M2 = (l2, m2, µ2), then the probability of M1 > M2 is

V(M2 > M1) =


1 , i f m2 ≥ m1

0 , i f l1 ≥ u2
l1−l2

(m2−u2)−(m1−l1)
, otherwise

(6)

(6) Calculation of normalized weights.
(7) Using fuzzy operators.
The final vision map is generated after the data of all scheme layers and weights are synthesized

using fuzzy operators.

4. Conceptual Model of Seafloor Polymetallic Sulfide Deposit

Seafloor polymetallic sulfide deposit is formed by water–rock hydrothermal processes in the
oceanic crust, which are closely related to tectonic and magmatic activities and wall rock properties [41].
Many geological factors, such as water depth, stability of hydrothermal system, permeability, mixing
process, fluid boiling, venting, and geological cap rock conditions, influence the metallogenic processes
and control the occurrence of polymetallic sulfides [42,43]. As shown in the metallogenic model
(Figure 2), the formation of Duanqiao hydrothermal field for polymetallic sulfides was largely due to
the role of the normal faults with high angle as well as long-term and stable supply of magma and
heat sources from axial magma chamber (AMC) [43].Hydrothermal circulation strongly influenced by
magmatic and tectonic processes, controlled the transfer of energy and material [5].
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Figure 2. A metallogenic model of Duanqiao hydrothermal region in SWIR [43].

The mineral systems approach is usually proposed to the identify crucial criteria and establish
a conceptual model, and its major components are as follows: (i) sources of mineralizing fluids and
metallic element compositions; (ii) energy gradients that drive the movement of fluids; (iii) migration
pathways for large amount of fluids; (iv) physical and chemical traps for ore precipitation; and finally
(v) preservation of the deposits. In the seafloor sulfide mineral system of this research, three groups of
factors are considered to be essential, which are source, pathway of ore-forming fluids, and favorable
physico–chemical conditions for sulfide deposition and preservation. On the basis of the latest
data of global hydrothermal vent sites and the results of seafloor polymetallic sulfide deposits in
SWIR [1,5,23,44,45], the conceptual model that constrains the formation and distribution of seafloor
sulfide deposits was established. The exploration criteria can be inferred from various datasets to
extract direct or indirect criteria in the form of evidential layers.

(1) Hydrothermal sites. Hydrothermal vents and related sulfide samples are discovered by the
near-bottom surveys, such as deep-sea tows, remotely operated underwater vehicles, human occupied
vehicles, and autonomous underwater vehicles [1]. Previous works have also focused on characterizing
hydrothermal plume patterns to explore new hydrothermal sites [46]. There will be a higher possibility
to find sulfides near or in the vicinity of the hydrothermal locality compared to other areas. In this
regard, hydrothermal sites directly provide material source information.

(2) Topography factor. Topography is closely related to the physico–chemical conditions.
Hydrothermal activity in different tectonic environments has significantly different water depth
distribution characteristics. Water depth plays a crucial role in the formation and distribution
of polymetallic sulfides on the ocean floor. Studies have shown that most seafloor polymetallic
sulfide occurrences occur at the water depth range between 2000 and 3000 m [47].Modern submarine
hydrothermal activity is mainly distributed on negative terrain in high-bottom terrain, so slope can be
used as a predictive factor.

(3) Geological factors. Geological factors are directly associated with the pathway of ore-forming
fluids (e.g., Subsea fault) and physico–chemical conditions (e.g., the sedimentary cap). Subsea fault
structure is the most important ore-conducting and ore-holding channel in the hydrothermal active area.
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Submarine hydrothermal activity and its mineralization are closely related to the tectonic evolution
of the oceanic plate. The distance between the position of the hydrothermal point and the ocean
ridge can be limited by the age of the ocean crust. In the hydrothermal active zone, the presence
of the sedimentary cap layer facilitates the precipitation and aggregation of metal elements, which
can obviously promote the formation of hydrothermal products such as hydrothermal sulfides on a
larger scale.

(4) Geophysical factor. Geophysical factors can also indirectly support the physico–chemical
information. If the seafloor hydrothermal sulfide area has thick sedimentary layers and the thickness
of the sedimentary layer changes greatly, the density difference will become larger. There is a certain
magnetic difference between the sulfide deposit and the surrounding rocks, which can indicate the
existence of the sulfide deposit. Therefore, gravity and magnetic anomalies are important prospecting
indicators in the exploration of seabed polymetallic sulfide resources.

(5) Others. Seismic and volcanic activities on the sea floor mean that regional crustal activity is
more active. Different spreading rates of the mid-ocean ridge tectonic environment have significantly
different characteristics of deep magmatic activity, fault structure, and crustal thickness. They can
indirectly reflect the material source and pathway of ore-forming fluids information.

These ore-controlling layers in the SWIR were used as evidence, which is summarized as follows:
water depth, slope, gravity, magnetic force, structure, ocean crust age, sediment thickness, seismic
point density, and spreading rate. The results of each layer are shown in Figure 3. Buffer analysis
was conducted on the structural data using ArcGIS. The central buffer radius was 5000m, the buffer
interval was set to 5000 m, and the maximum radius was 30,000 m. The dilation rate was analyzed by
inverse distance weighting. Constructed data were reclassified based on buffer level; other data were
reclassified with quantiles at intervals.Minerals 2020, 10, x FOR PEER REVIEW 8 of 18 
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5. Results

5.1. Fuzzy Logic

There are various forms of membership function. In this paper, the S-shaped membership function
is used to transform the evidence level into the value between 0 and 1. Based on interviewing experts
using a series of targeted questionnaires, three geoscientist experts from relevant fields were invited to
grade each layer from 1 to 10. Comparing to results from only one expert, judgments derived from
several experts are generally more accurate [48]. The experts considered the statistical characteristics
of the data in comparison with their knowledge about each layer as evidence for the occurrence of
seafloor polymetallic sulfide. As shown in Table 1, the average of each expert’s score for each layer
was taken as the final score. The greater the score, the more important the layers are to mineralization
(Table 1). Then we processed the score of each level and used the information quantity method to
explore the correlation between the classification of every evidential layer and the mineral occurrences.
The value of the information amount is used for the weight allocation of each level. It assigns a larger
weight value, and the fuzzy membership value vs. the level of each evidential layer can be calculated
by Equation (2). In this paper, we only show the fuzzy membership of depth in Table 2.

Table 1. Final scores of 9 evidential layers.

Evidence Layer Expert A Expert B Expert C Average Score

Depth 9 8 9 8.67
Slope 6 6 6 6.00

Gravity 6 5 6 5.67
Magnetic 7 7 6 6.67
Structure 5 6 5 5.53

Ocean crust age 10 10 9 9.67
Sediment thickness 9 9 9 9.00

Seismic points 10 10 10 10.00
Spreading rates 8 8 8 8.00

Table 2. Fuzzy membership value of depth.

CLASS Grids Points Information
Value

Weight of
Layer

Weight of
Class

Score of
Class

Fuzzy
Membership

Value

−4968.42–−4044.88 6049 0 0 9 3 27 0.091122961
−4044.88–−3777.19 6268 0 0 9 3 27 0.091122961
−3777.19–−3603.19 6650 0 0 9 5 45 0.377540669
−3603.19–−3442.58 6183 0 0 9 5 45 0.377540669
−3442.58–−3281.96 6615 0 0 9 5 45 0.377540669
−3281.96–−3107.96 6500 1 0.028724 9 7 63 0.785834983
−3107.96–−2920.58 6268 3 0.52163 9 10 90 0.98201379
−2920.58–−2679.65 6077 1 0.057948 9 8 72 0.900249511
−2679.65–−2264.73 6040 2 0.361631 9 9 81 0.956892745
−2264.73–−1555.35 5850 2 0.375512 9 9 81 0.956892745

5.2. Fuzzy AHP

In accordance with the steps of the fuzzy AHP, a hierarchical tree was first established according
to the ore-controlling factors analysis of seafloor polymetallic sulfide deposits. The criterion layer
consists of three sub-criteria, and the scheme layer consists of 9 sub-schemes (Figure 4). Three experts
participated in constructing pairwise comparison matrix. Taking the criterion layer as an example,
the pairwise comparison matrix constructed is given in Table 3. The final consistency ratio (CR) of all
comparison matrices was less than 0.1 (Table 4). The fuzzy evaluation matrix is calculated using the
trigonometric function fuzzy number. The results of the fuzzy evaluation matrix of the criterion layer
are shown in Table 5. The weights of the nine layers of evidential layers are shown in Table 6. Then we
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reclassify the reclassified data depending on the assigned weight values. Using the final weight values,
multiplied results of the second reclassification is demonstrated in Table 7.
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Table 3. Pairwise comparison matrix with respect to criteria.

Criterion Topography Data Geophysical Data Geological Other Data

Topography data (1,1,1) (2,1/2,1) (1/2,1/3,1/2) (1/2,1/3,1/4)
Geophysical data (1/2,2,1) (1,1,1) (1/2,1/3,1/3) (1/2,1/3,1/4)

Geological (2,3,2) (2,3,3) (1,1,1) (1,1/2,1/2)
Other data (2,3,4) (2,3,4) (1,2,2) (1,1,1)

Table 4. Consistency ratio (CR) for pairwise comparison matrix.

CI Criteria Topography Data Geophysical Data Geological Other Data

DM1 0.0227 0 0 0.0515 0
DM2 0.0454 0 0 0.0176 0
DM3 0.0077 0 0 0.0707 0

Table 5. Fuzzy evaluation matrix with respect to criteria.

Criterion Topography Data Geophysical Data Geological Other Data

Topography data (1,1,1) (0.5,1.1667,2) (0.3333,0.4444,0.5) (0.25,0.3611,0.5)
Geophysical data (0.5,1.1667,2) (1,1,1) (0.3333,0.3889,0.5) (0.25,0.3611,0.5)

Geological (2,2.3333,3) (2,2.6667,3) (1,1,1) (0.5,0.6667,1)
Other data (2,3,4) (2,3,4) (1,1.6667,2) (1,1,1)

Table 6. Weights of criteria and alternatives.

Criterion Weight Alternative Weight Final Weight

Topography data 0.0557 Depth 0.6805 0.0379
Slope 0.3195 0.0178

Geophysical data 0.0552 Gravity 0.2988 0.0165
Magnetic 0.7012 0.0387

Geological 0.3821 Structure 0.1315 0.0502
Ocean crust age 0.3739 0.1429

Sediment thickness 0.4946 0.189
Other data 0.507 Seismic points 0.9881 0.501

Spreading rates 0.0119 0.006
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Table 7. Reclassification of depth by assigned weight.

Class Grids Points Weight of Class

1 0.379 3 10
2 0.3411 4 9
3 0.3032 1 8
4 0.2653 1 7
5 0.1895 0 5
6 0.1137 0 3

6. Discussion

6.1. Determination of Weight Value in Knowledge-Driven Model

We used two knowledge-driven methods for regional mineral resource prediction, and used
expert knowledge and fuzzy set theory to provide a theoretical basis for calculating weights and
handling the complexity of multiclass evidential layers [10]. In the fuzzy logic model, the weights
between 0 and 1 were acquired by integrating the membership function with the score of evidential
layers from each expert, and then they were assigned to each level of each layer. The weights of
each layer do not add up to one. In the fuzzy AHP, experts first compare any two layers to form a
pairwise comparison matrix, and then calculate the weights combining the triangular fuzzy numbers.
The weights of each layer are in the range of 0–1, and the sum is equal to one. In the process of the
pairwise comparison matrix construction, the consistency ratio of each factor after pairwise comparison
by experts may be greater than 0.1, indicating inconsistency, which will affect the final prediction
results. Therefore, knowledge-driven mineral resource prediction methods should consider these
uncertain factors. Whether knowledge-driven method is appropriate depends on the nature of expert
judgments that are applied in creating evidential maps and in integrating evidential maps. Accordingly,
knowledge-driven MPM is also known as expert-driven MPM.

6.2. Generation of Seafloor Sulfide Prospectivity Map

Applying fuzzy analysis for mineral prospectivity mapping, a gamma operator (γ) is often used
to integrate the nine evidence layers and generate prospectivity map. We use fuzzy gamma operator
to perform fuzzy synthesis on all layers of evidence to ensure that the result of integration is within the
range of maximum and minimum membership of the input variable. This can balance the “decreasing”
and “increasing” effects of fuzzy algebraic sum and fuzzy algebraic product [49]. For determine the
optimal γ value, the prediction-area (P-A) analysis was used in our research [20]. As showed in Figure 5,
in the fuzzy logic method, when γ = 0.95, the intersection point is at the highest position, which
indicates that the predicted area at this time is relatively small and contains more known deposits.
Using the same method (Figure 6), the optimal gamma value of the fuzzy AHP was determined to be
0.90.
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The geological data processing software ArcFractal based on fractal/multifractal uses the
concentration-area (C-A) fractal to divide the ore-forming prospect maps obtained by the two
methods [50–52]. Based on the inflection point values analyzed, the division result of the C-A fractal
models is shown in Figure 7, showing a power-law relationship between element concentration value
and the area of cells. There were more than two enrichment steps, indicating the threshold values
are 0.41 and 0.8 for fuzzy logic, and 0.31 and 0.44 for fuzzy AHP, which can be termed background,
low and high favorable mineralization areas, respectively. The prospectivity maps showing the high
favorable mineralization areas are illustrated in Figures 8 and 9, indicating that most prospect areas
are distributed along the middle ridge, especially the intersection part with a series of N-S-striking
transform faults.
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6.3. Comparing the Performance of the Two Knowledge-Driven Methods

It is an important step towards any prospective modeling approach to validate predictive spatial
models. The receiver operating characteristic (ROC) technique has been extensively applied to estimate
the performance of mineral prospectivity models [53,54]. Finally, the ROC curve and statistical analysis
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are used to assess the prediction effect of the method. Figure 10 presents the results of ROC analysis
based on different mineral prediction probability thresholds. The area under the fuzzy logic curve
(AUC) is 0.813, and the area under the fuzzy AHP curve (AUC) is 0.887; these show that the two
models are capable of prospectivity mapping for seafloor sulfide. It also can be known that in the
mineral prospect prediction based on fuzzy logic, the high mineralization favorable area includes
32 hydrothermal points and seismic points, and the area accounts for 11.28% of the entire research area
(Table 8). In the prediction of mineral prospects based on the fuzzy AHP, there are 31 hydrothermal
points and seismic points in the highly favorable area, and the area accounts for 9.37% of the entire
research area. The fuzzy AHP and fuzzy logic method were applied to mineral prediction, and
good results were achieved. The results show that the two knowledge-driven models are highly
capable of mapping potential areas for sulfide mineralization, which opens up new avenues to prepare
prospectivity maps. However, owing to the absence of certain exploration evidence data, such as
hydrothermal alteration, geochemical anomaly, and hydrothermal plume deemed important in the
prognosis of a sulfide deposit, the exploration criteria can be further facilitated using supplemental
data sets to perfect this prospectivity model.
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Table 8. Statistical results of the two methods.

Method Ratio of Area of High-Favorability
Regions to That of Study Area

Number of Hydrothermal Points
and Seismic Points in

High-Favorability Regions

Fuzzy logical 11.28% 32
Fuzzy AHP 9.37% 31

7. Conclusions

This paper mainly discusses the application of knowledge-driven approaches to predict the
seafloor polymetallic sulfides deposits in the mid-ridge of the Southwest Indian Ocean by integrating
nine spatial evidential layers representing the controlling factors. The following conclusions were
obtained. First, both fuzzy logic and fuzzy AHP can prioritize the prospect area effectively, which
can transform the qualitative knowledge of experts into quantitative evaluation. Integrating fuzzy
theory to obtain weight, those methods can overcome the shortage of binary response, and make
expert opinions closer to reality. Second, a gamma operator can used to synthesize the evidence
layer, the optimal γ values were determined to be 0.95 and 0.9 for fuzzy logic and fuzzy AHP using
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P-A plots, respectively. Third, The ROC curve and AUC were utilized to measure the performance of
the prospectivity models, which show that the models are highly capable of mapping prospectivity
because the AUC is greater than 0.5 and close to 1. The prospectivity mapping confirmed that there is
significant potential for sulfide mineralization, which opens up new avenues for further exploration.
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