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Abstract: Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi 

Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. 

These magmatic-hydrothermal systems share common features with orogenic gold deposits, such 

as spatial and temporal association with syntectonic magmatism. Genetic association with 

magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To 

precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi 

Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole 

grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, 

Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the 

chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) 

magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these 

parameters were interpreted using data collected by electron microprobe and laser ablation-

inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen 

fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, 

similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized 

Lac Line intrusion may indicate a possible prospective mineralized system associated with the 

syntectonic Saussure intrusion. 

Keywords: oxygen fugacity; volatile content; syntectonic intrusions; Abitibi greenstone belt 

 

1. Introduction 

The Abitibi Subprovince (greenstone belt), Superior craton, is a gold-endowed greenstone belt 

where gold is mostly concentrated within volcanogenic massive sulfide (VMS) and orogenic gold 

systems. In addition, intermediate to felsic alkaline intrusions, such as monzonite and syenite, may 

provide fluids and metals to intrusion related gold system (IRGS) [1]. As IRGS and orogenic gold 

deposits formed during the syntectonic period and display some similarities (e.g., mineralized quartz 

veins), the influx of magmatic fluid in many gold systems is debated. For example, the Canadian 

Malartic deposit was first interpreted as an IRGS, re-interpreted as an orogenic gold system [1,2] and 

was then described as a complex association of both genetic models [3]. Thus, Archean IRGS and 

orogenic gold systems may be hard to distinguish [4], rendering difficult the application of a single, 

mutually exclusive exploration model. 
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IRGSs are generally polymetallic and gold-dominated magmatic-hydrothermal systems centered 

on intrusions, e.g., Beattie syenite [5,6]. Metals distribution is generally zoned with hydrothermal 

alteration having a limited extent and potentially including K-metasomatism. Mineralization 

generally consists of sheeted auriferous quartz veins (W, Cu, Zn, Au), skarns (Au, Bi, Cu, W), 

mineralized dykes, and disseminated sulfides [1,2]. Moreover, in the IRGS metallogenic model, 

magma is envisaged to carry metals through the crust. Experimental studies on silicate magmas show 

that Au solubility and the melt capacity to transport gold increases as the Cl and/or S-content of the 

melt increases. Moreover, the formation of Au bearing Cl- and/or S-complexes, in magmas, is linked 

to a narrow range of oxygen fugacity, i.e., ΔFMQ + 0.5 to ΔFMQ + 1.5, where FMQ refers to the 

fayalite-magnetite-quartz buffer [7–9]. In summary, the volatile and metal contents, as well as the ƒO2 

of the magma, need to be constrained to determine whether syntectonic magmatism can transport 

Au and fertilize the upper crust, and whether the IRGS metallogenic model is realistic. 

Most of the gold deposits (orogenic Au, IRGS) in the Abitibi Subprovince are present along the 

Cadillac fault; however, these systems generally have complex overprinting relationships, rendering 

hard the study of early IRGS. For that reason, this study focuses on the Chibougamau area, where a 

variety of syntectonic magma types (sanukitoid, alkaline intrusions, granitoid) are observed, and 

gold deposits are not overprinted by features characteristic of orogenic gold systems—a mineralizing 

style that is not abundant in the study area. Furthermore, magmatic-hydrothermal systems are 

unusually abundant in the Chibougamau area (e.g., central camp, MOP-II, Lac Line mineralization) 

[10–12], although the tectonic processes causing this remain unclear [13,14]. The abundance of such 

mineralizing systems in this area offers a unique opportunity to study the chemistry of ‘fertile’ 

magma intrusions. This contribution will mainly focus on constraining the ƒO2 parameter and the 

volatile content for a variety of syntectonic magmas. 

To address these issues, this work presents a detailed study of the geochemical characteristics of 

one synvolcanic and four syntectonic intrusions. Uranium-Pb dating was conducted to validate the 

syntectonic age of undated intrusions. The trace elements chemistry of zircon and apatite is used to 

evaluate the ƒO2 of the melts and this study provides a basis for a systematic measurement of this 

parameter in Neoarchean intrusions. Moreover, the data are used to evaluate the economic potential 

of the studied intrusions. 

2. Geological Setting 

2.1. Abitibi Subprovince and Chibougamau Area 

The Abitibi Subprovince, southern Superior Province, Canada, is a Neoarchean granitoid-

greenstone belt composed of 40% intermediate to felsic intrusions and 36% volcanic rocks with the 

remaining 24% composed of sedimentary rocks, gneisses with undocumented protoliths and mafic 

to ultramafic intrusions [13]. In greenstone belts, such as the Abitibi Subprovince, magmatic activity 

mostly occurs in two main stages, during the synvolcanic (pre-2750 Ma to 2704 Ma) and the 

syntectonic periods (2704 Ma to 2690 Ma) [15,16]. The synvolcanic period is the main period of 

magmatism and is characterized by large volume volcanism, as well as tonalite-trondhjemite-

granodiorite (TTG) and TT-diorite (TTD) intrusive suites [10]. This is followed by the syntectonic 

period, which is characterized by deformation, erosion-sedimentation, and orogenic gold style of 

mineralization [17,18]. Syntectonic magmatism is typically K-richer and has a limited volume 

(plutons, plugs, and subordinate volcanism) compared to TTG and TTD suites [19,20]. The main 

magma types of the syntectonic period are K-rich TTG, alkaline series, sanukitoids, biotite and two-

mica granitoids, as well as high-K calc-alkaline (HKCA) intrusions [19,21]. The petrogenetic evolution 

of these magmas is debated [19]. Intermediate to felsic alkaline magmas (mainly monzonite and 

syenite) may actively participate in generating fluids and metal budgets to gold mineralizing systems 

of the syntectonic period, i.e., IRGS [1]. 

Syntectonic magmatism is ubiquitous in the Abitibi Subprovince. This study focuses on the 

Chibougamau area because (1) it displays a variety of magma types (sanukitoid, alkaline intrusions, 

granodiorite, shoshonite lava flows) and (2) magmatic-hydrothermal mineralizing systems are not 
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significantly overprinted by orogenic gold systems, which are not abundant in the study area [10–

12]. These characteristics offer a unique opportunity to study the ƒO2 of mineralized and un-

mineralized intrusive systems that we assume representative of synvolcanic and syntectonic 

magmatism. 

In the Chibougamau area, as in the rest of the Abitibi Subprovince, rocks have been 

metamorphosed to greenschist facies or higher grade, although the prefix ‘meta-‘ is omitted from 

rock names. The Chibougamau area is located in the northeastern corner of the Abitibi Subprovince 

and is bounded by the Opatica Subprovince to the north and the Proterozoic Grenville orogeny to 

the east (Figure 1). In the Chibougamau area, the synvolcanic and syntectonic periods extend from 

>2730 to ca. 2710 Ma and from 2704 to 2690 Ma, respectively [22]. The oldest volcanic rocks belong to 

the Des Vents (2798.7 ± 0.7 Ma [23]) and Chrissie (2791.4 ± 2.9 Ma [24]) formations. These rocks are 

overlain by volcanic cycles 1 and 2 of the Roy Group [22]. Volcanic cycle 1 consists mostly of undated 

mafic lava flows of the Obatogamau Formation [25] and intermediate to felsic lava flows of the 

Waconichi Formation (2729.0 ± 1.1 Ma [25,26]). Volcanic cycle 2 is characterized by mafic rocks of the 

Bruneau Formation (2724.4 ± 1.2 Ma [23]), felsic rocks of the Blondeau Formation (<2724.4 ± 1.2 Ma 

[27]) and by the intermediate to felsic volcanoclastic and sedimentary units of the undated Bordeleau 

Formation [10]. The synvolcanic period is also characterized by large volume TTG suites (e.g., La 

Dauversière Pluton) [28] and TTD suites such as the Eau Jaune Complex [29,30] and the 

Chibougamau Pluton [10] (Figure 1). 

During the syntectonic period, basin-restricted sedimentation formed the Opémisca Group. This 

group is mostly made of clastic sedimentary rocks (conglomerate, sandstone). The Opémisca Group 

comprises the Stella Formation and the lava flow-bearing (shoshonite) Haüy Formation (<2691.7 ± 2.9 

Ma [31]). The maximum deposition age for the Stella Formation is 2704 ± 2 Ma, according to dating 

(thermal ionization mass spectrometry isotopic dilution, ID-TIMS, on zircon) performed on a 

conglomerate [27]. In the northern and western part of the study area, the Opémisca Group comprises 

the Chebistuan [22,32] and Daubrée [33,34] formations, respectively. Several intrusions, such as the 

Muscocho Pluton (2701.2 ± 1.7 Ma [25]), formed during the syntectonic period (Figure 1). 

2.2. Syntectonic Magmatism in the Chibougamau Area 

The Chibougamau area contains a variety of syntectonic intrusions, such as alkaline, calc-

alkaline, and sanukitoïd plutons. Representative intrusions for each category are selected for the need 

of this study. The selected intrusions are emplaced within either the sedimentary rocks of the 

Opémisca Group—granodiorite of the Chevrillon Pluton and alkaline Saussure intrusion—or within 

the volcanic rocks of the Roy Group—Opémisca Pluton (sanukitoid), Anville Pluton (TTG suite), and 

the Au-Cu-Ag mineralized Lac Line intrusion. 

The undated Saussure intrusion is located in the western part of the northern Opémisca basin 

(Figure 1). This 9 by 3.5 km intrusion is elongated in the NE–SW direction. It cuts, and is, therefore, 

younger than the sedimentary rocks of the 2693.6 ± 0.6 Ma Daubrée Formation [35], as well as undated 

diorite sills. 

The Opémisca Pluton is located west of the Chibougamau Pluton and corresponds to a 25 by 11 

km intrusion elongated in the WNW–ESE direction (Figure 1). The Opémisca Pluton is emplaced in 

volcanic, volcanoclastic, and sedimentary rocks, including the Blondeau and Bruneau formations 

[23,36]. The pluton has an age of 2697 ± 2 Ma [37] and is coeval with the other sanukitoid pluton of 

the Chibougamau area, i.e., the 2697 ± 3 Ma Barlow Pluton [38] (both are zircon U-Pb ID-TIMS ages). 

The Lac Line intrusion is a small volume felsic to intermediate intrusive stock emplaced into the 

volcanic and volcanoclastic rocks of the Blondeau Formation (Figure 1). This intrusion has a zircon 

U-Pb TIMS age of 2707.6 ± 1.4 Ma [11] and formed during the transition between the synvolcanic and 

syntectonic periods [11]. 

The Chevrillon Pluton is located 6 km south of the Opatica Subprovince. This pluton is a 11 to 8 

km intrusion elongated in the N–S direction (Figure 1). The pluton is emplaced into felsic to mafic 

volcanic rocks of the Bruneau and Bordeleau formations [39,40] and sedimentary rocks of the 

Chebistuan Formation [27]. The pluton recorded a limited amount of deformation, and likely formed 
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toward the end of the syntectonic period, as shown by underdeveloped foliation and the lack of 

deformation of the quartz grain [41]. 

 

Figure 1. Geological map of the Chibougamau area showing the studied intrusions and the main 

volcanic and sedimentary sequences. The geological map is modified from the Ministère de l’Énergie 

et des Ressources Naturelles (MERN), Québec (SIGEOM, 2018). The projection is in North American 

Datum (NAD) 1983 Zone 18 N. 

The Anville intrusion is 25 by 8 km long and is elongated in the E–W direction. It is intruded 

into the tonalite gneisses of the Lapparent Massif (2714 ± 2.5 Ma, ID-TIMS on zircon) [25] and into 

mafic volcanic rocks of the Chrissie and Obatogamau formations (Figure 1). The Anville intrusion is, 

locally, relatively undeformed compared to the Lapparent massif and the pluton may correspond, at 

least in part, to a syntectonic intrusion. However, recent geochronological investigations estimate 

that the Anville intrusion crystallized at 2714.8 ± 0.6 Ma [16]. The area mapped as the Anville Pluton 

may consists of several intrusions emplaced during the synvolcanic and syntectonic periods [42,43]. 

3. Methodology 

3.1. Sampling 

Eight samples were collected in the Chibougamau area from the Saussure, Opémisca, Lac Line, 

Chevrillon, and Anville intrusions during summer 2018 (Figure 1, Table 1). Only fresh rocks were 

sampled to avoid secondary processes that may affect the trace element chemistry of zircon and 

apatite. Alteration minerals, however, are observed in samples from the Lac Line intrusion that is 
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entirely composed of hydrothermally altered rocks. A review of the literature about the petrography 

of the selected samples is proposed in the following section. 

The Saussure intrusion is made of three fractionated and concentrically organized intrusive 

phases. From the margin towards the core, these phases are a granite, a quartz-rich syenite, and a 

pegmatitic syenite [44]. The granite phase is made of 60% to 70% of K-feldspar and plagioclase, 15% 

to 20% of quartz and 10% to 15% of mafic mineral (Figure 2c). The quartz-rich syenite is made of 85% 

of sodic plagioclase and microcline with strong oscillatory zoning, 5% to 10% of quartz, and 2% to 

7% of mafic minerals (mostly biotite, magnetite, hematite, and amphibole). The pegmatitic syenite 

consists of 90% of zoned sodic plagioclase and potassic feldspar, 5% of mafic minerals (biotite and 

amphibole), and 5% of quartz (Figure 2a). Accessory minerals include titanite, zircon, apatite, and 

magnetite. 

Lac Line is a multiphase intrusion mostly made of a porphyritic and equigranular tonalite. The 

other intrusive phases are a porphyritic syenite and a diorite observed in contact with tonalite dykes. 

The Lac Line stock is associated with polymetallic mineralization (Au-Cu-Ag ± Mo) [45] observed in 

the eastern part of the tonalite phase. The mineralization is characterized by quartz-sulfide-bearing 

veins associated with séricitisation [11,45]. The studied tonalite (Figure 2b) is made of 40 to 65% of 

phenocrysts of plagioclase, 20% to 30% of quartz, as well as 5% to 10 % of biotite and amphibole. 

Plagioclase is strongly sericitized, whereas hornblende recrystallized into an assemblage of 

carbonate, chlorite, and actinolite [11]. Accessory minerals include zircon, apatite, and up to 5% of 

disseminated pyrite. 

The Opémisca Pluton is made of quartz-bearing monzonite in his inner parts and quartz-bearing 

syenite in his outer parts. The monzonite phase (Figure 2d) on which this study is focused is made of 

50% to 60% of albite and oligoclase, 15% to 25% of perthitic K-feldspar, 13% to 18% of quartz, 2% to 

10% of hornblende and minor amount of biotite [46,47]. Accessory minerals include zircon, apatite, 

titanite, oxide minerals, and epidote. 

The Chevrillon Pluton is mostly made of K-feldspar phenocryst-bearing granodiorite. The 

matrix is made of 35% to 40% of plagioclase, 25% to 30% of microcline, and 10% to 15% of quartz 

(Figure 2e). It also contains 15% of mafic minerals including biotite, chloritized hornblende, and 

epidote with allanite core. Accessory minerals correspond to titanite, zircon, apatite, and Fe-oxides 

[41]. 

The Anville intrusion is mostly made of tonalite transitioning gradually into granodiorite to the 

west. This study focuses on the granodiorite phase (Figure 2f), which is made of 25% of quartz, 40% 

to 45% of albite-oligoclase and 10% to 15% of microcline, as well as 10% of biotite and hornblende 

[32,48]. Accessory minerals include zircon, apatite, epidote, allanite, and ilmenite. 

For each intrusion, petrographic observations were performed on standard (30 µm thick) 

polished thin sections to document the texture of accessory phases and the contact relationships 

between apatite and silicates. Modal proportions were estimated visually on the microscope by 

counting 200 points (Table 2). Apatite was then imaged using a petrographic microscope equipped 

with cathodoluminescence (CL), i.e., CL8200 Mk5-1 Optical instrument (Cambridge Image 

Technology Ltd. CITL, Hertfordshire, UK). 

For each intrusion, zircon separates were obtained from 5 to 10 kg samples. The rocks were 

disaggregated (1 mm grains) using the electric pulse method at the Overburden Drilling Management 

Ltd. (ODM) laboratory (Ottawa, ON, Canada). Zircons were then separated using a shaking table and 

heavy liquids with densities of 3.0 and 3.3. Zircon grains of various shape and size (up to 300 µm) 

were then hand-picked dry using a binocular microscope. The most representative grains were 

selected and mounted using epoxy resin, and the mounts were polished to expose the cores of the 

zircons. Prior to analysis, CL and back scattered electron (BSE) images were obtained using a Tescan 

Vega 3 scanning electron microscope (SEM) at the Mineral Exploration Research Centre, Laurentian 

University (Sudbury, ON, Canada). Inherited cores and porous grains were avoided during the 

analyses.  
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3.2. Whole Rock Analyses 

Whole rock chemical analyses were performed on all the samples collected in the field (Table 1). 

The whole rock analyses were performed by ALS Canada Ltd. Laboratory (Vancouver, BC, Canada). 

Major elements were determined by inductively coupled plasma (ICP) atomic emission spectroscopy 

(AES) after Li-borate fusion. Trace elements concentrations were quantified using an ICP-mass 

spectrometer (MS). Loss on ignition (LOI) was measured after heating samples at 1000 °C. A duplicate 

performed on a sample from the Anville intrusion shows precision of 1% for all major elements and 

of 10% for trace elements, including rare earth elements (REE). Analytical accuracy and precision 

were monitored using the standard materials: OREAS-105 [49], SRM88B [50], AMIS0304, and 

AMIS0085 [51] for major and trace elements. An additional 30 whole rock chemical analyses were 

compiled from the SIGEOM dataset [52]. 

 
(a) (b) 

 
(c) (d) 
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(e) (f) 

Figure 2. Photography of samples observed under polarized light and showing the main paragenesis 

of the (a–c) Saussure, (b) Lac Line, (d) Opémisca, (e) Chevrillon, and (f) Anville intrusions. 

Abbreviations are from Whitney and Evans [53] and stand for apatite (Ap), augite (Aug), biotite (Bt), 

carbonate (Cb), chlorite (Chl), epidote (Ep), hornblende (Hbl), K-feldspar (Kfs), plagioclase (Pl), 

quartz (Qz). 

Table 1. Localization and lithology of the studied intrusions 

Intrusions 
UTME 

* 
UTMN * Zone Sample 

Whole-Rock 

Geochemistry 

Apatite and Zircon 

Compositions 

Dating U-Pb 

Geochronology 

Saussure 467,051 5,526,000 18 Granite Figure 2 Figures 5, 7; Tables 2, 3 Figure 11 

Saussure 466,402 5,526,084 18 Quartz-rich syenite Figure 2 Figures 5, 7; Tables 2, 3 Figure 11 

Saussure 463,895 5,526,093 18 Pegmatitic syenite Figure 2 Figures 5, 7; Tables 2, 3 Figure 11 

Chevrillon 540,371 5,5473,39 18 
Quartz-rich 

monzodiorite 
Figure 2 Figures 5, 7; Tables 2, 3 Figure 11 

Lac Line 548,644 5,533,262 18 Tonalite Figure 2 Figures 5, 7; Tables 2, 3 - 

Opémisca 511,694 5,520,891 18 Qz-rich monzonite Figure 2 Figures 5, 7; Tables 2, 3 - 

Anville 497,685 5,509,637 18 Granodiorite Figure 2 Figures 5, 7; Tables 2, 3 Figure 11 

* UTME and UTMN stand for Universal Transverse Mercator east and north. 

3.3. Mineral Chemistry 

Electron microprobe analyses (EMPA) were performed on apatite and amphibole, using a fully 

automated CAMECA SX-100 electron microprobe equipped with five wavelengths dispersive 

spectrometers at the Laboratory of Microanalyses of the Geology Department of Laval University 

(Québec, QC, Canada). Time of acquisition for the analyzed elements are presented in the 

supplementary material S1. The microprobe was set to a current of 20 nA and to a voltage of 15 kV. 

Apatite and amphibole grains were analyzed with a 5-µm diameter focused beam. Natural and 

synthetic standard materials were used for calibration including the Durango apatite that was used 

for Ca, P, and F calibration [54] (supplementary material S1). 

Apatite and zircon were then analyzed for trace elements using the laser ablation (LA) ICP-MS 

system at the LabMaTer (Earth's Material Laboratory) laboratory of UQAC (Saguenay, QC, Canada). 

The LA-ICP-MS instrument used is an ArF Resolution M-50 Excimer (193 nm) laser coupled with an 

Agilent 7900X Q-ICP-MS. Apatite and zircon were analyzed using spots with diameters of 25–33 µm 

and 11–25 µm, respectively. Masses and time of acquisition for the analyzed elements are presented 

in the supplementary material S1. The analyzed areas were carefully selected to avoid inclusions, 

inherited cores (zircon), and altered cracks. Laser repetition rate of 15 Hz and a fluence of 5 J∙cm2 

(measured) were used. Data were recorded for 60 s after 30 s of gas analysis (blank). Data quality 

(precision and accuracy) was monitored using the NIST 610, NIST 612, GSE, Durango, GSD and 91500 

zircon reference materials [55]. The results are in good agreement with expected values except for Li 
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(Durango), P, K, Fe, Ni (NIST standards and GSE) and Pt (GSD, NIST 610, NIST 612) (Supplementary 

material S1). 

Ablation data for apatite and zircon were then reduced using the LADR 1.1.01 

(http://norris.org.au/ladr) and Iolite software Version 4, (https://iolite-software.com), respectively. 

The internal standards are Ca (average value for each sample measured using electron probe micro 

analyzer, EPMA) and stoichiometric Si-content (15.28 wt.% Si) for apatite and zircon, respectively. 

The internal standard for apatite has a value of 37.1 to 39.5 wt.% Ca according to EPMA analyses. For 

apatite grains lacking EPMA data, a median value of 38.7 wt.% Ca was used as an internal standard. 

Prior to data processing, pristine and non-pristine zircons are identified using a preexisting 

method, proposed by Zeh and collaborators [56]; Turlin and collaborators [57]; and Groulier and 

collaborators [58]. The pristine and non-pristine grains are distinguished using CL and BSE imaging. 

Trace element chemistry was then used to confirm this classification. Altered zircon commonly 

appears as white or dark grey in CL. These altered grains are also enriched in non-formula elements, 

e.g., Sr, Fe, and light rare earth elements (LREE) [59]. In the study area, altered zircons are enriched 

in Fe, Sr, and LREE (mostly La). Zircon grains defined as pristine fulfill the following criteria: (1) 

zircon are homogenously grey (light or dark) in CL, with or without oscillatory or banded zoning; (2) 

fracture, visible inclusion, and porosity are absent, except for the one that can be avoided during LA-

ICP-MS analysis; and (3) Sr and La contents are low, with Sr < 6 ppm and LaN < 1 (Figure 3a,b), and 

the LREE content has to be under 100 ppm. 

 

Figure 3. Discrimination diagrams for magmatic (pristine) and non-pristine zircons (metamict zircons 

and/or zircons modified by secondary processes), showing the (a) Sr vs. light rare earth elements 

(LREE); and (b) La vs. LREE contents of zircon. Black dashed lines locate the pristine zircon and non-

pristine zircon fields. La data are normalized to chondrite [60]. 
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3.4. Uranium-Th-Pb Isotopic Ratios 

Uranium-Th-Pb isotopic ratios and trace element analyses were performed on ~50 zircons from 

the Anville, Saussure and Chevrillon intrusions, using split stream LA-MC-Q-ICP-MS at the Mineral 

Exploration Research Centre—Isotope Geochemistry Laboratory (MERC-IGL) at Laurentian 

University. The details of analytical setup, reference materials used, and data quality control are 

described in supplementary material S1. Data quality was monitored using the reference materials 

NIST 610, NIST 612, OG1, OGC, and 91500. The results are in good agreement with expected values 

(Supplementary material S3). 

3.5. Data Processing 

Mineral chemistry data were processed to obtain intensive parameters for the studied intrusions, 

including temperature and oxidation state (oxygen fugacity—ƒO2). Temperatures were obtained 

using the Ti-in-zircon thermometer of Ferry and Watson [61]. To apply this method, data from the 

LabMaTer and MERC-IGL were used and bulk rock chemistry was assumed to be representative of 

melt composition and was used to calculate the FM parameter [61]. Furthermore, the activities of SiO2 

and TiO2 (αTiO2 and αSiO2) were estimated as follows. The bulk of the studied intrusions contains 

primary magmatic quartz and the αSiO2 parameter is, thus, 1. The main Ti-bearing mineral is titanite 

and αTiO2 is <1. The αTiO2 parameter is estimated with the method of Hayden and Watson [62], using 

a temperature of 850 °C and a FM parameter of 2.65, 3.19, 2.98, and 1.96 for the Saussure, Opémisca, 

Chevrillon, and Anville intrusions, respectively. The αTiO2 parameter is 0.3, 0.5, 0.6, and 0.7 for the 

Saussure, Opémisca, Chevrillon, and Anville intrusions, respectively. The FM parameter could not 

be calculated for the altered rocks of Lac Line intrusion and αTiO2 is assumed to be 0.6 for this 

intrusion, which is a reasonable value for felsic magmas [62,63]. 

Four methods based on the chemistry of different minerals were used to determine the oxidation 

states of the studied magmas and to evaluate which method is most suitable for the estimation of the 

ƒO2 of these Archean magmas. Redox conditions during crystallization were estimated from the trace 

element contents of apatite and zircon. These methods were only applied to pristine grains to 

constrain the redox conditions of the parental melt. Cerium and Eu anomalies in apatite are 

dependent on ƒO2, bulk rock composition, temperature, pressure, as well as co-existing mineral 

assemblage (e.g., plagioclase fractionation modifies Eu/Eu*) [64–66]. For apatite, Ce and Eu anomalies 

were displayed and interpreted using the binary diagram of Azadbakht [67]. 

In zircon, oxidation state was estimated using the Ce/Ce* vs. Eu/Eu* oxybarometer of Loader 

and collaborators [51], the �
��

��∗
�

����
oxybarometer of Trail and collaborators [68,69], and the REE-

independent �
�

����
����

�
����
����� oxybarometer of Smythe and Brenan [70,71]. These methods are based on the 

incorporation of Ce in zircon and on the lattice strain model [72]. 

The �
��

��∗
�

����
 oxybarometer (Equation (1)) is a redox-sensitive method used to determine the 

oxidation state of magmas based on the partition coefficients (Dzircon/chondrite) of Ce, La, and Pr for zircon 

[68,69,73]. 

(
��

��∗
)���� =

���
������/���������

�(���
������/���������

× ���
������/���������

 (1) 

The equation was put forward by Trail and collaborators and was further simplified by Zou and 

collaborators [68,69,72] Equation (2). 

(
��

��∗
)���� =

(
��

�(�� × ��)
)������

4.17
 (2) 

Using this oxybarometer Equation (2), oxygen fugacity is then calculated after Trail and 

collaborators [69] Equation (3). 
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ln(
��

��∗
)���� = (0.1156 ±  0.0050)  ×  ln(ƒO2)  +

(13860 ±  708)

�(�)
− (6.125 ±  0.484) (3) 

with K the temperature in Kelvin. 

The Ce/Ce* vs. Eu/Eu* oxybarometer is based on the REE content of zircon but due to low 

concentration of La and Pr in zircon (usually <0.1 ppm) and the abundance of LREE-rich micro-

inclusions such as apatite or titanite [51] that can lead to a misestimation of the ƒO2 parameter, the 

method was reformulated Equation (4) [51]. 

��∗ =  
���

²

���

 (4) 

with N the normalization to the chondrite [60]. 

Smythe and Brenan [70,71] formulated a REE-independent �
�

����
����

�
����
�����  oxybarometer (6) based on 

the partition coefficients of Ce in zircon (Dzircon/chondrite) Equations (5)–(6). 

�� �
�����

����

�����
���� � =

1

4
��(ƒO�) +

13136 (± 591)

�
− 2.064 (± 0.011)

���

�

− 8.878 (± 0.112) ×  H�O − 8.955(± 0.091) 

(5) 

where T is the temperature in kelvin calculated using a Ti-in-zircon thermometer, H2O is the water 

content of the melt estimated using the empirical amphibole formulation [74,75] and NBO/t is the 

proportion of non-bridging oxygen where NBO = 2O – 4T and t = Si + Ti + Al + P (in atomic percent), 

as Al < Na + K + 2Ca + 2Mg [76]. Moreover, the REE-independent �
�

����
����

�
����
����� oxybarometer is estimated 

with Cemelt and Cezircon, which are the Ce-content in ppm of the melt and of zircon, respectively. 

Equations (5)–(6): 

�
�����

����

�����
����� =

��������� − ������� × �
����
������/ ����� ����

������� × �
����
������/ ����� ����

− ���������

 × 1.04877 (6) 

where the Cemelt parameter is estimated by assuming that whole rock analyses are representative of 

melt composition. 

4. Results 

4.1. Whole Rock Geochemistry 

The studied intrusions (n = 38) are intermediate to felsic, with Si contents ranging from 62 to 77 

wt.% SiO2 (Table 3, Figure 4a). Moreover, they tend to be peraluminous (Figure 4b) alkaline to 

subalkaline granite, syenite, and monzonite according to their Si- and Na and K-contents (Figure 

4).The alkaline Saussure intrusion is the most enriched in Na and K (Figure 4a). 

Except for the Anville intrusion, the intrusions display similar trace element contents. The bulk 

of the studied intrusions display negative Ta, Nb, Ti, and Rb anomalies (Figure 4d). The Anville 

intrusion also displays strong negative Sr, V, and P anomalies and flat Eu anomaly (Figure 4c). 

The bulk of the studied intrusions displays a strong fractionation of the LREE over the heavy 

REE (HREE) on the chondrite-normalized REE patterns (Figure 4c), with (La/Yb)N ratio of 15 to 30 for 

the Anville and Opémisca intrusions, and 40 to 70 for the Chevrillon, Lac Line, and Saussure 

intrusions (Figure 4c). Three samples from the Anville intrusion display a positive Eu anomaly 

possibly due to local plagioclase accumulation, while the other intrusions show no to slight positive 

Eu anomalies. Moreover, the syenite sample from the Saussure intrusion contains more REE (up to 

500-ppm ∑REE for Saussure) than rocks from the other intrusions (from 80 to 200-ppm ∑REE). 
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Figure 4. Whole rock (n = 38) analyses displayed on the (a) the total alkali silicate (TAS) diagram for 

intrusive rocks [77,78]; (b) A/NK vs. A/CNK diagram with A, N, K and C standing for Al, Na, K, and 

Ca, respectively [79], (c) chondrite normalized rare earth elements (REE) pattern [60]; and (d) multi-

element diagrams for immobile elements displaying data acquired during this study. 

4.2. Petrography 

The studied samples are mostly composed of feldspar (plagioclase and alkali feldspar), quartz, 

biotite, and green hornblende (Table 2). Except for the rocks of the Anville intrusion, which are 

dominated by quartz, the studied intrusions are mostly made of K-feldspar and plagioclase. 

Plagioclase from each sample is recrystallized, with overgrowth texture and saussuritization in the 

core. The Saussure and Chevrillon intrusions contain K-feldspar phenocrysts. Accessory phases are 

apatite, zircon, epidote, titanite, magnetite, and pyrite. In the Lac Line and Anville intrusions, 

amphibole and biotite have been replaced by chlorite, actinolite, and carbonate. Amphiboles are 

observed in the samples from the Chevrillon, Opémisca, and Saussure intrusions. Amphibole grains 

are mostly subhedral to euhedral and are in contact with feldspar. Some amphiboles from the 

Opémisca intrusion are resorbed. Moreover, some amphiboles from the Saussure intrusion are 

altered and/or partly replaced by accessory minerals, such as albite, chlorite and, epidote. Most 

inclusions observed in amphibole are apatite, magnetite, and titanite. 

Table 2. Modal composition of the studied samples. Abbreviations are from Whitney and Evans [53]. 

Intrusion Lithology Mineralogy Accessory Minerals 

Saussure Qz-rich syenite 
40% Kfs, 30% Pl, 10–12% Qz, 

18% Bt-Hbl 
Ttn, Zrn, Ap, Iox 

Opémisca Qz-rich monzonite 
50–60% Pl, 15–20% Kfs, 10–15% Qz, 

5–10% Hbl 
Ep, Ttn, Mag, Ap, Zrn 

Lac Line Tonalite 
>50% Pl, 30–35% Qz, 10–12% Cb, 

5–7% Bt-Chl 
Zrn, Ap, 

Chevrillon Qz-rich monzodiorite 
50–55% Pl, 10–20% Kfs, 10–20% Qz, 

5–8% Bt-Hbl 
Ep, Ttn, Mag, Ap, Zrn 

Anville Granodiorite 
40–45% Qz, 30–40% Pl, 10–15% Kfs, 

<5% Bt-Chl 
Zrn, Ap, Ep, Ilm, Alu 

Apatite is generally observed as inclusions in amphibole and feldspar and is generally abundant, 

except in the Anville intrusion. Apatite is euhedral to subhedral and grain-size varies from coarse-
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grained (up to 1 mm long in the Saussure intrusion) to finer-grained, i.e., <200 µm in the Opémisca 

and Chevrillon Plutons, <100 µm (Lac Line intrusion) and <30 µm (Anville intrusion). Apatite 

displays oscillatory zoning (Figure 5a), with resorbed cores and overgrowth textures that indicate 

complex crystallization history. Oscillatory zoning is typical for minerals with a magmatic origin 

[80,81]. Some apatites from the Opémisca, Anville, Saussure, and Chevrillon intrusions are more 

homogeneous, indicating more continuous crystallization, and/or less recrystallization. Cracks are 

common in the studied apatite and most grains from the hydrothermally altered Lac Line intrusion 

and the Opémisca intrusion are porous, unzoned, and display corroded rims. 

Zircons are translucent to light brown in natural light and are generally subhedral to euhedral. 

Grain size varies between 100 and 150 µm in most samples, except for some >200 µm long grains 

observed in the Opémisca, Lac Line, and Anville intrusions. In the bulk of samples, part of the zircon 

grains display cracks and corroded rims. Multiple concentric growth zoning and resorbed cores are 

observed (Figure 5b–f), which is common for magmatic zircons. Zircon displays tabular (1:1 aspect 

ratio for the Saussure and Anville intrusions—Figure 5b,e) to elongated prismatic morphology (1:2 

to 1:4 aspect ratio for the Anville, Opémisca, Lac Line, and Chevrillon intrusions, Figure 5c,d,f). 

Zircons from the Anville, Saussure, and Chevrillon intrusions are strongly altered and metamict. The 

most common inclusion observed in zircon is tabular apatite. 

Table 3. Whole-rock chemistry of the sampled intrusions. 

Intrusions Saussure Opémisca Lac Line Chevrillon Anville 

Elements S101 S401 U139 LL01 CHV01 U140 

SiO2 (wt.%) 67.40 63.3 62.50 63.10 64.20 77.00 

Al2O3 15.55 17.3 17.10 17.60 16.00 12.30 

FeO 1.38 1.26 1.47 1.64 1.50 1.45 

Fe2O3 1.66 1.84 2.29 2.15 1.94 1.12 

CaO 1.96 1.82 3.44 4.28 3.21 1.30 

MgO 1.24 0.86 2.37 2.19 1.78 0.22 

Na2O 5.04 5.91 6.32 5.17 5.03 4.03 

K2O 4.15 5.76 2.44 1.03 2.99 2.29 

TiO2 0.40 0.35 0.34 0.32 0.48 0.15 

MnO 0.04 0.05 0.06 0.06 0.04 0.04 

P2O5 0.29 0.21 0.19 0.14 0.23 0.02 

BaO 0.20 0.150 0.10 0.06 0.18 0.05 

LOI 0.31 0.21 0.56 1.92 0.60 0.44 

TOTAL 99.62 99.02 99.18 99.79 98.18 100.41 

C (ppm) 0.01 0.01 0.01 0.03 0.00 0.01 

Ce 152.00 170.5 54.80 75.00 101.00 72.70 

Cr 40.00 20 110.00 40.00 60.00 30.00 

Cs 4.14 0.46 0.35 0.50 2.46 0.38 

Dy 1.72 3.37 2.02 1.23 1.81 5.61 

Er 0.60 1.54 1.03 0.59 0.80 3.78 

Eu 1.88 2.59 1.02 1.04 1.63 0.91 

Ga 22.10 20.9 20.10 20.90 24.10 16.20 

Gd 4.45 6.88 2.97 2.41 4.21 5.58 

Hf 5.80 5.7 4.20 2.50 4.60 5.90 

Ho 0.31 0.56 0.39 0.22 0.29 1.18 

La 79.80 77.8 26.90 36.00 51.00 36.80 

Lu 0.05 0.12 0.15 0.08 0.07 0.58 

Nb 9.90 15.2 6.90 2.80 5.40 10.30 

Nd 62.20 73.7 26.50 31.90 47.60 28.80 

Pr 17.00 19.95 6.63 8.36 12.50 7.83 

Rb 124.00 110 42.90 24.20 75.30 61.70 

Sm 8.48 10.95 4.07 4.08 7.47 6.25 

Sn 1.00 1 1.00 1.00 2.00 3.00 

Sr 1240.00 1285 1165.00 1140.00 1410.00 79.20 

Ta 0.70 0.9 0.50 0.20 0.50 1.30 

Tb 0.42 0.84 0.38 0.29 0.44 0.88 

Th 14.70 4.62 3.03 4.71 6.12 9.58 

Tm 0.07 0.19 0.17 0.08 0.10 0.57 

U 1.72 0.96 0.55 0.67 1.06 1.82 

V 38.00 47 60.00 59.00 67.00 7.00 

Y 8.70 16.2 10.60 6.40 8.40 35.90 

Yb 0.48 1.06 1.14 0.54 0.55 3.95 

Zr 247.00 299 173.00 108.00 170.00 200.00 
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According to the calculation of the structural formula [82], amphiboles are calcic B(Ca/(Ca + Na) 

≥ 0.75 apfu) with low-Al content (≤10 wt.% Al). In the bulk of intrusions, amphiboles are all magnesio-

hornblende, tremolite, and pargasite (Supplementary material S2). Amphiboles from the Chevrillon 

Pluton are the most enriched in Al, Fe, and K, and these from the Opémisca intrusion are the most 

enriched in Mg and Cl (Table 4). 

Apatites are fluorapatites, containing 2.6 to 4.6 wt.% F, and <0.03 wt.% Cl except for the apatites 

from the Lac Line intrusion that contain 0.05 to 0.1 wt.% Cl (Supplementary material S1). 

Fluorapatites are common in felsic magma [83]. Major constituents are close to stoichiometric values 

with 37.1 to 39.5 wt.% Ca and 17.2 to 19.1 wt.% P. Most apatites are S-poor, with <0.08 wt.% S, except 

for the apatites of the Lac Line and Saussure intrusions that contain >0.1 to 0.2 wt.% S. Silica and Na 

generally vary from 0.01 to 0.3 wt.% for all the samples. Titanium, Al, K, Mg, and Mn-contents are 

generally <0.1 wt.% and iron is generally <0.1 wt.% Fe to up to 0.5 wt.% Fe in the bulk of the analyzed 

apatites (Table 4). 

The Sr and Y contents of apatite range from 60 ppm to 1 wt.% Sr and from 70 to 5000 ppm Y. 

Moreover, three main types of apatite (Groups 1, 2, and 3) are distinguished on the basis of their 

chondrite-normalized REE patterns (Figure 6). Group 1 apatite is observed in the Anville intrusion 

and is characterized by limited fractionation of the LREE over the HREE on their chondrite-

normalized REE patterns (La/YbN ratio of 0 to 2), with convex-upward LREE profile and strong 

negative Eu anomaly. Group 2 apatite is from the Lac Line intrusion and is characterized by weak 

fractionation of the LREE over the HREE on their chondrite-normalized REE patterns, (La/YbN ratio 

of 16 to 50) and a small negative Eu anomaly. Group 3 apatite is from the Opémisca, Chevrillon, and 

Saussure intrusions, and is characterized by strong fractionation of the LREE over the HREE on their 

chondrite-normalized REE patterns (La/YbN ratio of 30 to 250) and no significant Eu anomaly. Apatite 

from the Saussure, Lac Line, and Opémisca intrusions is the LREE richest with 10,000 to 30,000 ppm 

∑LREE and up to 50,000 ppm for some apatites from the Saussure intrusion. 

 

Figure 5. Cathodoluminescence imagery and drawing of zoned (a) apatite, and (b) zircon from the 

Anville, (c) Chevrillon, (d) Opémisca, (e) Saussure, and (f) Lac Line intrusions. Red color is used to 
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highlight inclusions in apatite and zircon, distinct colors are used to distinguish grains, and shade of 

colors correspond to growth stages. 

 

Figure 6. Chondrite-normalized REE pattern of apatites from the (a) Anville intrusion (Group 1); (b) 

Lac Line intrusion (Group 2); and (c) Opémisca, Saussure and Chevrillon intrusions (Group 3). Red 

lines correspond to mean values and data are normalized to chondrite [60]. 

The Zr-content of zircon is close to stoichiometric value (58 wt.% ZrO2), except near cracks and 

apatite inclusions, where it can range from 53 to 61 wt.% ZrO2 (Supplementary material S1). Hafnium, 

which is the most abundant trace element in zircon, has a concentration of 0.70 to 1.40 wt.% HfO2. 

Trace elements such as P and Ti range from a few to thousands of ppm and from below the limit of 

detection (LOD) to hundreds of ppm, respectively (Table 5). Yttrium contents range from 1000 to 

10,000 ppm Y. Zircon from the Anville intrusion contains more Y (1000s of ppm Y) than zircon from 

other intrusions (<1000 ppm Y). Tantalum in zircon is between 0.05 and 1 ppm for the bulk of 

intrusions, except for the Anville intrusion where zircon contains 1 to 3.5 ppm Ta. Moreover, Ta is 

positively correlated with Nb (LOD to 5 ppm Nb for the bulk of intrusions and up to 15 ppm for the 

Anville intrusion). 
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Table 4. Trace elements and REE composition of apatite from the studied intrusions. 

Intrusions Anville Chevrillon Lac Line Opémisca Saussure 

Elements Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

Li ND 25.8 152.4 ND * 3.6 20.1 ND 4.2 18.9 ND 3.2 21.3 1.0 5.0 16.6 

Na 414.2 876.8 1766.6 222.7 2432.9 29,952.8 287.4 783.4 1816.4 194.7 816.8 2050.3 389.2 5195.3 117,998.2 

Mg 14.2 3617.9 26,431.3 13.0 1053.0 8621.2 10.2 939.8 11,077.4 13.7 871.0 13,092.0 4.2 890.1 20,498.0 

Al 1006.1 17,594.6 108,042.4 32.4 3358.0 40,388.3 222.0 1746.5 11,838.2 36.8 973.2 8241.2 60.6 4860.8 133,241.2 

Si 2500.4 25,923.9 117,541.2 ND 8389.0 106,053.2 ND 3241.3 38,686.5 ND 2815.7 19,774.3 781.4 19,362.5 383,624.1 

S ND 263.6 1038.6 ND 464.9 916.6 298.6 1371.4 2384.7 133.7 540.2 959.2 361.6 974.1 1645.5 

Cl ND 232.7 592.3 ND 180.4 1013.2 124.0 687.4 1064.2 ND 112.1 362.5 31.6 115.7 411.6 

K 3.1 129.4 369.2 ND 151.7 990.5 ND 38.8 254.5 0.5 255.6 2429.0 ND 72.4 994.1 

Ti ND 1351.4 10,356.4 ND 333.7 6667.4 1.3 27.7 535.6 0.2 164.2 3149.2 0.1 22.8 554.1 

V 0.2 12.6 58.6 3.1 14.8 90.2 5.0 17.9 44.6 4.9 38.2 483.0 5.3 27.7 264.3 

Mn 336.0 1173.6 6223.5 158.1 308.6 711.7 303.3 553.5 777.0 213.3 327.7 741.0 124.2 317.7 2723.0 

Fe 108.8 9119.4 63,402.0 56.2 1217.8 10,177.3 855.7 1590.5 7864.7 43.0 4714.6 95,786.4 49.8 624.3 14,325.2 

Rb ND 2.6 28.9 ND 1.4 16.2 ND 0.1 2.6 ND 0.7 9.3 ND 2.1 17.9 

Sr 55.2 73.5 118.9 887.7 1116.3 1779.2 338.2 398.4 506.9 830.9 905.5 986.0 723.9 1857.6 9637.5 

Y 1382.8 2729.3 5129.2 44.1 97.4 156.0 81.3 250.4 340.4 72.8 199.7 334.1 45.5 189.6 494.1 

Zr 0.2 158.1 1224.9 0.2 1.7 7.1 0.1 0.9 5.2 0.2 2.0 23.7 0.3 24.4 1203.2 

Sn ND 12.8 51.0 ND 0.4 3.0 0.0 1.0 5.7 0.0 3.6 40.7 0.0 10.0 131.9 

La 66.0 226.5 413.6 100.3 367.2 819.4 244.7 880.5 1943.1 517.4 1374.7 2396.7 215.5 1773.9 5257.8 

Ce 299.7 810.0 1515.9 288.3 999.4 1981.0 737.2 2529.5 4296.5 750.1 1997.5 3181.5 509.4 3486.8 9158.8 

Pr 44.0 130.6 214.7 39.7 118.1 236.0 106.0 342.1 490.0 58.5 178.6 261.6 56.1 341.9 866.4 

Nd 293.6 772.4 1317.8 187.6 504.4 972.9 482.7 1495.0 1994.0 271.8 678.8 1070.4 211.9 1228.4 3090.0 

Sm 106.5 275.2 477.0 27.1 73.9 137.5 67.8 218.4 281.3 28.8 90.5 160.5 20.8 151.1 446.2 

Eu 2.3 6.4 11.8 8.2 16.9 28.0 8.5 19.0 24.8 8.1 17.9 32.4 9.9 32.1 80.8 

Gd 172.6 387.5 722.9 18.5 49.1 91.9 40.3 130.0 161.8 27.0 66.9 124.1 16.3 94.6 270.8 

Tb 29.1 60.9 114.0 1.6 4.2 8.2 3.8 12.4 15.5 2.5 6.8 12.1 1.5 8.4 24.4 

Dy 192.9 399.8 736.1 6.1 18.3 31.0 15.1 55.4 70.6 10.6 35.4 61.7 6.6 37.5 107.6 

Ho 45.1 88.4 156.5 1.2 3.2 5.0 2.9 9.7 13.2 2.7 6.9 11.6 1.2 6.1 16.3 

Er 133.2 250.9 461.3 2.8 7.6 11.1 7.2 22.4 32.4 7.6 19.0 30.3 3.5 14.3 38.0 

Tm 15.7 35.8 68.1 0.4 0.9 1.6 0.9 2.7 4.9 0.8 2.5 3.6 0.4 1.7 4.6 

Yb 96.9 225.6 424.5 2.0 5.9 8.3 5.5 16.5 35.2 3.9 17.0 29.7 2.9 9.7 26.0 

Lu 12.7 33.2 63.0 0.5 1.0 1.4 0.7 2.4 6.4 1.1 2.9 5.9 0.5 1.4 3.3 

* ND stands for Not Detected.  
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Table 5. Trace elements and REE composition, as well as chemical parameters of zircon from the studied intrusions. Data of REE are normalized to the chondrite 

[60]. 

Intrusions Anville Chevrillon Lac Line Opémisca Saussure 

Elements Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

P ND 533.1 1432.5 ND 775.0 5074.8 127.5 480.2 1049.3 279.7 704.9 2080.4 ND 407.4 2956.2 

Ca 123.1 306.5 542.7 −8.5 556.1 3128.6 ND 43.9 856.2 ND 60.3 298.4 209.2 777.0 1705.9 

Ti ND 3.8 15.5 0.4 132.3 2726.2 0.7 6.2 20.9 2.0 6.4 53.2 ND 29.5 150.2 

V ND 0.1 4.4 ND 1.4 19.4 −0.3 0.3 2.5 0.1 0.3 1.0 ND 3.0 11.0 

Fe 57.1 464.2 1691.1 18.2 540.6 2174.3 ND 66.3 473.2 ND 17.9 140.9 163.1 661.2 1536.1 

Sr 0.0 1.2 7.5 ND 4.4 37.2 0.1 1.5 23.4 0.2 0.8 14.6 1.0 23.5 78.5 

Y 574.6 2379.0 3994.1 314.5 720.7 2964.0 234.6 622.5 1936.7 441.3 772.3 1910.1 534.5 869.3 1422.1 

Nb 1.5 5.9 12.8 0.6 3.7 21.7 1.2 1.7 2.8 1.9 2.7 5.0 1.0 3.3 7.9 

Hf 6554.2 8939.7 11,773.4 6650.0 8938.0 11,683.0 6145.0 8442.4 10,388.0 7282.4 8442.1 10,974.9 5964.2 8091.6 10,938.2 

Ta 0.1 2.3 5.6 0.0 0.3 1.8 0.0 0.3 2.7 0.2 0.4 1.6 ND 0.4 1.5 

Th 140.7 221.1 315.4 50.6 204.4 540.5 34.2 154.0 641.5 31.3 69.6 185.1 237.2 498.5 960.0 

U 269.4 413.8 524.0 111.7 244.8 543.7 43.9 146.8 481.3 44.5 80.9 256.8 292.8 522.8 785.0 

La ND 2.8 27.7 0.0 8.6 143.8 0.0 0.1 0.6 0.0 0.1 1.3 0.0 16.0 87.2 

Ce 4.3 17.2 61.4 2.4 77.6 796.7 16.7 35.4 99.6 15.9 28.9 49.6 54.9 158.5 463.7 

Pr ND 1.1 7.9 0.0 7.8 127.3 0.0 0.4 1.1 0.0 0.2 0.9 0.0 9.8 52.0 

Nd 0.6 7.7 44.4 0.7 54.2 709.8 0.9 6.0 14.7 0.6 2.5 7.4 0.8 66.5 335.5 

Sm 1.8 8.2 25.6 0.0 27.2 209.5 1.6 7.0 17.8 1.5 4.2 7.0 3.4 20.9 86.8 

Eu 0.4 1.3 5.0 0.6 11.0 72.8 0.3 2.1 12.3 0.5 1.3 2.1 0.4 6.7 25.9 

Gd 9.0 45.0 78.3 6.9 48.2 332.0 6.0 22.0 74.6 9.4 19.0 43.9 12.6 31.1 80.8 

Tb 3.7 16.4 28.4 1.6 9.0 58.0 1.8 5.3 17.6 2.7 5.5 14.9 2.3 6.4 14.8 

Dy 35.0 196.9 327.4 22.0 77.4 453.9 17.8 55.1 183.8 35.2 64.8 183.1 34.3 61.9 106.0 

Ho 14.9 80.4 132.7 8.5 22.5 108.8 7.3 19.0 63.7 12.1 24.0 66.3 11.4 22.5 41.2 

Er 69.1 370.4 613.4 35.6 91.9 366.8 36.2 89.1 279.6 73.0 122.4 313.9 69.7 110.2 181.3 

Tm 14.4 76.0 121.7 5.6 17.8 61.5 7.9 18.7 49.7 16.0 25.8 58.0 16.4 23.9 40.6 

Yb 150.6 677.9 1076.7 45.9 163.9 441.1 79.4 185.2 461.5 169.0 256.2 528.7 158.9 247.1 386.8 

Lu 32.1 137.0 213.1 8.4 35.3 68.8 17.2 41.7 104.5 36.3 54.5 103.8 35.7 51.0 71.6 

La/YbN 4E-06 6E-03 6E-02 5E-05 4E-02 6E-01 5E-05 4E-04 1E-03 6E-06 3E-04 4E-03 4E-03 5E-02 2E-01 

Eu/Eu* 0.1 0.3 0.8 0.5 1.0 3.2 0.3 0.6 4.6 0.3 0.4 0.6 0.4 0.9 1.4 

Ce/Ce* 0.9 29.8 195.8 0.7 17.6 145.1 5.9 22.1 76.6 7.5 63.6 241.9 0.8 4.7 29.8 

T (°C) 571.2 679.9 826.3 538.1 845.0 1990.4 565.2 719.8 860.0 641.6 718.1 980.0 583.8 888.3 1147.2 
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Except for the non-pristine zircon from the Anville, Saussure, and Chevrillon intrusions that 

display elevated LREE contents (Figure 7), the bulk of zircon generally displays similar chondrite-

normalized REE patterns (Figure 7). On chondrite-normalized REE patterns, LREE are strongly 

fractionated over HREE and display strong positive Ce anomalies (from 10s to 100s) and negative Eu 

anomalies. Non-pristine grains from the Saussure, Chevrillon and Anville intrusions display 

chondrite-normalized REE patterns with LaN > 1 and LREE enrichment (Table 5). Lanthanum 

enrichment in pristine zircon points either to La-rich inclusions (apatite), coprecipitation of coeval 

phases and may locally be a consequence of alteration. The temperatures calculated for the pristine 

zircon range from 650 °C to 750 °C, except for few zircons for which temperatures over 800 °C were 

obtained (Table 5). 

 

Figure 7. Chondrite- normalized REE pattern for the zircons of the (a) Opémisca, (b) Saussure, (c) 

Anville, (d) Chevrillon, and (e) Lac Line intrusions. Red lines correspond to mean values. Data are 

normalized to the chondrite [60]. 

4.3. Volatile Content of the Melt 

The volatile content (mainly Cl, S, and H2O) of a magma is an essential factor for the formation 

of IRGS, as it permits the formation of Cl- and S-complexes that transport metals, such as Au and Cu, 

through the crust [9]. In this section, apatite and amphibole chemistry is used to estimate the volatile 

content (H2O, S, and Cl) of the studied magmas. 
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As the Anville and Lac Line intrusions lack amphiboles, only the H2O concentration of the 

Saussure, Chevrillon, and Opémisca intrusions is estimated using an empirical amphibole 

formulation [74,75]. The melt in equilibrium with the Saussure, Chevrillon, and Opémisca 

amphiboles yield H2O concentrations of 3.7 to 4.5 wt.%, 5.4 to 5.5 wt.%, and 3.7 to 4.1 wt.%, 

respectively. 

Apatite from the Chevrillon, Opémisca, and Anville intrusions display low sulfur content (<0.1 

wt.% SO3). These low values may reflect low S concentration in the melt. In a reduced magmatic 

environment (Anville intrusion), S is mostly dissolved in the magma as sulfur (S2−), which is more 

incompatible than sulfate (S6+) in apatite [66]. On the other hand, the moderate to elevated S content 

(0.2 to 0.5 wt.% SO3) observed in the apatite from the Saussure and Lac Line intrusions may indicate 

that S was introduced in the structure of apatite by secondary processes. To comment on the S-content 

of the melt, the empirical partitioning relationship of S between apatite and rhyolitic/andesitic melt 

is applied Equation (7) [84]. 

�������� = 0.0629 ×  ������� + 0.4513 (7) 

with Sapatite and Smelt the S content in ppm in apatite and melt, respectively. 

For the Chevrillon, Opémisca, and Anville intrusions, this method points to magmas with low 

S-contents of about 10 to 30 ppm S. On the other hand, the Saussure and Lac Line intrusions return 

values ranging from 20 to 100 ppm S and up to 350 ppm S, respectively. 

The studied apatites are also Cl-poor (<0.1 wt.% Cl) and there are no significant differences 

between altered and unaltered apatite, which mean that it could be a pristine value. To estimate the 

Cl concentration of the melt, we used a thermodynamic apatite/melt chlorine partitioning model 

(Equations (8) and (9) [85]: 

������ =
���

��

���
��

1

�������
������� × 10.79 (8) 

where ���
��

 and ���
��

 are the mole fractions of chlorapatite and hydroxylapatite estimated by 

calculating the structural formula of apatite [85] 

�������
�������

= ����.�� � ����
��

� ���
��

� × ��.��� × 
���

�.��� × � (9) 

with T the temperature in K [86]. 

Using this method, we obtain Cl melt concentrations that range from less than 0.01 to 0.1 wt.% 

Cl. Only three apatite grains from the Lac Line and Saussure intrusions return values of 0.1 wt.% Cl 

in the melt. The studied magmas present H2O, S and Cl values within the range expected for felsic 

magmas [75,86]. Only the Saussure and Lac Line intrusions show S-content anomalously elevated, 

but these values need further validation. 

4.4. Oxidation State 

Redox conditions at the time of crystallization were estimated using the trace element chemistry 

of apatite and zircon (Supplementary material S2). Three types of apatite are distinguished on the 

basis of their respective Eu anomalies (Figure 8), which is a proxy for the ƒO2 parameter [51]. 

According to apatite chemistry, the Anville intrusion crystallized under the lowest ƒO2 conditions 

(type 1 apatite; Figure 8). The Lac Line apatites point to slightly higher ƒO2 conditions (type 2 apatite). 

The Saussure and Chevrillon intrusions crystallized under the highest ƒO2 conditions (type 3 apatite). 

Variation of ƒO2 values is limited in individual intrusions, except for the Opémisca Pluton that 

displays a range of Eu anomalies values (types 2 and 3 apatites observed; Figure 8). 
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Figure 8. Diagram displaying the Eu anomalies (Eu/Eu*) vs. Ce anomalies (Ce/Ce*) of apatite; with 

Eu* = 0.5*(SmN + GdN), Ce* = 0.5*(LaN + PrN). Limits between these three types are defined according 

to previous studies [64,67]. The S1 and S4 samples from the Saussure intrusion are from granite and 

syenite phases, respectively. Data are normalized to chondrite [60]. 

The Eu/Eu* vs. Ce/Ce* in zircon oxy-barometer [51] has been used on pristine zircon to further 

evaluate the ƒO2 parameter. Two zircon populations are observed on the basis of their Eu anomalies 

(Figure 9). Both populations display a wide range of Ce anomalies (0.9 to 100). Population 1 zircon is 

composed of zircon from the Anville intrusion and displays a generally lower Eu anomaly (up to 0.1), 

except for two grains that display high Eu anomaly. Population 2 is composed of zircons from the 

Lac Line, Saussure, Chevrillon, and Opémisca intrusions and displays a moderate Eu anomaly (0.1 

to 0.3) except for few grains from the Anville, Chevrillon, and Saussure intrusions with Eu anomalies 

up to 1. Results of zircon from the Saussure, Chevrillon, Lac Line, and Opémisca intrusions suggest 

that they crystallized under more elevated ƒO2 conditions than zircons from the Anville intrusion, 

which crystallized under the lowest ƒO2 conditions. 

The (
��

��∗
)����  oxybarometer [68,69] and the REE-independent [

�
����
����

�
����
����] oxybarometer [70] have 

been applied to the studied zircons to calculate the ƒO2 parameter (Figure 10a). These methods 

provide distinct results. The (
��

��∗
)����  oxybarometer returns, at similar temperatures, a wide range 

of ƒO2 values for individual intrusions, e.g., ΔFMQ from −0.2 to +9.3 for the Opémisca intrusions at 

750 °C (Figure 10b). There is a discrepancy between these results and the results obtained with the 

other methods applied to the studied samples, which returned a narrow range of ƒO2 values for 

individual intrusions. 

The REE-independent �
�

����
����

�
����
�����oxybarometer (Figure 10b) returns a narrow range of ƒO2 values 

for individual intrusions. According to this method, the synvolcanic Anville intrusion crystallized 

under the lowest and highest ƒO2 conditions with mean ΔFMQ of −1.4. The Lac Line, Chevrillon 

zircons point to intermediate ƒO2 values with mean ΔFMQ values of −0.3 and −0.7, respectively. The 

Saussure and Opémisca Intrusions show higher ƒO2 values with mean ΔFMQ values of 0.7. 



Minerals 2020, 10, 966 20 of 32 

 

 

Figure 9. Diagram displaying the (Ce/Ce*) vs. (Eu/Eu*) in pristine zircon; with Ce* = (Nd)²N/(Sm)N; 

Eu* = 0.5*(SmN + GdN). Data are normalized to chondrite [60]. 

4.5. Geochronology Results 

The U-Pb ratios and trace element composition were measured on zircon from the Anville, 

Saussure, and Chevrillon intrusions (Supplementary material S3). Overall, the zircons from each 

sample display characteristics of moderate to severe alteration-related Pb-loss, a feature common to 

Archean zircons that have experienced significant radiation damage accumulation. Additionally, 

there is a slight overdispersion in the 238U/206Pb due to variable ablation rates relative to the OGC 

primary reference material (also a byproduct of variable damage). 

Analyses within the filter criteria yielded intercept ages of 2697 ± 11 Ma for the Chevrillon (Mean 

Squared Weighted Deviation (MSWD) = 1.9; Sr < 8 ppm) and 2688 ± 8 Ma for the Saussure (MSWD = 

0.2; Sr < 12 ppm) intrusions, respectively (Figure 11). Zircons from the Anville intrusion have mostly 

concordant ages with an intercept age of 2796.5 ± 3.8 Ma (MSWD = 0.53; Sr < 2 ppm; Figure 11), which 

we interpret as recording the timing of primary crystallization [48]. 

5. Discussion 

5.1. Magma Type 

The studied intrusions are alkaline to subalkaline and correspond to differentiated magmas 

according to their alkali and silica contents (Table 3). In this section, magmas types are characterized 

using a recent classification of plutonic rocks [19]. 

The Anville and Lac Line intrusions have the chemical composition of TTG suites, as defined by 

Moyen [19]. The Lac Line intrusion has the characteristics of a high pressure (HP) TTG suite, with 

K2O/Na2O < 0.2 wt.%, high Na2O content, lack of K-feldspar (Figure 4b,Table 2) and a strong 

fractionation of the LREE over the HREE (Figure 4c). However, the Fe, Mg, and Al contents (for 70 

wt.% SiO2) of the Lac Line intrusion are higher than these of HP TTG suites (Table 3). Classification 

of the Lac Line intrusion remains uncertain, as extensive hydrothermal alteration likely modified its 

major element chemistry. The Anville intrusion resembles a K-rich TTG as it displays chemical 

characteristics of TTG suites, as well as these of ordinary biotite granite, such as relatively elevated K 
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content (K2O/Na2O = 0.56) and elevated high field strength elements (HFSE) content (e.g., 35 ppm Y, 

Figure 4). 

The Opémisca intrusion has a spotted macroscopic aspect that is common in sanukitoid 

intrusions [19,46]. This intrusion is also Na-K-rich (4.80 wt.% Na2O and 3.16 wt.% K2O) with a 

K2O/Na2O ratio of 0.66 and has elevated Sr (1165 ppm) and La (30 ppm) contents (Table 3). The 

Opémisca intrusion, thus, has the whole-rock composition of a sanukitoid intrusion [19,87,88] to the 

exception that it is slightly peraluminous (aluminum saturation index (ASI) = 1.0–1.1) while 

sanukitoids tend to be metaluminous (ASI < 1, Figure 4) [19]. This Al-enrichment and Ca-depletion 

may be the results of alteration that induced the saussuritization observed in calcic plagioclase. This 

alteration could be due to sub-solidus reactions between intrusive rocks and tardi-magmatic fluids. 

 

Figure 10. Diagram displaying the results of the (a) (
��

��∗
)���� oxybarometer [68,69] and (b) REE-

independent �
�

����
����

�
����
�����oxybarometer [70] for pristine zircons. 
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Figure 11. Zircon U-Pb age spectra (left) and Concordia diagrams (right) for the Anville, Chevrillon, 

and Saussure intrusions. Age spectra inset shows relationship between individual 207Pb/206Pb dates 

and Sr and La concentrations. The threshold value for data filtering is defined by departure from 

vertical array. Ellipses in Concordia diagrams are colored for Sr concentration (ppm). Inset shows 

data conforming to filter criteria for each sample, from which sample crystallization ages are 

calculated. 

The Chevrillon intrusion is a high-K calc-alkaline (HKCA) granitoid intrusion [41] with large 

phenocrysts of K-feldspar (Figure 2e) and elevated K2O (3.1 wt.% K2O) and Sr contents (1200 to 1400 

ppm). The intrusion also has sanukitoid chemical characteristics, with a K2O/Na2O ratio of 0.6 and 

high contents of LREE (200-ppm sum LREE). Moreover, the HKCA group has been defined recently 

[19] and its chemical definition likely requires refinement. This intrusion is also slightly peraluminous 

(ASI = 1.0–1.1), but that may be a consequence of secondary processes. 

The Saussure intrusion is a typical quartz-bearing alkali syenite. This intrusion has elevated 

alkali (Na2O + K2O – CaO = 9 wt.%) and incompatible elements contents (up to 200 ppm Rb, up to 

1300 ppm Sr, 550 ppm ∑REE, Table 3), which is typical of alkaline magmatism of any geological 

period [19]. 
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5.2. Zircon U-Pb Geochronology 

The results reported here indicate that the age (2796.5 ± 3.8 Ma) reported for the Anville intrusion 

(Figure 11) is similar to that of the Chrissie and Des Vents formations, which formed in the early stage 

of the synvolcanic period. This age is also much older than the previous synvolcanic age (2714.8 ± 0.6 

Ma) reported for the Anville intrusion [48]. The Anville intrusion is likely an assemblage of 

synvolcanic and syntectonic intrusions emplaced in a restricted area throughout the evolution of the 

Chibougamau area. The syntectonic component was likely emplaced in the highly deformed 

southern part of the pluton that remains undated [35]. This intrusion is covered by quaternary 

material and the paucity of exposed outcrops prevents detailed investigation of crosscutting 

relationships. 

For the Saussure and Chevrillon intrusions, the larger proportion of zircon that have undergone 

alteration and Pb-loss has resulted in slightly higher age uncertainty. The Chevrillon intrusion 

crystallization age of 2697 ± 11 Ma (Figure 11) is in good agreement with recent yet unpublished TIMS 

age for the intrusion of 2693.1 ± 1.7 Ma [41]. This and the intrusion’s crosscutting relationships with 

the Chebistuan Formation confirm that the intrusion is syntectonic (Figure 1). Moreover, the Saussure 

intrusion has likely an age of crystallization of 2688 ± 8 Ma (Figure 11), which is in good agreement 

with stratigraphic relationships. Indeed, the Saussure intrusion emplaced in the Daubrée Formation 

(Figure 1), which formed during the syntectonic period. 

In summary, the studied intrusions formed within about 10 Ma during the syntectonic period. 

Only the sample from the Anville intrusion is older and may be representative of synvolcanic 

magmatism. 

5.3. Impact of Alteration on Mineral Chemistry and ƒO2 Estimates 

One of the main objectives of this study is to determine how the ƒO2 parameter of Archean 

magmas can be evaluated using rocks that have generally been hydrothermally altered within 

magmatic-hydrothermal mineralizing systems. Apatite and zircon from the studied intrusions are 

more or less altered, as indicated by textural changes and heterogeneous chemistry (as discussed 

below). 

Apatite from the Lac Line and Opémisca intrusions is strongly altered according to textural 

observations, i.e., porous texture, abundance of cracks, lack of oscillatory zoning and resorption 

texture. This alteration is accompanied by variation of the Na, Si, Fe, K, Al, and S content of apatite 

and by REE remobilization that is likely a consequence of hydrothermal alteration [67,89,90] and/or 

of the co-crystallization of accessory minerals, such as monazite and feldspar [91,92]. 

As shown by the CL and BSE images (Figure 5) as well as the Sr- and LREE-contents (Figure 3), 

most zircon from the Chevrillon and Saussure intrusions, and some zircon from the Anville intrusion 

are strongly altered. Alteration is manifested by corroded rims, porous textures, lack of oscillatory 

zoning, porosity of the core, as well as concentric and non-concentric cracks. Preserved oscillatory 

zoning (Figure 5) and resorption in other grains, point to complex crystallization history. Altered 

zircons may be enriched in trace (e.g., Ca, P, Al, Fe, Sr, and Ti) elements compared to unaltered 

zircons [57,58,93]. Gain of trace elements may also be due to coupled substitution of non-formula 

elements [94,95] and to inclusions of feldspar, quartz or apatite [96–98]. Local decrease of the Zr, Pb, 

Hf, and Si content may also be due to intense metamictization [95]. 

Modification of apatite and zircon chemistry also impacts the results of Ti-in-zircon 

thermometry and ƒO2 estimations. In felsic and intermediate intrusions, the Ti-content of zircon is 

generally less than 20 ppm, which corresponds to average crystallization temperatures of 653 ± 124 

°C and 758 ± 98 °C, respectively [99]. Alteration [95,97] or the entrapment of co-precipitated phases 

[57,58] may explain Ti enrichment (up to 150 ppm Ti), which lead to unreliable temperature estimates 

[100]. 

The ƒO2 values obtained from REE dependent method [51,67,69] provide significantly different 

results when applied to pristine and non-pristine apatite and zircon grains, as was also noted for the 

Muscocho Pluton [101]. For example, the apatites from the Opémisca intrusion provide a wide range 

of log(ƒO2) estimates from −17.2 °C to −18.3 at 700 °C. The lowest ƒO2 values are likely due to LREE-
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rich inclusions. Apatites from the Lac Line intrusion are strongly and evenly altered, which induced 

REE depletion and lead to underestimation of the ƒO2 parameter. 

5.4. Oxidation State and Magma Temperature 

As discussed in the previous section, most apatites from the Lac Line and Opémisca intrusions 

and most zircons from the Saussure and Chevrillon intrusions are non-pristine. For this reason, the 

ƒO2 parameter may be best estimated by comparing results obtained from two minerals, i.e., apatite 

and zircon. In this section, non-pristine grains are no longer considered, and results obtained from 

pristine apatite and zircon are compared. 

Zircon crystallization temperature estimated using the Ti-in-zircon method [61] returned 

median temperatures of crystallization of 650 °C to 720 °C for the pristine zircon (Figure 10). These 

are reasonable temperatures for the last stage of magma crystallization [102,103]. Note that the 

alkaline intrusion (Saussure) contained only four least-altered zircons and temperature estimates are 

the least reliable for this intrusion. 

The chondrite normalized (CHUR) oxybarometer [69] uses the La content of zircon and seems 

to be the least reliable method, as results cross many buffers, and are uncorrelated with results 

obtained using other methods. The CHUR-method is strongly dependent on the quality of the La 

measurement and to La-increase induced by alteration and La-rich inclusions [56–58], as is observed 

in the studied zircons. This method is likely unreliable in hydrothermally altered contexts. 

While the Eu/Eu* vs. Ce/Ce* ratio method provides an estimation of the ƒO2 parameter, results 

are comparable with the other methods. This method may be reliable, and its results will be compared 

to results obtained from the other zircon oxybarometer. Elevated oxygen fugacity corresponds to low 

values of the Eu2+/Eu3+ ratio in magma, leading to a low Eu negative anomaly in apatite and zircon. 

The Eu/Eu* vs. Ce/Ce* ratio points to oxidizing to moderately oxidizing conditions for most 

intrusions, except for the synvolcanic Anville intrusion that records reduced conditions. 

According to the [
�

����
����

�
����
����] oxybarometer [70], zircon containing < 0.1 ppm La crystallized in 

reduced conditions (ΔFMQ of −1.4) for the Anville intrusion and moderately reduced 

conditions(ΔFMQ of −0.3 to −0.7) for the Lac Line and Chevrillon intrusions. Zircons from the 

Opémisca and Saussure intrusions return even more elevated values (ΔFMQ of 0.7), which 

correspond to moderately oxidizing conditions. These values are correlated with Eu/Eu* vs. Ce/Ce* 

ratio. The [
�

����
����

�
����
����] oxybarometer [70] is more accurate as it is independent of the REE, and especially 

La-content of zircon. 

These methods also use factors that are additional sources of uncertainty. The [
�

����
����

�
����
����] 

oxybarometer [70] requires melt composition. As melt inclusions are lacking in the study area, whole 

rock analyses are used as rough approximation of magma composition. However, the studied rocks 

contain large euhedral plagioclase and amphibole that likely crystallized prior zircon and whole rock 

chemistry is unlikely representative of the composition of the residual melts in equilibrium with the 

studied zircons. In order to evaluate the uncertainty associated with a poor estimate of residual melt 

composition, the Si- and K- and Ca-contents of the melt were arbitrarily increased prior re-calculating 

the fO2 parameter. These modifications have little effects on the ƒO2. For example, a decrease of the 

Si-content from 60 to 70 wt.%, will cause a diminution of 0.05 of the ƒO2. 

These methods also require insights into the H2O content of the melt, the NBO/T parameter, and 

the temperature of the zircon-saturated melt. To test the sensitivities of the method to these 

parameters, the H2O content of the melt was arbitrarily increased from 3% to 5% and this induced a 

decrease of 1 log unit of the ƒO2 parameter. In addition, a 0.1 increase of the NBO/T parameter induces 

a 0.3 log unit increase of the ƒO2 parameter. Ideally, these parameters should be constrained using 

melt inclusions, which are lacking in the studied samples. Results of this study thus provide an 

approximation of the ƒO2 parameter that is, to date, the best available estimation of this parameter 

for Neoarchean magmatism in the Chibougamau area. 
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In summary, depending of the quantity of pristine and non-pristine zircon, the 

[
�

����
����

�
����
����] oxybarometer seems to be the most reliable method to estimate the ƒO2 parameter. If no 

pristine zircons are available, we recommend using the Eu/Eu* vs. Ce/Ce* ratio in apatite that 

provides a general estimation of the ƒO2 parameter. Moreover, this study shows that synvolcanic 

magmas (Anville intrusion) are more reduced than syntectonic magmas and that syntectonic magmas 

display similar oxidation states. 

5.5. Consequences for IRGS Exploration 

Among the studied intrusions, only the Lac Line stock is associated with a magmatic-

hydrothermal system (IRGS possibly), i.e., Au-Ag-Cu ± Mo mineralization [11,45]. To evaluate 

potential Au deposit fertility, the geochemical characteristics (whole rock analyses, ƒO2, volatile 

content) of the mineralized Lac Line intrusion will be compared to the other studied intrusions. The 

synvolcanic Anville intrusion is not included in this comparison as IRGS only form in syntectonic 

settings. 

To provide magmatic-derived fluids to a mineralizing system, an intrusion must likely be 

volatile-rich. Deuteric alteration, in the Saussure intrusion, is indicated by amphibole 

pseudomorphosed by chlorite. This points to significant fluid exsolution and circulation in this 

intrusion, which is essential for IRGS mineralization [74]. In addition, the H2O concentration of the 

Saussure, Chevrillon, and Opémisca intrusions, as estimated using the empirical amphibole 

formulation [74,75], is within the range of values for hydrated magmas. Magmas of the Chevrillon, 

Saussure, and Opémisca intrusions, with which apatite and zircon may have equilibrated, yield 

oxygen fugacity of ΔFMQ −0.7 to 0.7 and H2O concentration of 5.4 to 5.5 wt.%, 3.7 to 4.5 wt.%, and 

3.7 to 4.1 wt.%, respectively. Magmas associated with porphyry mineralization display comparable 

water contents and ƒO2 [104], except for the Chevrillon intrusion, which display a lower ƒO2 [7–9]. 

A magma also has to contain a significant amount of S and/or Cl to dissolve and retain Au, as 

there is a strong linear correlation between Au solubility and the amount of Cl and S dissolved in a 

magma [8,9]. The studied intrusions are Cl-depleted according to apatite chemistry. However, the 

Lac Line and Saussure intrusions may contain significant amount of S. With 0.03 wt.% S dissolved in 

the melt, the maximum amount of Au that can be dissolved in a felsic melt is 1.2 ppm [9]. In addition, 

S speciation has a strong impact on Au solubility. For felsic melts, maximum Au solubility is reached 

for ƒO2 ranging from FMQ + 0.5 to FMQ + 1.5 [8]. In the studied syntectonic intrusions, the ƒO2 

measured from zircon of the Saussure intrusion allows optimal Au solubility, meaning that, if Au 

was available, the magmatic system may have accumulated Au. 

5.6. Melts Sources and Oxygen Fugacity 

In this study, the intrusions are mostly generated from TTG and alkaline to subalkaline melts. 

The source of TTG is an enriched and hydrated mafic rock and partial melting occurred at high 

pressure, i.e., within the stability field of garnet (10–12 kbar) [105,106]. These mafic rocks are likely 

hydrated on the sea floor and then retain part of their water during metamorphism. 

The petrogenesis of syntectonic magmatism remains controversial [19]. Alkaline magmas likely 

come from low degree partial melting of an enriched ultramafic component, which generally 

corresponds to a metasomatized mantle [107]. The sources of calc-alkaline and other magmas of the 

syntectonic period likely display a range of crustal and mantle components [19]. These magmas also 

evolve through several processes, such as fractional crystallization, assimilation, or mixing, and 

differentiate to intermediate to felsic-oxidized magmas, such as HKCA and sanukitoid [19]. The 

relative importance of source composition and differentiation process in producing the chemical 

diversity observed in syntectonic intrusions remains debated [15]. However, and regarding source 

composition, the elevated ƒO2 measured in the studied alkaline and subalkaline syntectonic magmas 

gives additional support to Neoarchean metasomatized mantle as a possible source of at least part of 

syntectonic magmas. 
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6. Conclusions 

The aim to this study was to estimate the under-measured geochemical parameters (ƒO2, volatile 

content) of syntectonic magmas. For this reason, the oxygen fugacity, and volatile contents of the melt 

were measured using both apatite and zircon chemistry to determine which method is more suited 

for the study of Archean magmas. This study reveals that: 

 Apatite and zircon are useful to estimate the oxygen fugacity depending on the mineral quality, 

but further investigations are needed to efficiently measure the ƒO2 parameter of a melt using 

apatite chemistry; 

 There is an increase of the ƒO2 parameter between the synvolcanic and syntectonic periods of 

the Abitibi Subprovince; 

 The studied part of the Anville intrusion was emplaced during the same period as the Chrissie 

and Des Vents formations, which makes it the oldest subvolcanic complex of the Abitibi 

Subprovince. Moreover, geochronological analyses of the undated Saussure and Chevrillon 

intrusions, as well as their stratigraphic relationships with syntectonic sedimentary basins, 

confirms that they are both syntectonic intrusions; 

 Magmas from the Saussure intrusion have the optimal ƒO2 for Au transportation. Moreover, the 

magma from the Saussure and Lac Line intrusions may have contributed S-rich mineralizing 

fluids to magmatic-hydrothermal systems. As such, further investigations are needed to 

evaluate the Au-content of the melt and the size of the magmatic system, and to evaluate the 

economic potential of the studied intrusions. 
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